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Bronchopulmonary dysplasia (BPD) remains a major complication of premature birth.
Despite great achievements in perinatal medicine over the past decades, there is no
treatment for BPD. Recent insights into the biology of stem/progenitor cells have ignited
the hope of regenerating damaged organs. Animal experiments revealed promising lung
protection/regeneration with stem/progenitor cells in experimental models of BPD and
led to first clinical studies in infants. However, these therapies are still experimental and
knowledge on the exact mechanisms of action of these cells is limited. Furthermore,
heterogeneity of the therapeutic cell populations and missing potency assays currently
limit our ability to predict a cell product’s efficacy. Here, we review the therapeutic potential
of mesenchymal stromal, endothelial progenitor, and amniotic epithelial cells for BPD.
Current knowledge on the mechanisms behind the beneficial effects of stem cells is
briefly summarized. Finally, we discuss the obstacles constraining their transition from
bench-to-bedside and present potential approaches to overcome them.

Keywords: bronchopulmonary dysplasia, lung, stem cells, mesenchymal stromal cells, endothelial progenitor cells,
current good manufacturing practice, potency assay

Introduction

The proper ventilation and oxygenation of a premature newborn is the foremost task in neonatology.
But from the first breath of a premature newborn in the delivery room to the spontaneous or
mechanical ventilation on the Neonatal Intensive Care Unit, the immature lung is always exposed to
a non-physiological substance; it is not prepared for at this age: air, containing at least five times the
oxygen concentration of the amniotic fluid (1). The abrupt confrontation of the immature lung to

Abbreviations: AEC, amnion epithelial cell; ARDS, acute respiratory distress syndrome; ATP, adenosine triphosphate;
BMDAC, bone marrow-derived angiogenic cell; BOEC, blood outgrowth endothelial cell; BOS, bronchiolitis obliterans
syndrome; BPD, bronchopulmonary dysplasia; CD, cluster of differentiation; CDH, congenital diaphragmatic hernia; CdM,
conditioned media; cGMP, current good manufacturing practice; COPD, chronic obstructive pulmonary disease; CPC,
circulating progenitor cell; ECFC, endothelial colony forming cell; EPC, endothelial progenitor cell; EpCam, epithelial cell
adhesion molecule; FBS, fetal bovine serum, FiO, fraction of inspired oxygen; GvHD, graft-versus-host disease; IPF, idiopathic
pulmonary fibrosis; MSC, mesenchymal stromal cell; PCR, polymerase chain reaction; PDGFR, platelet-derived growth factor
receptor; SCID, severe combined immunodeficiency; SSEA, stage-specific embryonic antigen; TGE, transforming growth
factor; VEGE, vascular endothelial growth factor.
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this and other hostile extrauterine conditions leads to the chronic
lung disease of prematurity or bronchopulmonary dysplasia
(BPD).

Despite advances in the management of premature infants,
respiratory complications still account for approximately one-
quarter of all NICU deaths (2). BPD, characterized by impaired
lung growth, remains the most common complication of prema-
ture birth (3, 4). Currently, there is no effective treatment for
BPD and all present approaches remain either supportive, present
major adverse effects (steriods) or show only small benefits (vita-
min A, caffeine).

Cell-based therapies may open a completely new chapter in the
therapy of BPD. Over the past years, animal studies using stem and
progenitor cells as therapeutics showed very promising results,
which have lead to first trials in human (5). This review sum-
marizes our current knowledge about the therapeutic potential of
these genuine facilitators of lung growth and regeneration.

Stem Cells - Origin of Growth, Repair, and
Disease

Stem or progenitor cells reside in virtually all tissues at all stages
of development. They are generally defined by the ability to
(I) undergo self-renewal and (II) give rise to more differenti-
ated cells. The extent to which these cells can differentiate is
called potency. Stem cells harbor the potential to differentiate
into placental and embryonic tissue (fotipotent stem cells of
the morula stage) and along the various embryonic germ lay-
ers (pluripotent, embryonic stem cells). They further give raise
to several adult cell types (multipotent, i.e., hematopoietic stem
cells). Conversely, progenitor cells are thought to give raise to
only one specific adult cell type (unipotent, i.e., type 2 alveolar
epithelial cells).

Toti-, pluri-, and multipotent stem cells enable early develop-
ment of the embryonal structures and subsequent organ differ-
entiation until the beginning of the fetal period approximately
8 weeks post conceptionem. After this period, derivates of these
cells can be found as resident stem or progenitor cells in vir-
tually all fetal and adult tissues deriving from all three germ
layers, including the bone marrow (6), gut (7), brain (8), and
lung (9).

Their major task is the facilitation of growth and of tissue
regeneration and maintenance, e.g., providing new, differentiated
cells after cell loss due to normal usage or injury while remaining
in a proliferative, lesser differentiated state on their own (self-
renewal). This happens to various extends. Some tissues — such as
the gut or bone marrow — contain stem cells with high proliferative
and regenerative capacity, while others - such as the brain and the
heart - grow until adulthood, but have only limited regenerative
potential once damaged.

