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Lung cancer is considered the most deadly of all cancers, with limited therapeutic 
options. Although advanced drugs have been tried in clinic, the therapeutic success 
has largely been hampered due to rapid development of drug-resistance mechanisms. 
Recently, microRNAs (miRNAs), a class of small non-coding RNAs, have occupied 
center stage in cancer biology. miRNAs negatively regulate gene expression either by 
promoting degradation or by interfering with translation of messenger RNA targets. 
Several lines of evidence have confirmed the crucial role of miRNAs in carcinogenesis, 
and, importantly, in the acquisition of resistance to chemotherapeutics. Modulation of 
miRNA expression levels has been proven to increase the efficacy of genotoxic drugs 
in various preclinical cancer studies. Therefore, comprehensive understanding of the 
role(s) of these key players in drug resistance may provide novel opportunities to design 
effective combinatorial therapeutic strategies for cancer treatment. In this review, we 
highlight recent findings on miRNAs acting as oncomiRs and tumor suppressor genes in 
lung cancer. Moreover, we discuss the involvement of miRNAs in different mechanisms 
of drug resistance in this deadly disease.
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inTRODUCTiOn

Lung cancer (LC) dominates cancer incidence and related mortality rates globally (1, 2). Histo-
logically, LC is classified into two major types: small cell lung cancer (SCLC) and non-small cell 
lung cancer (NSCLC) (3). SCLC is the most aggressive subtype accounting for 15% of cases, whereas 
NSCLC, which accounts for 85% of cases, includes adenocarcinoma, squamous cell carcinoma, large 
cell carcinoma, and other rare subtypes (4). NSCLC and SCLC are generally characterized as dif-
ferent diseases owing to their distinct histological and pathological phenotypes. However, based 
on case studies and clinical observations, the transformation of NSCLC to SCLC has recently been 
proposed. Intriguingly, this transformation has partly been attributed to the epidermal growth factor 
receptor (EGFR) inhibition [for mechanism see Ref. (5)]. Surgical resection is effective for early-stage 
non-metastatic lung tumors (6). However, chemotherapy, alone or in combination with radiation, 
is considered as the frontline strategy for the treatment of advanced or metastatic stages of LC (7). 
Extensive molecular profiling studies have identified several druggable targets for LC therapy. A range 
of highly effective therapeutic molecules specifically targeting oncogenic mutations and/or signaling 
pathways driving lung carcinogenesis have been developed and successfully tested in the clinical set-
ting (8). In particular, receptor tyrosine kinase inhibitors (TKIs), which interfere with growth factor 
receptor signaling in cancer, have shown excellent therapeutic outcome with remarkable clinical 
benefits (9). However, due to inherent or acquired drug resistance, the efficacy of chemotherapy 
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has been ephemeral and drastically limited, resulting in poor 
survival rate (10, 11). Various molecular mechanisms contribute 
to drug resistance, including alterations in drug targets, elevated 
drug efflux, mutations restoring DNA repair function, activation 
of alternative survival signaling cascades, and deregulated apop-
tosis (12). Although the molecular events of drug resistance have 
been significantly investigated, the broad spectrum of resistance 
mechanisms remains largely enigmatic. Several lines of evidence 
have strongly correlated aberrant miRNA expression to the etiol-
ogy of various cancers (13), including LC (14). Importantly, selec-
tive modulation of miRNA activity can improve the response to 
chemotherapy (15). This review summarizes the recent advances 
on the role of miRNAs in regulating mechanisms of drug resist-
ance and also debates their potential as a therapeutic option to 
evade chemoresistance in LC.

microRnA: BiOGeneSiS AnD FUnCTiOn

microRNAs (miRNAs) are endogenously expressed small 
non-coding RNAs that are highly conserved in eukaryotes 
(16). The canonical miRNA biogenesis largely mimics classical 
protein-coding gene transcription mechanism. RNA polymerase 
II transcribes miRNA genes to primary miRNAs, which are 
processed to pre-miRNAs in the nucleus by an RNase III endo-
nuclease–Drosha microprocessor complex (17). Pre-miRNAs are 
exported to the cytoplasm by Exportin-5–Ran-GTP complex (18) 
and are subsequently cleaved by Dicer1 to form a mature miRNA 
duplex (19). The guide strand in the duplex, along with Argonaute 
protein AGO2, is configured into a miRNA-induced silencing 
complex (miRISC) and the passenger strand is degraded (20).

