
August 2015 | Volume 2 | Article 551

Review
published: 10 August 2015

doi: 10.3389/fmed.2015.00055

Frontiers in Medicine | www.frontiersin.org

Edited by: 
Anne Hilgendorff,  

Helmholtz Zentrum München, 
Germany

Andrew Bush,  
Royal Brompton Hospital and 
Imperial College London, UK

Reviewed by: 
Rene Lutter,  

University of Amsterdam, 
Netherlands  

Eleni Papakonstantinou,  
Aristotle University of Thessaloniki, 

Greece

*Correspondence:
 William Domm,  

Department of Pediatrics, School of 
Medicine and Dentistry, The 
University of Rochester, 601 
Elmwood Avenue, Box 850, 
Rochester, NY 14642, USA  

william_domm@urmc.rochester.edu

Specialty section: 
This article was submitted to 

Pulmonary Medicine, a section of the 
journal Frontiers in Medicine

Received: 26 March 2015
Accepted: 27 July 2015

Published: 10 August 2015

Citation: 
Domm W, Misra RS and O’Reilly MA 

(2015) Affect of early life oxygen 
exposure on proper lung 

development and response to 
respiratory viral infections.  

Front. Med. 2:55.  
doi: 10.3389/fmed.2015.00055

Affect of early life oxygen exposure
on proper lung development and 
response to respiratory viral 
infections

 

William Domm 1,2*, Ravi S. Misra1 and Michael A. O’Reilly 1,2

1 Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA, 2 Department 
of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA

Children born preterm often exhibit reduced lung function and increased severity of 
response to respiratory viruses, suggesting that premature birth has compromised proper 
development of the respiratory epithelium and innate immune defenses. Increasing evi-
dence suggests that premature birth promotes aberrant lung development likely due to 
the neonatal oxygen transition occurring before pulmonary development has matured. 
Given that preterm infants are born at a point of time where their immune system is also 
still developing, early life oxygen exposure may also be disrupting proper development 
of innate immunity. Here, we review current literature in hopes of stimulating research 
that enhances understanding of how the oxygen environment at birth influences lung 
development and host defense. This knowledge may help identify those children at risk 
for disease and ideally culminate in the development of novel therapies that improve their 
health.
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introduction

Growing evidence suggest gene–environment interactions during critical stages of development pro-
foundly influence health later in life. This concept of “developmental origins of health and disease,” 
also called DOHaD, originated with a study by Dr. David Barker who showed that low birth weight 
correlated with increased risk of coronary heart disease in adults (1). DOHaD has now been linked 
to a wide variety of diseases in children and adults. Preterm birth, infection, tobacco smoke, and 
exposure to many inhaled pollutants can permanently impact lung development and immune func-
tion (2–4). Similarly, exposure to exogenous chemicals, malnutrition, and low birth weight correlates 
with poorer immune function (5–8). Even socioeconomic status and child abuse have been shown to 
influence a healthy lifestyle later in life (9). In 1983, the comedy movie Trading Places starring Dan 
Aykroyd and Eddie Murphy “tested” whether nature or nurture were responsible for distinguishing 
social hierarchy between two individuals. Although the question was never resolved in the movie, 
we are now beginning to appreciate 30  years later that gene–environment interactions influence 
children’s health, in part, through metabolic and epigenetic reprograming of cells required for organ 
growth, regeneration, and immunity.

The human lung is designed to efficiently exchange oxidant gases between the environment 
and blood, and exclude or defend against inhaled pollutants that otherwise disrupts this process. 
When considering gene–environment interactions that influence lung function, the transition to 
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air at birth must surely be one of the most profound environ-
mental changes that one will ever experience. In this singular 
moment, the delivery of oxygen and nutrients via the placenta is 
transferred, respectively, to the lung and gut. Both organs must 
therefore be developmentally mature and functional by this 
time. Proper development of the lung involves a complex set of 
transcription factors, morphogens, growth factors, and matrix 
molecules be expressed during precise developmental windows 
(10–13). Expression profiling studies have defined a pattern of 
gene expression wherein developmental genes are expressed first 
and genes involved in oxygen transport, protection against reac-
tive oxygen species, and host defense are expressed near birth (14, 
15). This “time-to-birth” program ensures that the lung is ready 
to breathe air and defend against environmental toxins at birth.

The interaction of genes with the oxygen environment at 
birth is disrupted when infants are born too soon. Many preterm 
infants develop bronchopulmonary dysplasia, a chronic form 
of lung disease characterized by alveolar simplification and 
restrictive airways (16). Mechanisms that promote BPD include 
genetics and maternal, fetal, or postnatal environments (17). It 
has been difficult to define which is most important for initiating 
or promoting disease, perhaps because BPD is clinically defined 
by the amount of oxygen used at a specific gestational age (18, 
19). Fortunately, most preterm infants born >24 weeks gestation 
are surviving, albeit at the risk of developing a variety of lung 
and non-lung diseases later in life. Children born preterm often 
display reduced lung function, increased re-hospitalization fol-
lowing a respiratory viral infection, and incidence of non-atopic 
asthma (20, 21). They may also show neurodevelopmental delay 
and have greater risk for high blood pressure and heart disease as 
adults (22, 23). The annual cost of treating children in the United 
States who were born prematurely in 2005 was $26.2 billion dol-
lars, of which 10% was just for treating infants with BPD (http://
www.nhlbi.nih.gov/new/press/06-07-26.htm). Hence, there is an 
urgent need to understand how premature birth is a developmen-
tal antecedent of poorer health later in life.