The lung is a complex organ deriving from endodermal and
mesodermal origin and harbors several endodermal (epithelial)
and mesodermal (mesenchymal and endothelial) stem and pro-
genitor cell types (10), each of them with different capabilities to
differentiate and proliferate. As of now, over 40 different lung cell
types have been described; numerous of them exert more or less
characteristics of stem cells (9-11).

Since enabling growth and regeneration is the main role of
stem or progenitor cells in non-embryonic tissues, organ fail-
ure would suggest a pathology of the organ resident stem cell
population(s). Indeed, several events before (prolonged rupture
of the membranes, oligohydramnios, severe intrauterine growth
restriction, congenital diaphragmatic hernia/CDH) or after birth
(mechanical ventilation, oxygen) may impair stem cell function.
Lung diseases with abnormal growth of lung compartments, such
as the bronchiolitis obliterans syndrome (BOS) following lung
transplantation (12) or lung hypoplasia following CDH (13), can
be linked to dysfunction of the resident progenitor cells.

In BPD, qualitative or quantitative impairment of resident
mesenchymal and endothelial stem or progenitor cells seems
to contribute to the disease pathogenesis or to the incapac-
ity of the lung to repair itself (11). Less is known about the
pathogenic role of stem or progenitor cells in the endodermal,
epithelial lung compartments, such as the bronchioalveolar stem
cells (BASCs) (14).

Conversely, exogenous stem cells or their products derived
from the mesenchymal (14-26), epithelial (27-29), or endothelial
(30, 31) compartment of easily accessible tissue, such as the bone
marrow, placenta, or the umbilical cord prevent or restore lung
damage in animal models of BPD. Most of these data have been
generated in neonatal rodents exposed to hyperoxia, a model
which will be discussed below. Newer models combining several
factors contributing to BPD [such as antenatal hypoxia, inflam-
mation, and mechanical ventilation (32, 33)] will be useful to
assess the pathophysiology of BPD and therapeutic benefit of cell
therapies more completely. Various cell therapies have been pro-
posed (34), and the following paragraphs will focus on the most
extensively explored therapeutic stem cells for BPD: mesenchymal
stromal cells (MSCs), endothelial progenitor cells (EPCs, includ-
ing endothelial colony forming cells, ECFCs), as well as amnion
epithelial cells (AECs).

MSCs as Therapeutic Cells

Mesenchymal stem or stromal cells (MSCs) are the most promis-
ing cells in regenerative medicine. Their therapeutic potential is
currently investigated in virtually every disease one can think of.
As of February 2015, PubMed lists over 37,500 references for these
cells; almost double the number from 2012 (35).

First described in hematopoietic tissues by Friedenstein and
his colleagues in 1970 (36), MSCs have been identified in adult
organs deriving from the mesodermal germ layer, including the
bone marrow and adipose tissue. Furthermore, they can be found
in fetal-restricted mesodermal derivates like the umbilical cord
stroma and cord blood as well as in the placenta and the amniotic
fluid [comprehensively reviewed by Hass and colleagues (37)].
Interestingly, MSCs have also been identified in tissues deriving
from the (ectodermal) neural crest, such as the mandibula (38).

Cord-derived MSCs from the Wharton’s Jelly are of particu-
lar interest for the treatment of neonatal diseases. Indeed, the
umbilical cord stroma is

o readily available at birth and thus clinically relevant
o with 100 million births worldwide a large source of stem cells
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e safe and painless to the mother and her child as cells are har-
vested after delivery from otherwise discarded tissue and thus
devoid of ethical dilemma

e importantly, these cells hold superior healing capabilities com-
pared to adult bone marrow cells (39).

As implied by their multiple residence tissues, MSCs represent
a very heterogeneous cell population (40, 41). MSCs from one
source exert different properties than MSCs from another (37, 42).
Some cells within the MSC population are true stem cells with
the potential to undergo complete self-renewal and some are not.
Therefore, the global population of MSCs should be identified
as “mesenchymal stromal cells” rather than “mesenchymal stem
cells” (35).

The minimal criteria to define a MSC (41) are widely accepted,
but relatively loose and include the following four:

o The ability of the cell to adhere and grow on plain, uncoated,
tissue culture treated plastic surfaces, e.g., the ability to secrete
large amounts of extracellular matrix.

o The presence of CD73, CD90 (thymocyte antigen thy-1), and
CD105 (endoglin 1) on the cell’s surface.

e The absence of the surface markers CD34, CD45,
CD14/CD11b, CD19/CD79«, and HLA-DR, which label
various cell lines from the hematopoetic lineage.

e The ability of the cells to differentiate along adipogenic,
osteogenic, and chondrogenic lineages when stimulated
in vitro.

