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Processing of Factor Xii during 
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The contact system was originally identified as an obsolete part of the coagulation 
system, but it has been repeatedly implicated in inflammatory states, such as infection, 
as well as in allergic- and chronic inflammatory disease. Under these conditions, there is 
surprisingly little evidence that factor XII (FXII) acts as a coagulation factor, and its activity 
appears to be mainly directed toward activation of the kallikrein–kinin system. The contact 
system factors interact with pathogens as well as cells of the (innate) immune system on 
several levels. Among others, these cells may provide negatively charged surfaces that 
contribute to contact activation as well as release enzymes that feed into this system. 
Furthermore, cellular receptors have been identified that bind contact factors at sites of 
inflammation. Based on the accumulated evidence, we propose a model for enzymatic 
crosstalk between inflammatory cells and the plasma contact system. During these 
reactions, FXII is enzymatically cleaved by non-contact system enzymes. This generates 
unactivated FXII fragments that can subsequently be rapidly activated in the fluid phase. 
The resulting enzyme lacks procoagulant properties, but retains its pro-inflammatory 
characteristic as a prekallikrein activator.
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inTRODUCTiOn

Continuous maintenance of vascular integrity is essential for effective blood circulation and overall 
survival. When tissues are infected or injured, local increases in vascular permeability and con-
trolled inflammation are needed for protection and repair. The short-lived peptide bradykinin is a 
well-known mediator of inflammation and vascular leakage. To this day, the plasma contact system 
is considered to be the most important source of intravascular bradykinin production. However, 
the physiological mechanisms that drive this system to generate bradykinin remain elusive.

The plasma contact system consists of the two proteases, factor XII (FXII) and plasma 
prekallikrein (pro-pKal), and their non-enzymatic cofactor high molecular weight kininogen 
(HK). These coagulation factors spontaneously activate in the presence of negatively charged 
surfaces, which [as previously reviewed in Ref. (1, 2)] can be non-natural (e.g., kaolin) or 
cell-derived (e.g., polyphosphate). Surface-binding of FXII is accompanied by a conformational 
shift (3). This may generate the first spark of enzymatic activity (4). In chorus, HK (in complex 
with pro-pKal) also binds to the negatively charged surface, thereby presenting pro-pKal for 
activating cleavage by active FXII (FXIIa). In turn, activated plasma kallikrein (pKal) can 
reciprocally cleave and activate more FXII, forming a powerful activation feedback loop that 
can avoid inhibition by C1-esterase inhibitor (C1inh). In part, this can be attributed to the 
negative charge of the activating surfaces, which electrostatically repel C1inh (which is also 
negatively charged). When sufficient amounts of FXII activate on the surface, FXIIa activates 
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FigURe 1 | A  model for two-stage activation of Factor Xii.
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factor XI (FXI) in a mechanism that closely resembles pro-
pKal activation. Deficiencies in contact factors were originally 
identified as in  vitro defects in surface-mediated clotting 
reactions (5, 6). As a direct result, it is generally thought that 
contact activation will inherently lead to blood coagulation. 
Mysteriously, deficiencies in the contact factors are without 
bleeding diatheses, providing reasons to believe that the contact 
system has become redundant for physiological hemostasis. 
But is activation of blood coagulation by the contact system 
truly its first and foremost important function?

At this point, it is noteworthy that only a subset of negatively 
charged activators of the contact system support activation of FXI 
by FXIIa. Generally, these surfaces are insoluble particles (7–9). 
However, a second type of contact system activator (generally 
negatively charged soluble polymers) is unable to support FXII-
driven blood coagulation in vitro or activate FXI in vivo (8, 10). 
Surprisingly, this class of activators still powerfully promotes pKal 
activity and bradykinin production. The fundamental principles 
that make the contact system “decide” whether or not to trigger 
coagulation in response to specific activators are still unknown, 
but we propose that this is related to alternative conformational 
changes that FXII undergoes when it binds to activating surfaces 
(7). Furthermore, earlier biochemical investigations have pointed 
out that surface-bound FXII becomes activated in a step-wise 
mechanism (Figure 1, “Classic” contact activation). A first pKal-
mediated cleavage activates FXII into a full-length two-chain 
molecule with surface-binding and procoagulant characteristics. 
Further cleavage by pKal fragments the molecule, allowing it to 
dissociate into solution. This enzymatic fragment has lost the 
ability to activate FXI, but can still act as a powerful pro-pKal 
activator (11).