The pathogenesis of BPD and the health sequela of survivors is 
a complex and poorly understood process, perhaps because it is 
a multi-organ disease originating from abnormal gene–environ-
ment interactions. Recognizing that there is a genetic program 
designed to create the lung and afford it anti-oxidant and innate 
immune defenses by birth, it seems rather obvious that preterm 
birth will disrupt the timing of when specific genetic programs 
need to be completed or in place to properly allow the lung to 
transition to an oxygen-rich environment. Therefore, identifying 
genetic variants that predispose to preterm birth may also identify 
variants that correlate with BPD. A screen of single-nucleotide 
polymorphisms identified two genes (CRHR1 and CYP2E1) act-
ing in the fetus and four genes (ENPP1, IGFBP3, DHCR7, and 
TRAF2) in the mother that predisposes to preterm birth (24). 
But, interestingly none of these genes have been detected in other 
studies seeking to find variants that predispose preterm infants 
to BPD (25, 26). In fact, the few weak candidates detected in one 
study were not detected in another, suggesting that BPD is not 
entirely a genetic disorder. On the other hand, widespread meth-
ylation was detected in the blood of extremely preterm infants, 
suggesting that there were changes in blood cell development, 

composition, and perhaps immune function (27). Since these 
changes in methylation resolved by 18 years of age, they may not 
be responsible for the long-term health effects reported in people 
born preterm. Therefore, genetic susceptibility to BPD is more 
likely to represent genetic variants that modify how cells respond 
to an environmental stress, such as infection or the transition to 
air too soon.

Environmental stresses known to promote BPD include pre-
natal and postnatal infections, and oxygen or ventilator-induced 
damage to the lung. In both cases, inflammation and oxidative 
stress or damage to the developing lung seems to be a primary 
driver of BPD. Preterm infants are deficient in anti-oxidant 
enzymes and are therefore susceptible to oxidative stress, whether 
initiated by inflammation or supplemental oxygen therapies in 
the preterm infant (28, 29). Lungs of preterm infants are often 
underdeveloped and cannot adequately exchange oxygen and 
carbon dioxide. Supplemental oxygen supported by ventila-
tion is often used to improve blood oxygen levels and prevent 
hypoxemia. However, it is now clear that high levels of oxygen 
can disrupt development of the lung and is a risk factor for neu-
rodevelopmental delay, retinopathy, and probably other diseases 
attributed to preterm birth (30). Oxygen-induced damage can 
also elicit an inflammatory response, subsequently compounding 
the oxidative stress to the lung. Consistent with oxygen playing 
a role in the pathogenesis of BPD and the long-term respiratory 
complications associated with preterm birth, anti-oxidant thera-
pies have proven partially effective in alleviating lung disease in 
humans and in animals exposed to high oxygen (31–34). Because 
the pathogenesis of neonatal oxygen exposure in humans and in 
animal models has been recently reviewed (19, 35–40), the fol-
lowing discusses oxygen-induced changes in lung development 
in relationship to how it also perturbs host response to respiratory 
viral infections.

Proper Lung Development

The pulmonary system, in highly simplistic form, can be described 
as the co-branching of air conducting and blood circulating 
systems that, due to simultaneous and congruent branching, effi-
ciently interact for proper gas-exchange and subsequent systemic 
circulation of oxygen. In humans, gas-exchange is accomplished 
by diffusion through squamous epithelial cells in the alveolar 
saccules of the mature lung. Branching morphogenesis of the 
airways that concludes with formation of the alveolus leads to an 
impressive pulmonary surface area of around 70 square meters 
with a thickness of 0.1  um capable of supporting an oxygen 
consumption of 250–5500 ml/min (41, 42). This developmental 
program progresses through five successive stages. The mamma-
lian lung undergoes five stages of maturation that begin with the 
embryonic stage, followed by the pseudoglandular, canalicular, 
saccular, and ending with the alveolar stage (Figure 1). The timing 
of these stages during fetal and postnatal periods varies between 
species, including between humans and mice. This is important 
when attempting to model human diseases in experimental 
animals. For example, many preterm infants born today are in 
the saccular phase of lung development, which pathologically 
corresponds to e17.5 to postnatal day 4 in mice. Hence, the mouse 
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is an appropriate experimental model for studying how too much 
oxygen can perturb saccular development in preterm humans. 
Additional details on factors controlling lung development have 
been reviewed elsewhere (10, 12, 41, 43).