These criteria were initially created to define MSCs derived
from the bone marrow, where they need to be distinguished from
the hematopoietic stem and progenitor cells giving rise to the
blood cell lines. But as mentioned above, MSCs can also be found
in other organs and tissues where they need to be distinguished
from resident, mature fibroblasts, endothelial cells, and other non-
hematopoetic cell types. Therefore, additional criteria for defining
potentially therapeutic MSCs from, i.e., the umbilical cord or
the adipose tissue, are required and currently under develop-
ment. Several additional surface markers including CD10, CD29,
CD106,CD146, CD166 or CD200 (42), and CD271 (43) have been
proposed.

Bone marrow-derived MSCs exert a robust differentiation
potential along osteogenic, chondrogenic, and adipogenic lin-
eages. Conversely, some MSC populations can be differentiated
into epithelial (44, 45), endothelial (46), and neural cells (47) while
lacking the ability to differentiate along certain other, i.e., chon-
drogenic lineages (35). Therefore, criteria for a characterization
by trilineage differentiation may need to be revised as well.

Functional tests, such as the assessment of the cell’s immune-
regulatory properties (48) and their secretome (49) following
specific stimuli, gain importance and will open a new avenue for a
functional, rather than a morphological description of potentially
therapeutic MSC products. Nevertheless, a single, striking marker
or feature to define an MSC has not yet been found; neither is
there a valid test to assess the “stemness” or “therapeutic poten-
tial” of such a cell, a major problem, which will be discussed
below.

Lung-Resident MSCs and the Development

of BPD

Our current understanding of normal alveolar growth and the cel-
lular and extracellular mechanisms behind its regulation suggest a
crucial role of tissue-resident lung stem cells from mesenchymal,
endothelial, and epithelial origin in this complex process (50,
51). Therefore, damage to the resident lung stem or progenitor
cells - by inflammation, hyperoxia, malnutrition, shear stress, or
other influences — may results in a loss or severe impairment of
endogenous growth and regeneration potential.

The lung-resident MSC may play a critical role as regulator of
lung development, coordinating epithelial and endothelial growth
(52). When these cells become damaged in preterm infants, lung
development gets out of sync leading to BPD. The properties of
human neonatal and fetal lung MSCs are currently under investi-
gation. While resident lung MSCs are by far not as well described
as, i.e., BM-MSCs or adipose tissue-derived MSCs, pioneering
work by Dr. Hershenson’s group found that the presence of MSCs
in the tracheal aspirates of ventilated preterm infants predicted
BPD (53-55).

These cells express less platelet-derived growth factor-receptor
alpha (PDGFR-«) as compared to MSCs from babies without BPD
(56). Furthermore, they present a profound autocrine production
of transforming growth factor beta 1 (TGF-1) (57) and increased
(-catenin signaling (58). The disruption of these pathways con-
trolling the myofibroblastic differentiation (PDGFR-«, TGF-/1,
and [(-catenin) leads to disrupted formation of alveolar tips and
interstitial lung fibrosis (58, 59). Moreover, the function of spe-
cific lung-resident stem cells with mesenchymal, endothelial, and
epithelial differentiation potential (lung side population cells) (60)
is disrupted in murine hyperoxia-induced lung injury (61).

Therefore, these findings suggest that damage to endogenous
MSCs may contribute to the disease pathogenesis of BPD. Con-
versely, exogenous MSCs show consistent therapeutic benefits in
experimental neonatal lung injury models. How these exogenous
MSC:s affect resident lung MSCs is unknown.

Therapeutic Benefits of Exogenous MSCs

The beneficial effects of exogenous MSCs have best been
described in hyperoxia-induced rodent models mimicking BPD
(33, 62, 63). Rodents are convenient because they are born at the
saccular stage of lung development, which corresponds to the lung
developmental stage of a human infant born at 26-28 weeks of ges-
tation (62). To summarize the models in brief, term born rodents
are exposed to hyperoxia (FiO, 0.60-0.95) for 1-2 weeks; rats
or mice subsequently develop structural lung changes consistent
with pathological findings of human infants that died with BPD
(64). Alveolar simplification, capillary rarefaction, and leakage
with extravascular fibrin and plasma protein accumulation, lung
fibrosis with increased collagen and disordered elastin deposition,
pulmonary hypertension, as well as influx of inflammatory cells
can be observed (33, 62, 63).

A second model using prematurely delivered baboons model
at 125 days and mechanically ventilated for 2 weeks offers unique
opportunities to test promising (stem cell-based) therapies in a
model close to the clinical setting (65). Due to the close rela-
tionship to man, long-term effects of treatment on growth and
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development can easily be observed, giving valuable information
for clinical applications in premature human infants.