THe COnTACT SYSTeM in 
inFLAMMATORY PATHOLOgY

The contact system has attracted strong scientific attention as a 
result of its contribution to pathological thrombus formation and 
the potential it holds for developing safe antithrombotic strategies 
without an associated bleeding risk (12). However, this system 
has also been repeatedly implicated in acute inflammatory and 
allergic reactions, as well as chronic inflammatory disease, often 
without a clear link to the coagulation system.

Sepsis
Patients with sepsis undergo a systemic inflammatory response 
and can experience fever, hypotension, tachycardia, and organ 
failure (13). Sepsis can be caused by various pathogens, although 
bacterial infection is most common. When primates are chal-
lenged in an Escherichia coli-induced sepsis model, contact 
system activity is observed in the systemic circulation (14–16). 
Inhibition of contact system activity attenuates complement 
activation and diminishes neutrophil degranulation. Resultantly, 
overall survival rates increase. However, when FXII is inactivated 
by a blocking antibody, disseminated intravascular coagulation 
still occurs, indicating that the contact system is not responsible 
for the thrombotic aspect of this pathology. Presumably, expres-
sion of tissue factor by circulating cells and diffuse vascular dam-
age, leading to subendothelial exposure, are the driving factor 
behind this prothrombotic aspect of sepsis. When guinea pigs 
are experimentally infected with Pseudomonas aeruginosa (P. aer-
uginosa), it triggers development of peritonitis (17). Activation 
of the contact system is observed during these infections and 
plays a role in this pathology: antibody-mediated depletion of 
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FXII prevents the onset of septic shock. In contrast, depletion 
of α2-macroglobulin, which has the ability to inhibit pKal dur-
ing these infections, exacerbated the outcome. While these two 
studies highlight a prominent role for bradykinin production in 
septic shock models, it is important to note that not all sepsis 
models show identical results. In a porcine sepsis model with  
P. aeruginosa, the onset of symptoms was not influenced by a 
kinin B2 receptor antagonist. However animals did recover faster 
as a result of this treatment (18), suggesting that the contact 
system does not play a lead role throughout the entire pathologi-
cal process. In a similar porcine infection model with Neisseria 
meningitides, administration of a kinin B2 receptor antagonist 
had no effect (19). This raises the question whether all forms of 
sepsis are accompanied by contact system activation.

In a human study of systemic inflammatory response syndrome, 
continuous infusion of a bradykinin antagonist had no overall 
effect on the 28-day survival (20). However, a subset of patients 
with a Gram-negative bacterial infection did show improvements 
in recovery. Another study reports that levels FXIIa–C1inh and 
PK–C1inh complexes were transiently increased in 40% of 
patients during the course of their sepsis (21). These observations 
in human patients parallel observations in animal studies and 
suggest that not all types of infection that lead to sepsis act on 
the contact system in the same manner. Some pathogens trigger 
contact system activity via outer surface components: Curli-
expressing E. coli have been shown to directly bind and activate 
the contact system on their surface (22). Furthermore, E.  coli, 
Bacteroides fragilis, Bacteroides vulgatus, and Fusobacterium 
mortiferum LPS have been postulated to be able to directly acti-
vate FXII (23, 24). However, other pathogens appear to trigger 
contact system activity in an enzymatic manner. For example, 
P. aeruginosa expresses a form of elastase that, after administra-
tion in guinea pigs, provokes massive consumption of FXII, PPK, 
and HK and triggers bradykinin formation, recapitulating key 
features of pseudomonal sepsis (25). Several other microbial 
enzymes with similar functions have been identified (26). Three 
main groups of proteinases can be distinguished: (I) those that 
activate FXII, but not pro-pKal; (II) those that can activate both 
FXII and pro-pKal; and (III) those that directly liberate bradykinin 
from HK. Finally, recent studies have shown that bacterial strains 
that carry direct plasminogen activators (e.g., streptokinase) can 
trigger plasmin-triggered bradykinin production via the contact 
system (27), which is highly reminiscent of earlier studies that 
identified plasmin as an activating enzyme of FXII (28) as well as 
recent findings that implicate plasmin as FXII-activating enzyme 
in hereditary angioedema (HAE) (29). This may help to explain 
the changes in blood pressure that take place during sepsis but 
also possibly points toward a bradykinin-dependent mechanism 
of pathogen host invasion.