Successive developmental stages are defined by changes in lung 
morphology. In the embryonic stage, the pulmonary branching 
pattern originates and two distinct lobes are formed. The pseu-
doglandular stage marks the appearance of numerous terminal 
buds projecting away from the initial two lung lobes and recent 
work has defined the patterns as domain branching, planar, and 
orthogonal bifurcation budding (44). During the canalicular 
stage, epithelial tubules form with large terminal buds while 
the mesenchyme separates into dense subsets between future 
alveolar septa. Specialized epithelial cell types and alveolar sacs 
emerge during the saccular stage of development. Squamous type 
I epithelial cells form the lining of the alveolar sacs with cuboidal 
type II epithelial cells interspersed. Thinning of the mesenchyme 
along with an increase in extracellular matrix allows for expan-
sion of these alveolar sacs culminating in the alveolar stage where 
dense connective tissue, containing cartilage and smooth muscle, 
surrounds the airways. The timing of developmental completion, 
leading to the formation of alveolar sacs, varies between species. 
In mice and rats, alveolar development concludes mainly postna-
tally characterized by lung expansion and alveoli subdividing into 
smaller gas-exchanging units (45). Importantly, this morphogenic 
process has been accompanied by blood vessel morphogenesis 
that concludes with capillary networks residing in close proxim-
ity to the alveolar epithelium.

It is often written that the normal adult mammalian lung con-
tains approximately 40 different cell types, yet the origin of this 
statement seems to have disappeared in the historical literature. 
However, it should not be surprising to find that this is a gross 

FiGURe 1 | Stages of lung development in the human and mouse. 
During development, the human (mouse) lung undergoes five 
successive stages of development; The Embryonic stage 3–6 weeks 
(e9.5–11.5), the Pseudoglandular stage 6–16 weeks (e11.5–16.5),  
the Canalicular stage 12–26 weeks (e16.5–17.5), the Saccular stage  
24–38 weeks (e17.5–PND4), and the Alveolar stage 38 weeks–2+ years 
(PND4–28). Preterm children who survive are often born between 
24 and 38 weeks of age and are in the saccular stage of development 
(circled) corresponding to the saccular stage in the mouse from  
e17.5–PND4.

underestimation when one considers how expression of cell sur-
face receptors has markedly increased the diversity of leukocytes 
present in the lung (46). The emerging use of microfluidic single-
cell RNA sequencing is also uncovering an equally rich diversity 
among non-hematopoietic cell populations (47, 48). Pulse-chase 
labeling with H-thymidine, cell-restricted fluorescent reporter 
genes, and cell-specific ablation with toxins has identified region-
specific niches containing stem cells required for proper lung 
development and repair (49). Unique specific stem cell niches 
may therefore have evolved to facilitate repair of specific areas 
of the lung damaged by region-specific toxins. Since perinatal 
exposures influence saccular and alveolar phases of development, 
the following briefly focuses on progenitor cells controlling distal 
airway and alveolar development and regeneration.

The region where the airway meets the alveolus has been 
termed the bronchoalveolar duct junction (BADJ) (50). The 
distal airway epithelium contains Clara (now called Club) cells 
defined by their cuboidal appearance and expression of secre-
toglobin family 1A, member 1 (Scgb1a1), also called Clara Cell 
Secretory Protein (CCSP) or uteroglobin. During recovery from 
naphthalene depletion, a population of Club cells proliferates 
from neuroendocrine bodies and from the BADJ (51, 52). These 
bronchoalveolar stem cells (BASC) express airway Scgb1a1, 
alveolar Type II surfactant protein (SP)-C, the stem cell markers 
Sca-1, and CD34, but not CD45 (53). These BASCs are able to 
self-renew and maintain expression of both airway Scgb1a1and 
alveolar SP-C expression when cultured on irradiated mouse 
embryonic fibroblasts. However, their importance in defining air-
way and alveolar epithelial cell development and repair remains 
unclear because they proliferate less frequently than Type II cells 
in a post-pneumonectomy model of lung regeneration (54).

A label-retaining population of airway cells expressing Scgb1a1 
and the stem cell markers Oct-4, Sca-1, and SSEA-1 has also been 
identified in BADJ (55). These cells can be maintained ex vivo 
for several weeks, but have the capacity to express SP-C and T1α 
when cultured on Type I collagen. Fate-mapping studies using 
Scgb1a1-driven reverse transcriptional transactivator (rtTA) gene 
or Cre fused to an estrogen responsive binding site (CreER) gene 
to durably label Scgb1a1+ cells with LacZ or fluorescent proteins 
has provided new insight into the ability of airway Scgb1a1+ 
progenitors to repopulate alveolar cells. Depending upon the 
model and the timing of activation, airway Scgb1a1+ progeni-
tors contribute to ~10–50% of adult type II cells during normal 
postnatal lung development (56–60). These cells also contribute 
to alveolar repair when adult mice are infected with Influenza A 
Virus (IAV) or injured with bleomycin, both of which damage 
alveolar type II cells (59). Interestingly, they do not participate in 
repair when mice are exposed to hyperoxia or naphthalene (58). 
Since hyperoxia injures alveolar type I cells, and naphthalene 
injures airway Club cells, these two studies suggest Scgb1a1  + 
cells may serve as precursors for themselves and type II cells.