Mesenchymal stromal cells have striking beneficial effects
in the hyperoxia-induced model of BPD. In 2007, Tian et al.
(26) reported that intravenous injection of bone marrow-derived
MSCs ameliorates the oxygen-induced neonatal lung injury. Two
papers published simultaneously by Aslam et al. (24) and van
Haaften et al. (25) in 2009 demonstrated that MSCs derived
from the bone marrow of healthy, adult rodents prevent oxygen-
induced neonatal lung injury.

Both authors administered MSCs on postnatal day 4 before
exposing the pups to hyperoxia to assess the preventive potential
of the cells. Aslam and colleagues administered 5 x 10* cells
(approximately 5 x 10° cells/kg bodyweight) intravenously,
whereas van Haaften et al. used an intratracheal administration
route and applied double the dose (1 x 107 MSCs/kg bodyweight).
A significant decrease in alveolar wall thickness as well as an
increase in vessel density and alveolar septation was observed
in both studies. Furthermore, increased exercise capacity and
reduced pulmonary hypertension was noted (18, 25).

Remarkably, very few of the injected cells were retained in the
lung, indicating that cell engraftment contributes minimally - if
at all - to the therapeutic benefit of MSCs. The intratracheal,
intraperitoneal, or intravenous administration of cell free condi-
tioned medium (CdM; concentrated tissue culture supernatant of
MSCs) showed beneficial effects comparable to whole cell therapy.
However, as no reliable methods to describe and normalize doses
and composition of CdM have been utilized, a direct comparison
of the two therapy regimens is inaccurate.

These experiments have been repeated several times with MSCs
from the rat or human bone marrow (14, 17, 18, 21) or human
cord blood (16, 22, 23, 66) and their respective conditioned media
with similar results [reviewed by Fung et al. (67)]. Furthermore,
recent pre-clinical studies by Chang and colleagues investigated
the influences of the dose (22), timing (66), and administration
route (23) of MSCs in a rat model of BPD. These studies favor
an early, intratracheal administration of 0.5-5 x 107 MSCs/kg
bodyweight.

MSCs and their CdM were also able to rescue hyperoxia-
induced lung injury (16). Moreover, the beneficial effects of a
treatment with these cells are not transient. Adult rats that received
MSCs in their neonatal period before (16), during (17), or after
exposure (16) to hyperoxia show persistent improvements in lung
architecture, exercise capacity, and vascularization in long-term
follow-up studies up to 6 months.

The exact mechanism behind the effects remains unclear.
Secreted anti-inflammatory proteins, angiokines, and other
lung protective substances including stanniocalcin-1 (19, 68),
prostaglandin E2 (12), and TNF-stimulated gene/protein 6
(TSG-6) (69-71) are strongly suggested to account for the short-
term effects and protect the lungs against the acute injury. These
substances secreted by the MSCs blunt the immediate and oblique
injury effects like the influx of inflammatory cells and their asso-
ciated deleterious effects. This has not only been described in
neonatal hyperoxic models but also in several other experimental
studies using bleomycin (72), lipopolysaccaride (73), ovalbumin
(74), or prolonged ventilation (75) to challenge the lung.

The pathophysiology of BPD is not limited to inflammation,
despite a major contribution of this process to the development
of the disease (76). BPD is a multi-factorial disease and the char-
acteristic and life-impairing feature of BPD - compromised alve-
olar growth beyond the neonatal period - can best be explained
by a persistent impairment of the mechanisms regulating lung
growth and development, including the resident stem/progenitor
cells.

The M&M'’s of Therapeutic Cells — Microvesicles
and Mitochondria in Long-Term Effects of MSCs
As described above, very few cells engraft in the lung (25). The
engrafted cells die rapidly and are not detectable with quantitative
PCR methods or high-specific stainings after a few weeks when
xenogeneic MSCs (=cells from a different species) were used (16).
Authors using an allogeneic approach described a comparably
low, but prolonged engraftment (up to 100 days) into the alveolar
wall with potential transdifferentiation into surfactant-protein C
producing cells (17, 25).

However, these events are very rare and do not contribute to
the therapeutic effect of MSCs in vivo [reviewed by Kotton and
Fine (77)]. Engraftment and transdifferentiation of MSCs may
be considered as artifacts of the immunohistochemical detection
method (78).

Microvesicles as Carriers of Therapeutic Agents

As discussed previously, secreted proteins mainly account for the
short-term effects of transplanted MSCs or their CdM. But a
long-term effect on the lung cells cannot be explained by just
a single administration or secretion of cytokines. Extracellular
vesicles, small microparticles containing nucleic acids, proteins,
and lipids (79) may answer this question. Specific subtypes of
these particles — so-called exosomes — are secreted by numer-
ous cell types, including MSCs (80). They harbor the potential
to reduce inflammation and blunt hypoxia-induced pulmonary
hypertension (80) as well as to ameliorate endotoxin-induced lung
injury (81).