Anaphylaxis
Anaphylaxis is a severe allergic reaction with a possible deadly 
outcome. Attacks can be triggered in reaction to food, insect bites 
and/or stings, and medication. As a result, patients can experi-
ence gastrointestinal and skin manifestations, as well as arrhyth-
mias, bronchial constriction, and vascular leakage, which causes 
hypotension. These effects are generally thought to be mainly due 

to extensive degranulation of mast cells and basophils. However, 
several lines of evidence point to a role for bradykinin in the 
exacerbation of allergic reactions.

Patients who undergo attacks of anaphylaxis show strong 
consumption of contact system factors (30, 31). Interestingly, 
plasminogen activation is simultaneously seen in these same 
patients (32). Consumption of contact factors has also been 
reported in IgE-mediated mouse models for anaphylaxis (10). 
This raises the questions of how (and why) the contact system 
activates during anaphylaxis. Upon mast cell and basophil 
degranulation, a wide variety of vasoactive mediators and 
proinflammotory effectors are secreted which belong to a 
wide variety of cytokines, chemokines, or lipid mediators (33). 
Alongside these substances, the highly sulfated glycosaminogly-
can heparin is also secreted. While heparin is mostly known for 
its anti-coagulant properties in the clinic, for mast cells, heparin 
acts as scaffold and carrier for several proteases and is essential 
for the proper morphology of the secretory granules (34, 35). 
To execute this function, heparin shares many properties with 
negatively charged polymers that can active the contact system. 
Indeed, when heparin is isolated from peritoneal mast cells and 
subsequently added to plasma, or administered intravenously 
to mice, contact system activation and bradykinin formation 
ensues (10). It should be remarked that therapeutic heparin 
preparations do not trigger significant or dangerous systemic 
contact system activation, unless highly charged impurities are 
present (36). However, when mast cells release heparin in vivo, 
significant contact activation follows. In IgE-dependent mouse 
models for anaphylaxis, genetic and pharmacological targeting 
of the contact pathway attenuates symptomatic hypotension and 
cutaneous swelling (10). As such, it is proposed that mast cell 
heparin is an important endogenous contact system activator 
in anaphylaxis in mice and humans. Furthermore, these experi-
ments indicate that mast cell/histamine driven allergic reactions 
are mechanistically coupled to bradykinin production and do 
not present exclusively operating mechanisms for vascular 
leakage.

Multiple Sclerosis
Multiple sclerosis (MS) is a severe neuroinflammatory disease, 
which affects local function of the central nervous system (CNS). 
Patients can experience loss of their vision, muscle coordination, 
and sensation. While the precise cause of MS is enigmatic, the 
general consensus is that MS is caused by the local destruction 
of the optic nerve, brain stem, basal ganglia, and spinal cord, 
and certain areas of white matter in the brain. Triggers for this 
pathology are linked to immune system activity or failure of the 
myelin producing cells. MS can be classified as an inflammatory 
disease, but in addition, a dysregulation of the extrinsic pathways 
of coagulation has been repeatedly indicated (37–40). Excitingly, 
a recent publication by Göbel et  al. suggests that the contact 
system and FXII in particular, might be a directly involved in the 
onset of MS (41). It was demonstrated that when an inflammatory 
response against the CNS is evoked in a mouse model for MS, 
FXII-knockout mice show a delayed disease onset and reduced 
disease severity compared to their wild-type counter parts (WT). 
The role of FXII in this context is critically dependent on the 
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expression of the cell-surface receptor CD87 by dendritic cells, 
which is crucial for T-cell differentiation. Interestingly, CD87 is 
also known as uPAR, a key receptor in the urokinase plasmino-
gen activation system, that mediates plasminogen activation on 
endothelial cells but also has cell signaling properties during FXII 
binding that influence angiogenesis (42). These recent studies 
indicate a novel role for FXII in MS, which is independent of 
intrinsic coagulation or the kallikrein–kinin system. However, a 
contribution of bradykinin or its metabolites to MS is still prob-
able: blockade of the kinin B1 receptor, which is mainly expressed 
at sites of inflammation, reduces pathology in mouse models for 
MS by preventing T-cell migration into the nervous tissue by 
restoring excessive permeability of the blood–brain barrier (43). 
These combined studies point out that the role of FXII in immune 
modulation and inflammation in extravascular tissues may so far 
have been underappreciated.