The miRISC binds to the complementary sequence within 
the 3′ untranslated regions (UTRs) of target messenger RNAs 
(mRNAs). Depending on the percentage of complementarity, the 
sequence-specific binding of miRISC influences the degradation 
or the level of translation of target mRNAs (21). Research so 
far has confirmed the involvement of miRNAs in the regula-
tion of fundamental cellular processes such as cell growth and 
differentiation, cell cycle control, proliferation, apoptosis, and 
tissue development (22, 23). Intriguingly, a single miRNA can 
regulate multiple mRNA targets; conversely, certain mRNAs can 
cooperatively be targeted by several miRNAs, underscoring the 
complexity involved in miRNA-mediated gene regulation (24). 
Importantly, genetic manipulations affecting miRNA biogenesis, 
as a consequence of reduced total miRNA output, have been 
shown to cause oncogenic phenotype in various experimental 
models (25). Therefore, it is highly plausible that aberrant 
miRNA expression can alter normal cellular behavior, leading to 
carcinogenesis.

microRnAs in LUnG CAnCeR

Kumar et  al. have demonstrated that conditional knockout of 
Dicer1 enhanced tumor development in a K-Ras-driven LC 
mouse model (26). Also, reduced Dicer expression has been linked 
to poor survival of NSCLC patients (27). Together, these studies 
highlight the importance of miRNA expression in maintaining 
homeostasis in lung tissues. In a recent study, differential miRNA 

expression profiles have been reported for SCLC and NSCLC cells 
compared to their normal counterparts. This study indicates a 
progressive trend in dysregulation of miRNA expression from 
normal to NSCLC cells to SCLC cells, suggesting that increased 
miRNA dysregulation may play a role in progression toward more 
malignant phenotypes (28). Also, specific miRNA signatures have 
been correlated with disease-free survival in NSCLC patients 
(29). Both oncomiRs and tumor suppressor miRNAs have been 
reported. We briefly describe well-characterized miRNAs from 
each category in Table 1.

OncomiRs in Lung Cancer
miR-21 is frequently upregulated in LC and has been correlated 
with poor prognosis of NSCLC patients (30). The majority of 
validated targets for miR-21 are tumor suppressors, including the 
proapoptotic Apaf1, Faslg, and RhoB. The deletion of miR-21 in 
a K-rasLA2 mice (harboring latent K-ras G12D allele activated 
by two recombination events) model significantly reduced tumor 
burden, thus confirming its oncogenic role in LC (31). Also, 
miR-21 downregulates the tumor suppressor PTEN, enhancing 
tumor growth and invasion in NSCLC (32). The expression of 
miR17/92a cluster (comprising miR-17-3p, miR-17-5p, miR-18a, 
miR-19a, miR-20a, miR-19b-1, and miR-92a) has also been 
shown to be higher in LC. This oncogenic cluster primarily 
targets HIF-1a, PTEN, BCL2L11, CDKNA, and TSP-1, causing 
neovascularization and proliferation. Specific inhibition of miR-
17-5p and miR-20a markedly induced apoptosis in A549 cells 
(33). miR-31 exerts oncogenic effects by targeting PPP2R2A and 
LATS2, causing activation of alternative growth pathways in LC 
(34). More recently, Cui et al. have demonstrated the oncogenic 
role of miR-224 in NSCLC. In this study, the authors show that 
miR-224 targets TNFα-induced protein 1 and SMAD4, thereby 
promoting proliferation, migration, and invasion both in  vivo 
and in vitro (35). miR-25 is shown to be overexpressed in SCLC 

TABLe 1 | microRnAs involved in lung cancer.

Function miRnA Targets

OncomiRs
SCLC miR-25 Cyclin E2 and CDK2

NSCLC miR-21 Apaf1, Faslg, RhoB, TPM1, PDCD4, PTEN
miR-
17/92

HIF-1a, PTEN, BCL2L11, CDKNA

miR-31 TSP-1
miR-
224

PPP2R2A, LATS2, SMAD4

Tumor suppressor miRs
SCLC miR-34 –

miR-
138

H2AX

miR-
126

SLC7A5

NSCLC Let-7 K-RAS, MYC, HMGA2, CDK6, cyclinD2, 
CDC25A

miR-
34b

MET, MYC, BCL2

microRNAs acting as oncogenes or tumor suppressor genes in lung cancer (SCLC and 
NCSLC) and their respective targets are reported.
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cells and SCLC tumor samples. Down modulation of miR-25 
significantly reduced cancer cell growth and invasion capacities 
of SCLC cells lines (36).