Analogous to studies using naphthalene to ablate airway Clara 
cells, exposure of adult mice, rats, or monkeys to oxidant gases 
(hyperoxia, ozone, or nitrogen dioxide) kills alveolar type I epithe-
lial cells (61–63). Pulse-chase labeling studies with H-thymidine 
indicate type II epithelial cells proliferate and differentiate into 
type I cells following injury (64–66). Emerging evidence suggests 
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that subpopulations of type II cells exist and T1α, a protein 
expressed by Type I cells, has been shown to co-localize with the 
Type II cell-specific lectin Maclura pomifera (67). Tri-transgenic 
mice containing the rat airway CCSP promoter driving rtTA, the 
otet-Cre gene, and the LacZ/EGFP (Z/EG) reporter identified a 
lineage of epithelial cells that defines airway Club and a small 
population of alveolar Type II cells (68). Recently, single-cell RNA 
sequencing revealed the existence of four distinct populations of 
type II cells (48). Alveolar type I cells have historically be thought 
to be the most terminally differentiated cell of the lung whose 
sole function was to facilitate gas-exchange and maintain bar-
rier function (64–66). However, a study showing that type I cells 
isolated from rats can proliferate ex vivo, express the stem cell 
protein Oct-4, and can be induced to express SP-C and Scgb1a1 
has challenged this conclusion (69).

Pulmonary Response to influenza  
A infection

As the lung evolved to efficiently exchange oxygen and carbon 
dioxide, so did an innate immune system comprised of special-
ized epithelial resident cells and circulating immune cells that 
function to recognize and clear a variety of inhaled pathogens and 
toxicants. Failure to detoxify the airspace can result in significant 
disease and even death. These defenses are most likely designed 
to respond to inhaled pathogens, like respiratory viruses, which 
were present in the environment before vertebrates migrated onto 
land. We therefore will discuss the current understanding of the 
pulmonary interactions with respiratory infections, primarily 
focusing on IAV, in an attempt to build a greater understanding 
of the poor response experienced by children born prematurely.

Viral respiratory infections have been found to afflict preterm 
infants at a higher rate than full term controls. Respiratory 
Syncytial Virus (RSV), human Rhinovirus (RV), and Bocavirus 
infection of children less than 14 years of age hospitalized over 
a 7-year study period were described (70). The authors found 
that children who were preterm exhibited a higher rate of infec-
tion with human metapneumovirus and parainfluenza virus as 
compared to controls (70). Additionally, a recent study describes 
extremely and moderately preterm infants facing a 3.6 times 
increased risk of being hospitalized due to respiratory infection, 
likely from RSV or RV, in the first year of life (71). Preterm infants 
hospitalized due to RSV were found more likely to wheeze in the 
first six years of life and experience decreased quality of life versus 
those infants who were not hospitalized due to RSV infection (72). 
RV infection of preterm infants also increases the risk of develop-
ing wheeze and requiring respiratory medicines in the first year 
of life, and can be the source of serious lower respiratory tract 
infections (73–76). A recent NHLBI workshop report recom-
mends identifying prophylactic approaches to prevent RSV and 
RV infections to help lessen the burden of asthma development 
in childhood (77), however determining when the use of such 
prophylaxis is complicated (78). Thus, infants born preterm face 
serious consequences in response to respiratory viral infections.

In human pediatric populations, RSV is more common 
in infancy (first two years of life) while IAV is generally more 

common in school age children (79, 80). Gaining a better under-
standing of how early life oxygen exposure affects responses to 
respiratory viral infections necessitates the use of animal models. 
While different species have shown utilization in RSV modeling, 
each has advantages and disadvantages (81, 82). Human RSV 
does not efficiently replicate and leads to non-significant disease 
and mortality in mouse models, making it difficult to model 
how it is perturbed in preterm children (82). This is in contrast 
to IAV mouse models that have proven robust viral replication 
and disease that closely model human disease. Here, neonatal 
oxygen exposures that have been shown to promote BPD-like 
lung disease in mice have also been shown to alter the response to 
IAV infection (35). Understanding how the oxygen environment 
at birth disrupts the host response to IAV may provide insight 
into how it influences the response to RSV and other respiratory 
viruses.

IAV annually causes global seasonal epidemics but also novel 
IAV occasionally arise leading to global pandemics. The most 
notorious of which was the pandemic of 1918 and the most 
recent the 2009 swine-flu pandemic (83). Significant insight into 
IAV–host interactions has historically occurred through in vitro 
investigations. A much greater understanding of this virus–host 
interaction, prior to, during, and following significant pathologi-
cal outcomes in vivo, has been hampered due to a lack of traceable 
reporter expressing IAV that retain full virulence as well as other 
technical problems. Recently, IAV–host interactions and in vivo 
dynamics following infection have been investigated utilizing 
reporter expressing recombinant IAV (84, 85).