TwO eXTeRnAL enZYMeS THAT FeeD 
inTO THe COnTACT SYSTeM DURing 
inFLAMMATiOn

It can be assumed that the mechanisms that drive physiological 
contact system activation are restricted to the same factors that 
are required for surface-triggered FXII-dependent coagulation 
(or pro-pKal activation) in vitro. In this context, pKal is the main 
enzyme that cleaves and activates FXII. However, extensive stud-
ies on endothelial cells have identified new external players that 
feed into the contact system, both by acting as pro-pKal activa-
tors (44, 45). In this next section, we will review examples of two 
enzymes from the serine-protease family that can feed into the 
contact system.

Plasmin
Plasmin is foremost known for its thrombolytic function 
through fibrin breakdown and has strong therapeutic value in 
the treatment of thrombotic pathology (e.g., stroke). However, 
plasminogen activation can take place in the complete absence 
of a thrombus on the surface of endothelial cells in a receptor-
mediated manner by the urokinase plasminogen activation sys-
tem. Hypoxia is one of the triggers for expression of the required 
receptors (46). This among others helps to explain the generation 
of fibrinolytic activity during attacks of (fibrin-poor) thrombotic 
microangiopathy (47).

Hereditary angioedema is characterized by swelling attacks 
of the extremities, face, trunk, airway, or viscera of the abdo-
men. The onset can be spontaneous or secondary to trauma. 
The contact system and bradykinin production are heavily 
implicated, as HAE is often related to C1inh deficiency (48), 
as well as by mutations in FXII (49), and can be treated with 
kinin B2 receptor antagonists, C1inh reconstitution therapy, 
and antagonists of pKal (50). The mechanisms that underlie 
the attacks are currently unknown, but strikingly similar symp-
toms are seen in a subset of stroke patients (~5%) who undergo 
thrombolytic therapy (51). Furthermore, thrombolytic therapy 
after stroke exacerbates brain edema (52) with kallikrein–kinin 
system as known mediator (53). This connects well to the 

finding that the contact system is systemically activated after 
administration of plasminogen activators and the capacity of 
plasmin to cleave and activate FXII in a mechanism that closely 
resembles the function of pKal (28, 54). Another noteworthy 
influence of plasmin on the contact system is that it has the 
potential to “prime” HK for kallikrein-mediated liberation of 
bradykinin (55). We recently reported that three types of FXII 
mutations that cause HAE enhance the capacity of plasmin 
to cleave and activate FXII through introduction of novel 
enzymatic cleavage sites, leading to uncontrolled bradykinin 
production despite the presence of normal C1inh levels (29). 
Interestingly, the plasminogen activation system is linked in 
many of the inflammatory conditions described above, ranging 
from bacterial plasminogen activators to concurrent activation 
of plasminogen and the contact system in anaphylaxis (27, 30, 
32). Based on these combined findings, we propose that plas-
min is of importance for FXII-mediated bradykinin production 
in a context that expands beyond HAE.