Exosomes are, besides cytokines and other secreted proteins,
the potential therapeutic components of conditioned medium. As
reviewed comprehensively by Colombo et al. (79), exosomes can
be taken up into the target cell by various mechanisms. Specific
nucleic acids - so-called microRNA (82) - can transpose to the
nucleus and silence specific genes for long periods (83) or interfere
with the protein translation. These mechanisms could account for
long-term beneficial effects on damaged lung cells in BPD.

Therapeutic Mitochondrial Transfer in Lung Disease
Another mechanism contributing to the long-term efficacy of
MSCs may be the transfer of mitochondria from MSCs to dam-
aged lung cells. Mitochondrial dysfunction plays a critical role
in the development of experimental BPD in primates (84) and
rodents (85-88).

In 2006, mitochondrial transfer from MSCs to other cells
in vitro was described (89). Recent in vivo studies revealed that
mitochondrial transfer plays a crucial role in animal models of
lung injury. Intratracheally administered MSCs form microtubes
and transpose mitochondria toward damaged alveolar type II
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cells, which leads to higher alveolar ATP-content and profound
protection against lipopolysaccharide-induced acute lung injury
(90). In chronic lung injury, therapeutic cells were able to reduce
the alveolar damage as well as the interstitial fibrosis by mito-
chondrial transfer (91). Data supporting the role of mitochondrial
transfer in neonatal chronic lung disease are pending.

Safe, Efficacious, Effective? MSCs in Clinical
Studies

These promising laboratory studies have lead to early phase
clinical trials exploring the feasibility and safety of MSCs in
various pulmonary diseases (Table 1). Chang et al. recently
completed the first phase I dose escalation study using allo-
geneic human umbilical cord blood-derived MSCs in 9 preterm
infants at risk of developing BPD (5). They administered
1x107 or 2x10° MSCs derived from the cord blood of
healthy-term infants intratracheally and observed no serious
adverse events or acute toxicity of the cells. Currently, sev-
eral follow-up studies evaluating the long-term effects of the
administered cells are listed on www.clinicaltrials.gov, and a
placebo-controlled phase II trial (NCT01828957) is recruiting
patients.

Clinical studies with MSCs are warranted. Obviously, MSC
therapy in the neonatal population requires extremely careful
risk-benefit considerations. Lessons learned from large, placebo-
controlled phase III clinical trials using MSCs in steroid-refractory
graft-versus-host disease (GVvHD) (93) suggest that despite very
promising results in animal models and phase I and II studies
(94) current MSC preparations have no predictable therapeutic
effect. Therapy with MSCs is complex and influenced by more

TABLE 1 | MSCs in clinical trails for pulmonary diseases.

factors than other cellular therapies, such as blood transfusions
or hematopoietic stem cells for bone marrow transplantation.

MSCs - a Pharmaceutical Product in the Making

A major problem for clinical trials is the heterogeneity of the cell
population termed MSCs. The markers and features defining an
MSC are still evolving. As outlined previously, the cells charac-
teristics, such as surface marker-, protein- and gene expression
vary with the source, isolation, culture and expansion methods
and donor age (35). Virtually every laboratory established (and
patented) its own protocols for isolation and culture of MSCs
from various sources, which makes it difficult to compare even
the results of pre-clinical studies (95).

For clinical trials, a defined, clinical-grade cell product is
required. As of now, over 80% of the MSCs used in clinical
studies are expanded in media containing fetal bovine serum
(FBS) (42), a crude and undefined mixture of growth factors
and various bovine proteins. Beyond the unknown influences of
various FBS preparations on the therapeutic effect of MSCs, even
the potential risk of a pathogen transmission (viruses, prions)
makes cells cultured with FBS not optimal for a clinical therapy
(96). Based on the MSCs source, many other products used during
the isolation process - including enzymes and growth factors —
also derive from animal origins. Ideally, a product suitable for
administration to a critically ill patient should be produced under
current good manufacturing practice (cGMP)-conditions using
defined xenogenic free chemicals.

Furthermore, it is crucial to accurately monitor growth and
aging of MSCs in vitro. It is known that MSCs age during ex vivo
expansion and that this influences biological properties of the

Condition Phase Design Number of Cell origin NCTID
participants
Adult ARDS | Open 10 bm-msc (allo) NCT02215811
| Randomized, double-blind 9 bm-msc (allo) NCTO1775774
Il Randomized, placebo-controlled, 60 bm-msc (allo) NCT02097641
double-blind
| Randomized, placebo-controlled, 20 at-msc (allo) NCT01902082
double-blind
Air leakage after lung I/ Open 10 msc N/S (auto) NCT02045745
resection
Asthma 7l Open 20 cdm-uc (allo) NCT02192736
BPD Ii (5) Open 9 ucb-msc (allo) NCT01297205
| Open 12 ucb-msc (allo) NCT02381366
Il Randomized, placebo-controlled, 70 ucb-msc (allo) NCT01828957
double-blind
COPD I (92) Randomized, placebo-controlled, 62 bm-msc (allo) NCT00683722
double-blind
IPF | Open 18 bm-msc (auto) NCT01919827
II Open 8 pla-msc (allo) NCT01385644
Il Randomized, open 60 at-msc (auto) NCT02135380
BOS after lung transplantation | Open 9 bm-msc (allo) NCT02181712
| Open 10 msc N/S (allo) NCTO1175655
Pulmonary emphysema I/ Randomized, open 30 bm-msc (allo) NCT01849159

Ongoing and completed interventional clinical trails listed on www.clinicaltrials.gov using mesenchymal stem or stromal cells to treat diseases of the lung.