The first step in IAV infection involves the recognition of 
sialic-acid (SA) moieties on the surface of susceptible cells by the 
viral hemagglutinin (HA) protein. Human IAV primarily infect 
via α2-6 SA residues and avian IAV by α2-3 linked residues. In 
healthy humans, α2-6 SA has been primarily found on the epi-
thelial (ciliated and non-ciliated) and goblet cells of the upper 
respiratory tract in humans (86). Avian like α2-3 SA has primarily 
been found on non-ciliated bronchiolar and alveolar type II cells 
in the lower respiratory tract (86, 87). Viral attachment and histo-
chemical studies have revealed human IAV primarily interacting 
with the upper respiratory tract through ciliated epithelial cells, 
goblet cells, as well as to type I alveolar epithelial cells, to varying 
extents (86–89). Contrasting with human IAV, avian IAV has 
been shown to primarily attach to alveolar epithelial type II cells, 
alveolar macrophages, and bronchiolar non-ciliated epithelial 
cells (89, 90). Sialic-acid receptor expression is a good correlate 
of IAV binding based upon histochemical studies. Although 
human IAV is of primary concern for understanding infection 
of the population discussed in this review, understanding avian 
IAV infection is imperative in the face of novel viruses entering 
the human population.

Both human and avian IAV can infect human airway epithelial 
cultures with human IAV preferentially target non-ciliated air-
way cells whereas avian IAV infect ciliated populations (91, 92). 
Alveolar type II cells have also been demonstrated as a site of IAV 
infection and replication although their importance to human 
disease is currently unclear. Human alveolar type II cells were 
infected by IAV in a primary cell culture system (93). Alveolar 
type II cells are imperative for the maintenance of the alveoli by 
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producing and secreting surfactant as well as being a renewable 
source for themselves and type I alveolar cells. Although poorly 
understood, the affect of IAV infection of type II cells has been 
shown to affect their phenotype and subsequent innate immune 
responses (93). Taken together, IAV tropism as it relates to human 
disease requires further investigation. Differences based on the 
strain of IAV used and type of assay utilized must be clarified for 
a greater understanding of human disease.

The source of cells responsible for pulmonary regeneration 
following viral injury is currently an active area of research. 
Bronchiolar epithelial cells expressing p63 were found to rapidly 
expand and disseminate to areas of lung injury following IAV 
infection and repair (94). This cell population was also found to 
have the ability to form “pods” in both bronchiolar as well as alve-
olar regions following injury caused by IAV. Keratin 5 expression 
(Krt5) was also shown to map to these regions and, importantly, 
was only detected following IAV infection, during reparative 
processes (94). These p63/Krt5 + cell populations therefore may 
act as distal airway stem cells and serve as the source for alveoli 
cell regeneration following injury and recently these p63/Krt5 + 
cells were found to recapitulate alveoli following epithelial injury 
by IAV (95). This unique population also has the ability to form 
alveoli-like structures when delivered to IAV-infected lungs 
minimizing virus-induced pathology (95).

Oxygen Perturbation of Proper Lung 
Development and innate immunity

As discussed previously, the transition to an oxygen environment 
at birth may be one of the most profound environmental changes 
one will ever experience and can lead to disease when it occurs 
inappropriately. Lungs of infants born preterm are often in the 
saccular phase of development. Alveolar regions at this time have 
yet to develop into true gas-exchanging structures, which is why 
many preterm infants develop respiratory distress. Furthermore, 
the capillary network surrounding the alveolus, which shuttles 
oxygen to the circulation, has yet to effectively complement the 
alveolus (96). Despite the life-saving efficacy of supplemental 
oxygen treatment during this critical time, growing evidence 
suggests that this treatment contributes to bronchopulmonary 
dysplasia (BPD), a chronic lung disease that is characterized by 
alveolar simplification and restrictive airways (16, 30). Oxygen-
dependent changes in genes specifying lung structure and cell phe-
notype are likely to impact cells and molecules involved in innate 
immunity required for a proper host response to respiratory viral 
infection (Figure 2). This includes alveolar epithelial type II cells, 
goblet cells, eosinophils, macrophages, dendritic cells, T cells, B 
cells, and innate lymphoid cells, in addition to soluble mediators 
produced by these cells, including SPs, cytokines, chemokines, 
and mucus proteins mediate innate immunity (97–100). In other 
words, early life oxygen exposure or other oxidative stresses may 
drive the development of long-term lung disease by disrupting a 
delicate balance of cell communication between genes controlling 
lung development and innate immunity.