Tumor Suppressor miRnAs
Lethal-7 (let-7) is the first miRNA to be linked with LC (37), 
and reduced expression of let-7 has been correlated with poor 
survival rate of LC patients (38). Importantly, let-7 suppresses 
the expression of key oncogenes, such as K-RAS (39), MYC 
(40), and HMGA2 (41), suggesting a crucial tumor suppressor 
role for this miRNA. As expected, ectopic expression of let-7 
significantly reduced tumor burden in various in  vitro and 
in vivo studies (42, 43). The expression of miR-34 has also been 
reported to be lower in LC (44). miR-34 targets prototypical 
oncogenes such as MET, MYC, and BCL2, thus acting as tumor 
suppressor (45). Furthermore, Kasinski and Slack have shown 
that enforced expression of miR-34 dampened tumor growth 
in a K-ras:p53 (KrasLSL-G12D/+;Trp53LSL-R172H/+) mouse model (46). 
The same laboratory demonstrated that nanoparticle-mediated 
delivery of miR-34 and let-7 significantly reduced tumor growth 
and prolonged the survival of a K-ras:p53 NSCLC mice model 
(47). Independently, miR-34 family expression has shown to be 
reduced by methylation in SCLC cell lines (H1048 and SBC5), 
and this repression was rescued after 5-aza-2′-deoxycytidine 
treatment. Forced expression of miR-34b/c in H1048 and SBC5 
cell lines dampened cell growth, migration, and invasion com-
pared with controls (48). Together, these studies strongly suggest 
the potential therapeutic advantage of let-7 and miR-34 in LC. 
Also, miR-138 (by targeting H2AX expression) (49) and miR126 
(by targeting SLC7A5) (50) remarkably reduced growth and pro-
liferation in SCLC cell lines. Similarly, miR-200 family (regulating 
metastasis) (51) and miRNA-29 family (involved in epigenetic 
regulation of gene expression) (52) have been reported as tumor 
suppressor miRNAs in LC.

ROLe OF miRnAs in LUnG CAnCeR 
CHeMOReSiSTAnCe

Drug resistance is considered as a primary cause for chemothera-
peutic failure (53). miRNA dysregulation affects the expression 
of genes involved in drug-resistance mechanisms such as DNA 
damage repair, apoptosis, and cell cycle control (Figure 1).

DnA Damage Repair
DNA damage repair (DDR) is an intrinsic cellular mechanism 
triggered in response to genomic injury caused by factors such as 
ionizing radiation (IR), UV, and genotoxic drugs. Cells respond 
to DNA damage by halting cell cycle progression, and depending 
on the damage type, various repair mechanisms are activated 
(54). However, if the damage is beyond repair, cells undergo 
apoptosis (55). Inadequate DDR capacity is considered as a 
common trait for cancer cells. Several studies have demonstrated 
that various miRNAs modulate the expression of DDR pathway 
components in LC. Shin et al. analyzed the expression profile of 
IR-responsive miRNAs in A549 lung carcinoma cells and revealed 
a list of miRNAs that are differentially expressed. Further qPCR 

analysis confirmed that miR-16-2, miR-106a, miR-139-3p, and 
miR-516a-5 are significantly downregulated in response to IR. 
Target prediction for these IR-responsive miRNAs suggested that 
the majority of the potential targets are involved in DDR, cell 
cycle regulation, and apoptosis (56). Rahman et al. demonstrated 
that miR-15b expression is induced by IR, causing G2/M arrest 
and increased DDR response in human bronchial epithelial cells. 
In this study, overexpression of miR-15b resulted in activation 
of ATM/ATR pathway and enhanced DDR response, suggest-
ing a causal role of miR-15b for radioresistance (57). It is well 
known that hypoxia induces resistance to both chemotherapy and 
radiotherapy (58). A study by Huang et  al. showed that HIF-1 
transcriptionally activates miR-210 in hypoxia conditions (59). 
Grosso et al. demonstrated that LC cells under hypoxic conditions 
exhibited reduced apoptosis in response to radiation compared to 
cells cultured in normoxia as a consequence of miR-210 upregu-
lation. Abrogation of HIF-1 in cells stably expressing miR-210 
rescued the resistant phenotype, confirming that the mechanism 
of resistance is dependent on HIF-1. Therefore, miR-210 could 
potentially be an ideal candidate to enhance radiosensitivity in 
lung tumors (60). By contrast, miR-18a expression is downregu-
lated in IR-resistant LC cells (61). Overexpression of miR-18a 
reduced ATM expression, thus enhancing radiosensitivity in 
NSCLC cells (62). Also, miR-101 has shown to sensitize LC cells 
to radiation by targeting the expression of ATM and DNA-PKc 
expression (63) (Figure 1).