#Completed trials are marked with a diesis.

pla-msc, placenta-derived MSCs; bm-msc, bone marrow-derived MSCs; ucb-msc, umbilical cord blood-derived MSCs; at-msc, adipose tissue-derived MSCs; cdm-uc, conditioned
media from umbilical cord-derived MSCs; msc N/S, source of cells not specified; allo, allogenic cells; auto, autologous cells.

Frontiers in Medicine | www.frontiersin.org

July 2015 | Volume 2 | Article 50


www.clinicaltrials.gov
http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive

Mobius and Thébaud

Stem cells in BPD

cells (97). Different methods to determine the age of MSCs
have been utilized. Most investigators and companies producing
MSCs determine the passage number, an easy but very inaccurate
parameter influenced by many factors (98). Therefore, it is not
possible to determine if insufficient clinical effects are caused by
real therapy failure or just by the fact that senescent therapeutic
cells have been administered. A better way than counting passages
might be the implementation of cumulative population doubling
measurements (99) and biochemical assays, such as telomere
attrition or 3-galactosidase activity (100).

Prolonged culture of MSCs may also lead to genetic instabilities
(101, 102). The spontaneous malignant transformation of MSCs
observed in long-term culture experiments (103) has been proven
to be an in vitro contamination artifact (104). However, the risk
of tumorigenicity in MSC-based therapies is still under discus-
sion (99). A direct tumor formation seems unlikely, as MSCs do
not engraft. Indeed, in rats receiving MSCs for BPD no tumor
masses were seen 6 months after therapy with the cells (16). The
risks of increased tumor formation by long-term immunosup-
pression (99) or the previously discussed stem cell-stimulating
effects remain unclear. A first meta-analysis of clinical trials using
MSCs showed no increased tumor risk in over 1000 patients
after 3-60 months after treatment (105). But as with every drug,
definitive data regarding these issues can only be acquired in large
clinical trials.

While MSCs are immune-privileged and as such enable allo-
geneic cell therapy, autologous cell therapy has also been advo-
cated for. Autologous therapy may be associated with lower ethical
and technical boundaries than therapy with allogeneic cells. Con-
versely, the autologous approach is logistically more challenging
as it requires the manipulation of a fetal tissue (cord blood, cord
stroma. ..) ex vivo. Therefore, each product will need to be sub-
jected to a rigorous sterility and quality testing, which takes time,
financial, and human resources as opposed to a ready-to-use off-
the-shelf allogeneic cell product. It is also not yet clear for which
preterm infant an autologous cell product should be processed.
Furthermore, the autologous approach may not always be possible
(outborn) or potentially deleterious (severe chorioamnionitis).
These considerations will mature over time as knowledge and
manufacturing technologies advance, allowing us to rationally
determine the best possible cell product.

The Quest for a “Potency Assay”

One fundamental problem hampering the widespread use of
MSCs in clinical trials is the absence of valid assays to assess their
quality or “therapeutic potential” prior to usage.

In applications were the anti-inflammatory effects of MSCs are
predominant (like GvHD), tests assessing the immunosuppressive
potential of the therapeutic cells may overcome this obstacle (100,
106). In brief, MSCs are co-cultured with mitogen-stimulated allo-
geneic lymphocytes. They suppress the induced proliferation of
the inflammatory cells to various extends via paracrine effects fol-
lowing direct cell-cell interaction. A simple automated cell count
assesses the “therapeutic potential” of the MSC-population in this
setting. An even faster and easier method uses the interleukin-10
stimulated expression of a specific subtype of the HLA-receptor
complex (HLA-G) on the surface of MSCs (107) to assess their

immunosuppressive potential. By now, it has not been validated if
cells with higher anti-inflammatory potential in vitro lead to better
therapeutic effects in vivo (100).

The situation for multi-factorial diseases affecting the lung -
such as BPD - is, however, more complicated. As outlined previ-
ously, the mechanisms behind the beneficial effects of MSCs in
BPD are complex and involve cytokines, the direct or paracrine
interaction with resident cell types and maybe the transfer of mito-
chondria or exosomes. Therefore, the generation of such a simple
functional assay is far ahead. In vitro approaches might involve
the ability of MSCs to support the generation of alveolospheres
out of murine alveolar type II cells in 3D organoid culture systems
(108). The assessment of strain resistance in alveolar epithelial
cells co-cultured with MSCs in vitro might be another interesting
approach. Nevertheless, all these approaches remain far from an
easy, fast, cheap, and reliable potency assay.