elastase
Several cell types of the (innate) immune system, such as mast 
cells, basophils, and neutrophils contain and release elastase. This 
enzyme has been extensively studied as an inflammatory media-
tor in lung injury. Elastase has the capacity to cleave FXII into 
28 kDa and 52 kDa fragments in peripheral blood. This destroys 
its procoagulant activity through removal of the surface-binding 
domains (56, 57), but does not directly activate the FXII molecule. 
As a result, elastase is currently seen as a negative regulator of the 
plasma contact system, but is this really the case? The cleavage 
pattern that FXII generates in response to elastase is strikingly 
similar to that of pKal, indicating that the cleavage sites for elastase 
and pKal in FXII are in close vicinity to each other. At this point, 
it is noteworthy to remember that pKal exerts a similar function 
during “classic” contact activation, removing the surface-binding 
domains of FXII to yield a fragmented active form of FXII with 
selective pro-pKal activating properties. In case of elastase 
cleavage, the soluble fragment has not (yet) been activated. In 
a mirroring mechanism, elastase is able cleave the light chain of 
HK. This eliminates its procoagulant properties, but leaves the 
kinin sequence untouched (56). It is attractive to hypothesize that 
this “primes” FXII for activation by pKal (or plasmin) and HK 
for liberation of bradykinin by pKal in the fluid phase. Finally, 
elastase can proteolytically inactivate α2-antiplasmin and C1inh 
(58). Taken together, the combined properties seem to point at 
the potential of elastase as a positive regulator of contact system 
activation, while shifting its actions toward a pro-inflammatory 
focus.

CLeAvAge DOeS nOT eQUAL 
DeSTRUCTiOn: A COnCePTUAL MODeL 
FOR TwO-STAge FLUiD PHASe 
ACTivATiOn OF FACTOR Xii

“Classic” Contact Activation
As discussed earlier, the pattern by which FXII is cleaved by pKal 
is decisive in determining whether it acts as a procoagulant or 
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pro-inflammatory enzyme (11) (Figure  1, left column). Three 
pKal-sensitive cleavage sites on FXII have been identified: 
R334, R343, and R353 [mature protein numbering (59)]. In the 
“classic” model of contact activation, α-FXIIA is formed first by 
cleavage at R353, which “locks” this molecule into a two-chain 
active conformation. In short, R353 cleavage is critical for FXII 
activation (59). Next, R334 cleavage generates β-FXIIA, a fluid 
phase pro-pKal activator. The functional consequences of R343 
cleavage are still unknown. However, since pKal is not the only 
serine protease that is able to cleave FXII, the sequence of events 
that occur during physiological FXII activation may be different 
than were originally discovered during surface-triggered contact 
system activation in vitro.

A “Priming” Model for FXii-HAe
We recently reported that mutations in FXII that cause HAE 
(FXII-HAE) introduce new cleavage sites in the unstructured 
proline-rich region, which accelerate fluid phase activation by 
plasmin (29) (Figure 1, middle column). These sites are near 
to the R334 site, which pKal usually cleaves to generate β-FXIIA 
after initial activation. Our findings in FXII-HAE have led us 
to hypothesize that during activation of FXII-HAE mutants, 
the unactivated FXII protein is fragmented in solution first, 
rather than after initial activation. This step not only elimi-
nates its procoagulant properties but also removes a functional 
sequence that shields site R353. This “primes” the FXII mol-
ecule and lowers the threshold for fluid phase activation by 
pKal or plasmin.

Factor Xii “Priming” by elastase
Based on available biochemical data, the currently unidentified 
cleavage site for elastase is in the very same region as the FXII-HAE 
mutations, as well as near R334 (Figure 1, right column). In analogy 
to the mechanism described above, we propose that when elastase 
cleaves FXII, it converts the molecule into a fragment that is unable 
to generate clotting activity, but is has a significantly increased 
propensity for activation by pKal or plasmin in the fluid phase.

SUMMARY

Accumulating evidence shows that the contact system is involved 
in inflammatory mechanisms that are not directly linked to blood 
coagulation (Figure 2). Alternative enzymatic processing of FXII 
by non-contact system enzymes may help to explain how the 
contact system “chooses” its direction.
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FigURe 2 | Schematic overview of various pro-inflammatory modulators of the contact system.
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