One hallmark of supplemental oxygen treatment at birth is the 
development of a highly simplified alveolar epithelium. Although 
incompletely understood, this may develop due to oxidative stress 

or an aberrant immune response that suppresses angiogenic fac-
tors (101). In mice, alveolar epithelial type II cells expand rapidly 
following neonatal hyperoxia compared to room air control 
littermates (102, 103). Following recovery in room air however, 
this population is significantly pruned (102, 103). This results in 
a significant decrease in the pool of alveolar type II cells later in 
life. Concomitant with the loss of type II cells, markers for type 
I alveolar epithelial cells increase during the same time frame. 
Currently, the source of these cells is unclear; however, evidence 
suggests that type II alveolar cells lost during recovery in room 
air are not the source of these cells (102). Further fate-mapping 
studies of type II and type I cells during and following exposure to 
hyperoxia should help to clarify the intricate balance and source 
of these cells. Regardless, the loss of type II cells may adversely 
impact alveolar repair as well as the production of innate immu-
nity. Indeed, adult mice exposed to hyperoxia exhibit persistent 
and altered immune responses, fibrosis (Figure 3), and increased 
mortality compared to room air littermates when infected with 
a sublethal dose of IAV (32, 104, 105). The altered host response 
was not attributable to CD8 T cells and therefore the pathology is 
not likely due to a defect in viral clearance (106). While reduced 
numbers of type II cells did not negatively impact surfactant pools 
(107), it reduced expression of the antiviral protein eosinophil-
associated RNase 1 (Ear1) detected in some type II cells (104). 
Reduced expression of Ear1, while conceptually attractive, does 
not solely account for the fibrotic phenotype observed in IAV-
infected mice that have been previously exposed to hyperoxia as 
neonates. This is because neonatal hyperoxia has also been shown 
to enhance the severity of fibrosis in the neonatal hyperoxia model 
following bleomycin administration (108). Hypothetically, the 
loss of some type II cells may impact the orderly innate immune 
response releasing cytokines, chemokines, and SPs that are the 
first responders following IAV infection (109).

One example is monocyte chemoattractant protein-1 (MCP-
1), which has been found to be selectively increased following 
IAV infection in a model of neonatal hyperoxia (105, 110). MCP-1 
plays important roles in the recruitment of monocytes, T cells, 
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and NK cells to sites of infection and has been shown to protect 
against viral and bacterial challenges (111, 112). However, aber-
rant MCP-1 control has also been associated with lung disease 
in children and adults (113, 114). While MCP-1 is an attractive 
target, it has recently been shown that MCP-1 is not solely respon-
sible for the enhanced respiratory sequelae observed following 
IAV infection in neonatal hyperoxia-treated mice (105). This 
suggests that increased MCP-1 production may be an effect rather 
than a driver of the mechanisms leading to enhanced respiratory 
disease due to neonatal oxygen exposure.

In addition to an imbalance in alveolar type II cells, there 
are many other pulmonary innate immune mechanisms that 
might be affected by oxygen at birth. Animal models have identi-
fied several innate immune factors common in BPD-like lung 
injury. These include alterations in IL-6, IL-8, TNF-α, TGF-β, 
macrophage inflammatory factor-1α, IL-1β, MCP-1 MCP-2, 
CXCL-1, and CXCL-2 (115). Recent work also has identified 
mast cells as being present in the lungs of pediatric subjects who 
were diagnosed with BPD prior to death (100). Members of the 
IL-6 cytokine family have been shown to have fibrotic potential, 
which could contribute to lung disease (116). The compliment 
subunit C5a plays a role in neutrophil recruitment to the mouse 
lung following IAV infection and may be a potent inducer of 
hyperoxia-mediated lung injury via recruitment of macrophages, 
neutrophils, and lymphocytes, and increased expression of IL-6, 
TNF-α, and MCP-1 occurs (117, 118). Furthermore, C5a has 
been shown to increase TGF-β1 in primary human small airway 
epithelial cells, which could then contribute to the development 
of fibrosis (119). Thus, multiple factors could lead to the accumu-
lation of C5a, which could induce inflammation in the lungs of 
preterm infants. Some of these factors have been proposed targets 
to prevent the development or to treat patients with BPD (120).

Several recent studies illustrated effects that hyperoxic stress 
imparts on the innate immune system. For instance, macrophages 
exposed to hyperoxic conditions experience cell cycle arrest and 
showed impaired phagocytic and chemotactic activity (121, 122). 
GM-CSF is critical for the maintenance of alveolar macrophages 
and hyperoxic stress has been demonstrated to decrease levels of 

GM-CSF via destabilization of mRNA in primary AEC cell cul-
tures (123). Other studies indicate that the decrease in GM-CSF 
mRNA is due to upregulation of the microRNA molecule, miRNA 
33 (124). This same publication illustrates the complex nature 
of hyperoxia by demonstrating that T cells actually up-regulate 
GM-CSF in response to hyperoxic stress (124). Taken together, 
this highlights the critical importance of macrophage balance on 
phenotype.

Macrophages have been shown to play a role in the develop-
ment of alveoli (125). If these cells become more inflammatory in 
nature, such as experienced due to hyperoxic stress, they likely will 
contribute to lung pathology (126). A recent study illustrates that 
overexpression of TGF-β1 in the lung leads to the accumulation 
of inflammatory macrophages in a TGFβR2-dependent manner 
(127). Given the role for alveolar macrophages in activating T 
cells, it is possible that regulatory function of CD4 T cells could 
be compromised by pro-inflammatory macrophages found in the 
lung (128). In fact, active research is being conducted to try and 
target inflammatory macrophages to treat lung disease (129).