In summary, MSC therapies are promising and clinical condi-
tions, such as BPD, urge for efficient treatment strategies. How-
ever, MSC therapies also represent a disruptive technology and for
now, not a single trial investigated MSC products in man that met
all current regulatory or cGMP criteria (95, 109). A safe and high-
qualitative cell product to use in trials is still missing. As outlined
recently in a position paper by Wuchter et al. (100), standardiza-
tion and rigorous quality control of the production process is the
conditio sine qua non for successful clinical testings using MSCs. If
the product does not fulfill these criteria, how should we interpret
the clinical results? Every disruptive technology is imperfect at the
beginning and needs to evolve with experience and time. But it is
imperative to do due diligence and obtain the best possible cell
product before testing it in our most vulnerable patients.

No Vessels, No Lung Growth: Progenitor
Cells from the Endothelial Lineage

Simplification of the pulmonary vasculature is a hallmark of BPD
(110), and angiogenesis is crucial for normal postnatal alveolar
development (111). Hyperoxia-induced lung injury can be attenu-
ated by increasing the pulmonary supply of angiokines like VEGF
in rodents (111, 112). Accordingly, if vascular growth factors and
lung angiogenesis contribute to the integrity of the lung, then
vascular progenitor cells are appealing candidate cells likely to be
involved in the same mechanisms.

After their first description as circulating cells in the peripheral
blood by Asahara et al. (113), endothelial progenitor cells have
been shown to promote the repair of damaged blood vessels in
various disease models [reviewed by Mund and colleagues (114)].
They are further investigated as biomarkers of cardiovascular
diseases [reviewed by Sen et al. (115)]. EPCs harbor the potential
to form tube-like structures on matrigel matrices in vitro, home
to ischemic sites in vivo, and augment angiogenesis by paracrine
effects (116).

However, the population termed EPCs is not homogeneous,
and the exact origin and definition of these cells remain unclear.
A direct relationship of EPC subsets to the myeloid progenitor
line has been described (117). Two groups provided evidence
for a hierarchy within circulating EPCs and identified a specific
subset named blood outgrowth endothelial cells (BOEC) (118) or
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endothelial colony forming cells (ECFCs) (119). This population,
further referred to as ECFCs, is thought to contain the therapeu-
tically active progenitor cells of the endothelial lineage (117). In
contrast to the global EPC population, ECFCs lack expression of
CD133 and CD115, exert high-clonal proliferative potential and
harbor the ability to form vessels de novo when transplanted into
immunodeficient SCID-mice [recently reviewed by Basile and
Yoder (116)].

Endothelial Progenitors in BPD

Using a mouse model of BPD, Balasubramaniam et al. described
that hyperoxia-induced lung damage depletes circulating EPCs
and bone marrow-derived angiogenic cells (BMDACs) (120).
Administration of BMDACs from healthy mice rescues the alveo-
lar and vascular structure after O, injury (31).

The role of circulating endothelial progenitors in the pathogen-
esis of BPD was further confirmed in studies with human infants.
Borghesi and colleagues described that high numbers of ECFCs
in the cord blood of preterm babies are associated with a lower
risk to develop BPD (121). Interestingly, the blood counts of non-
ECFC endothelial progenitors fail to predict or correlate to any
disease associated with preterm birth (122), further substantiating
the role of circulating ECFCs. Baker et al. also reported the asso-
ciation between low-ECFC counts and the development of BPD.
They further showed that a decreased ratio between circulating
progenitor cells with pronounced in vitro angiogenic potential
(CPC) and those without (non-angiogenic, non-CPC) predicts
the development of moderate or severe BPD (123). Moreover,
ECFCs isolated from preterms are more prone to oxidative stress
than cells from term infants (124). CdM from cord blood-derived
ECFCs obtained from term infants promotes growth of the pul-
monary vasculature, but fails to promote alveolar septation in
bleomycin-induced lung injury (125).

The lung also harbors its own resident progenitor cells with
vasculogenic capacity (30, 126, 127). Human fetal and neonatal
rat lungs contain ECFCs with robust proliferative potential, sec-
ondary colony formation on replating, and de novo blood vessel
formation. Exposure to hyperoxia in vitro and in vivo impedes
ECEFC function as exemplified by decreased proliferation, clono-
genic, and angiogenic capacity. In experimental chronic hyperoxic
lung injury in rats, administration of human cord blood-derived
ECFCs restored resident lung ECFC colony- and capillary-like
network-forming capabilities, lung function, alveolar and lung
vascular growth, and attenuated pulmonary hypertension. At
10 months post-ECFC therapy improvement in lung structure,
exercise capacity, and pulmonary hypertension persisted without
signs of adverse effects (30). Comparable to MSCs, the benefit
seems to be mediated by a paracrine effect since cell engraftment
was minimal and CdM from ECFCs exerted similar therapeutic
benefit to whole cell therapy.