Apoptosis
Aberrant apoptosis is considered as a major contributing factor 
for tumor progression and chemoresistance (64). Research so far 
suggested that dysregulated miRNAs modulate the expression of 
genes related to apoptosis, thus playing an important role in drug 
resistance (65). The inverse relation between the antiapoptotic 
gene Bcl-2 and miR-608 has been reported in LC cell lines. 
Enforced expression of miR-608 markedly increased apoptosis, 
suggesting a proapoptotic role of miR-608 in LC (66). Also, miR-7 
has been shown to target Bcl-2, resulting in a significant increase 
in caspase-3/7 activity in A549 cells (67). miRNAs modulating 
prosurvival signaling pathways such as PKC, AKT, and ERK1/2 
have been reported in LC. For example, miR-203 and miR-143 
target PKC-A and PKC-e, thus enhancing apoptosis (68, 69). 
miR-451 induces apoptosis by targeting RAB14. Downregulation 
of RAB14 by miR-451 reduced Akt phosphorylation, which 
led to the accumulation of the proapoptotic Bax protein (70). 
Downregulation of EGFR by miR-146a reduced ERK-1/2 activ-
ity in A549 cells (71), whereas knockdown of miR-197 restored 
proapoptotic BMF and NOXA expression and induced apoptosis 
(72) (Figure 1).

Cell Cycle Control
microRNAs modulate cell proliferation by targeting key 
components associated with cell cycle. For instance, the miR-
15a-16-1cluster has been shown to silence cell cycle regulators 
such as cyclin D1, D2, and E1, thus inducing G1–G0 arrest in 
NSCLC cells (73). Let-7, a tumor suppressor frequently deleted 
or downregulated in LC, has been shown to negatively regulate 
the expression of cell cycle progression genes such as CDC25A, 
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CDK6, and cyclin D2 (74). Also, overexpression of miR-138 
silenced cyclin D3, leading to cell cycle arrest in A549 cells (75). 
Conversely, downregulation of miR-25 induced cell cycle arrest in 
the G1 phase through the downregulation of cyclin E2 and CDK2 
in SCLC cells. Interestingly, reconstitution of cyclin E2 reversed 
the cell cycle arrest phenotype in H510A cells, suggesting that the 
oncogenic role of miR-25 is cyclin E2 dependent (36) (Figure 1).

Modulation of microRnAs and Response 
to Chemotherapy
Altered expression of miRNAs modulates the expression of 
drug target proteins and/or activates alternative compensatory 
pathways, leading to drug resistance in cancer. Several studies 
have reported the role of miRNAs in modulating the response to 
different drugs.

TNF-Related Apoptosis-Inducing Ligand
TNF-related apoptosis-inducing ligand (TRAIL) is a cytokine 
belonging to the TNF superfamily, which induces apoptosis spe-
cifically in cancer cells sparing the normal cells. In clinical trials, 
TRAIL has shown to be effective only in a very small subset of 
LC patients (76), but, unfortunately, the majority of lung tumors 
are TRAIL resistant and the causes of this resistance are mostly 
unknown. We showed that miR-34a/c inhibited the expression of 
oncogenic PDGFR-α and PDGFR-β, and overexpression of miR-
34a/c enhanced TRAIL sensitivity in LC cell lines (77). In another 

miRNAs increasing chemoresistance miRNAs increasing chemosensitivity

Drug response:
miR-21   (TRAIL)
miR-30c (TRAIL, gefitinib)
miR-100 (TRAIL)
miR-494 (TRAIL)
miR-31   (cisplatin) 
miR-30b (gefitinib)
miR-221 (gefitinib)
miR-222 (gefitinib)
miR-214 (gefitinib)

Drug response:
miR-34a   (TRAIL)
miR-148a (TRAIL)
miR-138a (cisplatin)
miR-451  (cisplatin)
miR-630  (cisplatin)
miR-133b (gefitinib, gemcitabine)
miR-101  (paclitaxel)
miR-100  (docetaxel)
miR-200bc-429 (multidrug)
miR-181b (multidrug)
let-7b        CYPYJ2 (drug metabolism)

cancer tissue

DNA damage repair:
miR-15b         Wip1         
miR-210         HIF-1

DNA damage repair:
miR-18a        ATM
miR-101 ATM, DNA-PKc

Apoptosis:
miR-197 BMF, NOXA 

Cell cycle progression:
miR-15a-16-1 Cyclin D1, D2, E1 
let-7 CDC25A, CDK6, Cyclin D2
miR-138 Cyclin D3