Neutrophils play a prominent role in the pathology of many 
lung diseases, including BPD (130). In a mouse model of hyper-
oxia, histological damage is preceded by neutrophil infiltration 
into the lung following a wave of macrophage recruitment (131). 
Several studies using animal models of hyperoxia show that 
reducing neutrophil infiltration correlates with decreased lung 
disease (132–134). Neutrophils play a complex role in the mecha-
nism of inflammatory disease and it has recently been suggested 
that neutrophils can play an anti-inflammatory role in addition 
to their common pro-inflammatory role (135).

Human studies have reported an unexpected alteration in 
neutrophil counts in preterm infants, which could relate to the 
risk of preterm infants developing lung disease (136–138). Of 
note, one study reports that infants with respiratory distress syn-
drome born less than 32 weeks gestational age who develop BPD 
have elevated levels of IL-6 and IL-8 in tracheal aspirates prior to 
the influx of neutrophils versus those who do not develop BPD 
(139). A decrease in CD18 and CD62L on circulating neutrophils 
in the first 4 weeks of life in preterm infants was associated with 
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the development of BPD (140). Additionally, increased serum 
levels of neutrophil-associated gelatinase-associated lipocalin in 
preterm infants born less than 31 weeks of gestation was predic-
tive for the development of BPD (141). Of note, children who 
were born less than 32  weeks gestational age have higher IL-8 
and neutrophil cell counts in sputum at the preschool age, which 
illustrates long-term consequences in lung inflammation due to 
preterm birth (142). Thus, more studies are needed to understand 
how hyperoxia could alter the function of neonatal neutrophil 
function, which could then affect the development of inflamma-
tory lung disease later in life.

It is becoming more apparent that respiratory disease pathol-
ogy varies greatly and that unique subtypes of disease exist. Many 
of these subtypes display unique alterations in the skewing of the 
immune system toward a Th1, Th2, or Th17 response (143). The 
endotype of disease tends to track with the type of T cell skewing 
with a Th17/neutrophilic response being more damaging than 
other types of disease, and this is intimately related to the stimula-
tory conditions of activated T cells (144). In a study of extremely 
preterm infants (born <32 weeks GA) RV infection was shown 
to induce a Th2 and Th17 response, and IL-4 production was 
related to severity respiratory morbidity (145). Furthermore, 
alterations in T regulatory cells have been described in humans 
with respiratory disease (146). An important consideration is 
that T regulatory cells are associated with inhibition of fibroblast 
proliferation and in vascular repair in the lung following injury 
(144). Given the surprising finding that cord blood contains T 
cells with an activated/memory phenotype, it is possible that these 
cells are poised to contribute to inflammatory lung disease (147). 
Recent work has also reported decreased CD4 T cells in cord 
blood from preterm infants who develop moderate BPD (148). 
Despite the finding that cytotoxic T cell function is not altered in 
mice exposed to hyperoxia followed by IAV infection (106), it is 
possible that CD4 T cells play a role in hyperoxia-mediated lung 
damage in humans and in the development of disease later in life. 
However, small animal models of oxygen effects on BPD do not 
support this hypothesis.

In adults, oxidative stress plays a role in COPD disease pro-
gression (149). It is possible that changes in the oxidative state 
of the lung due to chronic oxygen exposure in preterm infants 
could change how cells from the immune system respond to envi-
ronmental exposures by altering cellular function or the types 
of cytokines that are produced (150–153). These cytokines could 
work in concert with cell types in the lung, including epithelial 
cells and innate lymphoid cells, known to produce pro-inflamma-
tory and pro-fibrotic factors under certain conditions (154). One 
recent report demonstrates that reactive oxygen species in the 
lung can alter signaling of the inflammasome, leading to increased 
inflammation (155). One cell lineage receiving a great deal of 
attention is the innate lymphoid cell, which is a bone-marrow 
derived population found at mucosal surfaces, including the lung. 
They have the ability to generate high levels of cytokines that can 
influence the balance of the immune system (156). Much like cells 
in the adaptive immune system, they can be skewed to express 
transcription factors and produce cytokines consistent with Th1, 
Th2, and Th17 CD4 T cell lineages and play an essential role in 
responding to infection (157, 158). Of particular interest, ILC2 

cells have been shown to play a role in the pathogenesis of lung 
disease by contributing to a Th2 T cell response (159, 160). IL-13 
is a Th2 cytokine that, when overexpressed in the lung, results 
in oxidative damage to peripheral blood cells (161). Of note is 
that oxidized guanidine perpetuates the inflammatory response 
(162). A related inflammatory mechanism could be present with 
complexes of oxidized high-mobility group box protein 1, which 
has been shown to induce hyperoxia-mediated lung inflam-
mation (136, 163). It is tempting to speculate that exposure to 
hyperoxia could contribute to this inflammatory loop of chronic 
lung disease through the induction of oxidized DNA.