Room for a Clinical Application?

As of February 2015, no clinical trials using endothelial progenitor
cells or their CdM as therapeutic agents in BPD are listed on
www.clinicaltrials.gov. In the past, Wang et al. conducted two clin-
ical trials in adult patients suffering from idiopathic pulmonary
hypertension (NCT00641836 and NCT00257413). They used a

heterogeneous preparation of autologous endothelial progenitors
and demonstrated safety and feasibility as well as significantly
increased exercise capacity and reduced pulmonary blood pres-
sures 12 weeks after intravenous administration (128). A Cana-
dian phase I study using EPCs transfected with endothelial nitric
oxide synthase (eNOS) in seven patients has recently been com-
pleted (NCT00469027); final results are pending.

EPCs for therapeutic purposes could be isolated from easily
accessible peripheral blood or cord blood without the ethical
problems raised by a bone marrow puncture to obtain BMSCs.
With the SCID-mouse transplantation assay, an excellent and
reliable method assessing the functional capacity of ECFCs is
available (117). However, the relatively complicated isolation and
expansion process requires sophisticated (and expensive) media
as well as many manual steps including the individual lifting of
emerging colonies (117, 119).

As of today, no large-scale production technique has been
developed to reliably isolate the quantities of cells required for
clinical studies. Compared to MSCs, less is known about the
behavior of EPCs or ECFCs in vivo and in vitro. Nevertheless,
given the importance of angiogenesis for a large variety of diseases,
cell-based vascular therapies will rapidly develop as our under-
standing of EPC biology advances in parallel with our knowledge
in bioengineering and cell manufacturing.

Not Stem Cells, Still Therapeutic: Amnion
Epithelial Cells

Cells from the human amniotic epithelium (AECs) represent the
third cell population that has been explored in experimental BPD.
The amniotic membrane is widely used as an effective and low-
immunogenic material to patch large skin defects (129). This
tissue contains epithelial cells with distinct regenerative (130)
and an anti-inflammatory potential (131) comparable to MSCs
(132). AECs further possess the potential to differentiate along
mesodermal, ectodermal, and endodermal lineages in vitro (130)
and are considered “stem-like cells” (133).

In 2010, Moodley and colleagues described that i.v. injection
of AECs abrogates lung fibrosis and inflammation in bleomycin-
challenged immunodeficient mice. Furthermore, the cells homed
and engrafted permanently into the damaged lung tissue, acquired
the phenotype of alveolar type II cells, and started producing
surfactant (133). In immunocompetent animals, similar effects
without cell engraftment were observed (134). The potent anti-
inflammatory and anti-fibrotic effects led to studies in fetal
sheep with intraamniotic LPS-induced lung injury. Here, iv.
administration of AEC to the unborn lamb led to reduced lung
inflammatory cytokines without significant improvements on
lung structure (29).

In a study using in utero ventilation of fetal sheep to induce
BPD-like changes in lung histology, Hodges et al. demonstrated
significant improvements of the lung structure after combined i.v.
and intratracheal administration of AEC during the ventilation
procedure. Engraftment and transdifferentiation of AECs into
alveolar type I and type II cells were noted. However, these rare
events did not contribute to the overall impact of AECs in this
animal model (28).
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Currently, no clinical trials using AECs in pulmonary diseases
are listed. However, AECs are investigated in a clinical trial for
ocular limbal stem cell deficiency (135). Large quantities of the
AEC:s can easily be produced from birth-associated tissues. But by
now, no clear definitions and characterization regimen to define
amniotic epithelial cells exist (136). Cells used in pre-clinical
studies represent heterogenous populations, expressing a large
variety of surface markers labeling pluripotent (SSEA-4), epithelial
(cytokeratin-7, EpCam), and mesenchymal cells (CD73, CD90,
CD166, among others) (29, 133). Nevertheless, first encouraging
steps toward controlled, cGMP-conform isolation methods have
been undertaken (137).

Conclusion

Cell therapies represent the next paradigm shift in medicine.
Unlike previous therapeutic game-changers, such as small
molecules and biologics, cells are part drug and part device,
which can sense diverse signals, interact with their environment,
integrate inputs to make decisions, and execute complex response
behaviors (138). These unique attributes of stem cells have been
harnessed for organ regeneration. In the developing lung, various
cell types including MSCs, EPCs, and AECs harbor the fascinating
potential to provide pleiotropic therapeutic agents to protect from
and restore lung damage. These cells are thus ideally suited not
only for the treatment of a multi-factorial disease, such as BPD,
but also for other complications of extreme prematurity.

Phase I trials with MSCs have already started and while the
time is ripe for carefully designed early phase clinical trials,
more progress is required to better understand the mechanisms
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Three excellent reviews further addressing the obstacles of bench-
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