Cell cycle progression:
miR-25 Cyclin E2, CDK2

Apoptosis:
miR-608 Bcl-2
miR-7 Bcl-2
miR-203 PKC-A
miR-143 PKC-e
miR-451 RAB14
miR-146a EGFR

FiGURe 1 | Schematic representation of miRnAs involved in lung cancer chemoresistance. Several miRNAs have shown to modulate the expression of key 
genes involved in chemoresistance mechanisms in lung cancer. miRNAs conferring chemoresistance are shown in red, and miRNAs responsible for enhancing drug 
response are shown in green.

study, we also demonstrated that miR-148a sensitized cells to TRAIL 
and reduced lung tumorigenesis (both in vitro and in vivo) through 
the downregulation of matrix metalloproteinase 15 (MMP15) and 
Rho-associated kinase 1 (ROCK1) (78). Acquired TRAIL resistance 
has been linked to miR-21, miR-30c, and miR-100 expression in 
NSCLC. Indeed, continuous exposure to subtoxic concentrations 
of TRAIL induced acquired resistance to the drug and activation 
of NF-kB p65, which in turn transcriptionally activates miR-21, 
miR-30c, and miR-100. These three miRNAs are responsible for 
the resistant phenotype by silencing important tumor suppressor 
genes such as caspase 8, caspase 3, Foxo3A, and TRAF-7 (79). Also, 
ERK1/2-dependent upregulation of miR-494 has shown to induce 
TRAIL resistance in NSCLC by targeting BIM expression (80).

Cisplatin
Cisplatin binds to and causes cross-linking of DNA, which ulti-
mately triggers apoptosis and is generally considered as first-line 
therapy for NSCLC. The modulatory role of miRNAs involved in 
cisplatin response in LC has been demonstrated in various stud-
ies. Wang et al. analyzed the expression profile of miRNAs in a 
cell line with acquired cisplatin resistance (A549/DDP) and dem-
onstrated that upregulation of miR-138 increased sensitivity to 
the drug and enhanced apoptosis. The authors also demonstrated 
that excision repair cross-complementation group 1 (ERCC1) is 
a target of miR-138, suggesting a crucial role of this miRNA in 
the acquirement of cisplatin resistance in NSCLC (81). Forced 
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expression of miR-451 has shown to improve cisplatin sensitiv-
ity by inhibiting cell growth and inducing caspase-3-dependent 
apoptosis in A549 cells (82). Also, overexpression of miR-630 
upregulated cyclin-dependent kinase inhibitor 1B or p27(Kip1), 
resulting in G0–G1 phase arrest and significant reduction in 
proliferation of A549 cells (83). Conversely, oncogenic miR-31 
has been demonstrated to induce cisplatin resistance in NSCLC 
cell lines. Transfection of miR-31 mimics into cisplatin-sensitive 
SPC-A-1 cells markedly increased resistance to cisplatin. This 
resistance-causing phenotype has been attributed to the down-
regulation of the membrane transporter ABCB9 (84).

Recently, expression profiles of miRNA in sensitive and multid-
rug-resistant SCLC cell lines have been analyzed, and the differen-
tial expression of miR-134 has been correlated to drug resistance. 
miR-134 negatively regulates multidrug-resistance protein MRP1/
ABCC1 expression, and forced expression of miR-134 markedly 
enhanced sensitivity to cisplatin, etoposide, and doxorubicin in 
H69AR (multidrug-resistant SCLC) cells (85). However, in more 
aggressive SCLC, the data regarding miRNA dysregulation and 
corresponding effects on drug resistance are relatively limited 
compared to extensively studied NSCLC. Comparative analysis of 
miRNAs dysregulation in all subtypes of LC would greatly help in 
comprehensive understanding of the role of miRNAs in LC.