Taken together, the balance of redox state within the lung is 
of critical importance in preventing chronic lung disease. It is 
very likely that early life exposure to hyperoxia changes this bal-
ance, which could result in permanent lung injury. Alterations 
in function of immune cells, including but not limited to CD4 T 
cells, neutrophils, and macrophages, likely play a major role in 
this development of lung disease. Importantly, pulmonary cells 
that produce innate immune molecules, like type II epithelial 
cells, might also be depleted or epigenetically modified in their 
ability to respond to injury (102). Taken together, it is likely that 
low levels of inflammation are present following exposure to 
hyperoxia, which could perpetually contribute to lung disease.

A Perspective on Oxygen as a Goldilock’s 
Modifier of Respiratory Health

If we accept that high levels of oxygen at birth can alter children’s 
health, does low levels of oxygen at birth also affect children’s 
health? Indeed, there is growing evidence that gene–environ-
ment interactions influences health of people living at high 
altitude (low oxygen). Populations of Tibetans, Ethiopians, and 
Andeans living at >2.5 miles or between 11 and 13% oxygen 
exhibit resistance to hypoxemia, and develop larger lungs and 
hearts. These phenotypic changes appear to be genetically fixed 
in Tibetans and Ethiopians, but not in Andeans. Between 2010 
and 2014, single-cell gene analysis and whole-exome sequencing 
identified haplotypes in the prolyl hydroxylase EGLN1, hypoxia-
inducible factor (HIF)-2α, and peroxisome proliferator-activated 
receptor (PPAR)-α genes that correlated with lower hemoglobin 
levels in Tibetans (164–167). These haplotypes are not detected 
in Ethiopians. Instead, haplotype changes in the retinoic acid 
orphan receptor have been detected, which is interesting because 
this receptor dimerizes with HIF-2α (168). Taken together, 
this suggests that Tibetan and Ethiopian populations adapted 
separately to hypoxia through a common EGLN-HIF signaling 
pathway. Genetic changes conferring resistance to hypoxia have 
yet to be detected in Andeans and the hypoxic-resistant pheno-
type is only present in children born at high altitude (169). This 
implies Andeans acclimatize to an environmentally low level of 
oxygen at birth.

Regardless of how adaptation at high altitude is achieved, it 
maladaptively influences long-term health. When compared to 
people living at sea level, high-altitude natives have increased 
risk for cardiovascular disease particularly related to cardiac 
hypertrophy (169). A zip code study of children born at high 
altitude in Colorado suggests that birth at high altitude increases 
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FiGURe 4 | The oxygen environment at birth affects the severity of 
respiratory viral infection later in life. Hypothetical graph depicting how 
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re-hospitalization following infection with RSV (170). Living at 
high altitude may also reduce brain activity (171). High-altitude 
natives may have lower rates of obesity (172), but are often born 
small for gestational age and exhibit transient growth delay 
with compensatory catch-up growth (169, 173). Some of these 
health risks may mirror those seen in children who had sleep 
apnea, placental insufficiency, or cyanotic congenital heart 
disease as infants. Hence, adapting to low oxygen at birth causes 
similar maladaptive changes to children’s health as high oxygen 
exposure.

This Goldilocks effect of oxygen reflects the convergence of 
an oxygen environment on genes present at birth, some of which 
have fixated changes that maintain the response to hypoxia even 
at sea level. Genetic changes that influence the response to high 
oxygen used to treat preterm infants have yet to be identified, 
perhaps because there is no evolutionary pressure or memory for 
adapting to hyperoxia. However, recognizing that the response to 
oxygen is non-linear, studying adaptation to low oxygen may help 
us understand adaptation to high oxygen (Figure 4).

In the preceding sections, we have highlighted the current 
understanding of normal pulmonary development and how 
it is perturbed due to premature birth. These changes become 
exasperated due to neonatal oxygen exposure that affects the pul-
monary epithelium, angiogenesis, and the innate immune system 
in the developing infant. Great strides have recently been realized 
in both the treatment and understanding the mechanisms leading 

to sequelae later in life in this susceptible population. Our hope is 
that this review has left the reader with an appreciation for previ-
ous work as well as highlighting future areas of research that are 
warranted. These include but are not limited to gaining a more 
complete understanding of the molecular programing that drives 
development and regeneration of the respiratory epithelium that 
will allow for a better appreciation of the affects an immature 
lung experiences due to premature birth into an oxygen rich 
environment. Infants born prematurely, and likely provided 
oxygen, experience enhanced disease due to respiratory infec-
tions later in life. Understanding what pulmonary cell types are 
principally infected by various respiratory pathogens, like IAV, in 
healthy subjects precludes our understanding of the cell-specific 
alterations occurring in preterm infants later in life. Although 
cell-specific pulmonary tropism of IAV is unlikely to drastically 
change in this population, it may prove that a cell-specific imbal-
ance in these aberrant lungs drives enhanced disease. It is also 
clear that genes involved in directing lung development overlap 
with those of the pulmonary innate immune system (97). It is 
therefore likely that overall respiratory health is accomplished 
by an interaction with oxygen at birth that influences the devel-
opmental trajectory of the lung and pulmonary innate immune 
system. A better understanding of how the oxygen environment 
at birth influences gene–innate immune interactions could help 
identify children at risk for disease and ideally treatments that 
improve their health.
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