Tyrosine Kinase Inhibitors
Tyrosine kinase inhibitors, such as gefitinib and erlotinib, block 
the EGFR and have been shown to be very effective in LC patients 
with EGFR activating mutations such as deletion in exon 19 or 
point mutations in exon 21. However, even the patients who 
respond well to the therapy in the beginning become resistant 
later. The causes of this resistance are another mutation in the 
tyrosine kinase domain of the EGFR (T790M mutation) or MET 
amplification. The modulatory role of miRNAs in the EGFR 
signaling pathway of lung carcinogenesis and target therapy is 
gaining importance. We demonstrated that miR-30b, miR-30c, 
miR-221, and miR-222 are regulated by EGF and MET receptors. 
Upregulation of these miRNAs induced gefitinib resistance in LC 
cells by the modulation of BIM, PTEN, and APAF-1 expression. 
Interestingly, MET inhibition decreased the expression of these 
miRNAs, thus conferring increased sensitivity to the drug (86). 
Oncogenic miR-214 appears to be a contributing factor for gefi-
tinib resistance in adenocarcinoma cells. The inhibition of miR-
214 caused an upregulation of PTEN expression and inactivation 
of AKT (87). On the other hand, miR-133b directly targets EGFR, 
and overexpression of miR-133b in PC-9 and A549 cells inhibited 
phosphorylation of EGFR, AKT, and extracellular signal-related 
kinase (ERK)1/2. Importantly, miR-133b was able to restore 
EGFR-TKI sensitivity in TKI-resistant NSCLC cells (88).

Taxanes
The involvement of miRNAs in taxanes (mitotic inhibitors)-
related resistance in LC has been reported in various studies. 
Zhang et al. have identified an inverse relation between miR-101 
and the oncogene EZH2 in NSCLC. Overexpression of miR-101 
downregulated EZH2 expression and sensitized NSCLC cells to 
paclitaxel (89). miR-100 has been shown to reduce the expression 
of PLK1 and increase chemosensitivity to docetaxel (90). Also, 

miR-133b modulates the response to gemcitabine (nucleoside 
antimetabolite) in NSCLC cells. miR-133b targets antiapoptotic 
proteins such as Bcl-w and Mcl-1. Importantly, a combinatorial 
treatment of miR-133b with gemcitabine significantly enhanced 
apoptosis in NSCLC cells (91). Transfection of miR-200bc-429 
(92) and miR-181b (93) into A549 cells significantly increased 
apoptosis compared to parent A549 cell line through the tar-
geting of Bcl2 and XIAP. Recently, Chen and colleagues have 
demonstrated that the expression of drug metabolizing enzyme 
cytochrome P450 epoxygenase 2J2 (CYP2J2) is inversely propor-
tional to the tumor suppressor let-7b expression in squamous 
cell lung cancer. Vector-mediated overexpression of let-7b in 
tumor-engrafted mice led to the downregulation of CYP2J2 and 
significant reduction in tumor growth (94).

FUTURe PeRSPeCTiveS

Drug resistance compromises the therapeutic benefits of 
chemotherapy and remains a major challenge to overcome in LC 
treatment. Therefore, research efforts should aim to find novel 
strategies toward the ultimate solution for drug resistance. During 
the last two decades, a continuous stream of reports unanimously 
confirmed the crucial role of miRNAs in carcinogenesis and 
miRNAs emerged as key players in modulating sensitivity and 
resistance to chemotherapy. Modulating the expression of miR-
NAs has shown to increase drug sensitivity in various in  vitro 
and in vivo studies, suggesting that a combinatorial therapeutic 
option (miRNAs and chemotherapy) could be useful for resistant 
phenotypes. Nevertheless, it is important to consider that miRNA 
expression patterns and corresponding effects are tissue and cell 
type specific. Given the heterogenous nature of tumors, it would 
be necessarily essential to take into account of the miRNA expres-
sion profiles of various cell types constituting normal and tumor 
tissues. Probing miRNA-dependent phenotypes in inappropriate 
cell types may lead to erroneous conclusions. For instance, stud-
ies performed in epithelial cell lines derived from colon cancer 
suggested miR-143/145 as tumor suppressor in colon cancer. 
However, new data indicate that miR-143/145 is primarily mesen-
chymal, with no suggestive functions in intestinal epithelial cells 
(95). These discrepancies underpin the importance of “context” 
while investigating and interpreting the role of miRNAs in cancer. 
Specific miRNA signatures associated with drug resistance can 
be used as biomarkers for disease stratification, helping in the 
design of new strategies for personalized treatments. However, 
the use of miRNAs as therapeutic tools is still in its infancy. One 
of the major obstacles for miRNA therapy is the efficient and 
specific delivery to the tumor sites. Technological advancements 
on miRNA delivery front look promising. Therefore, exploiting 
miRNAs for cancer therapy, either alone or in combination with 
conventional chemotherapy regimens, may have more efficient 
clinical outcome particularly for chemoresistant lung tumors.
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