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The concepts on the pathophysiology of intestinal fibrosis in Crohn’s disease (CD) have 
changed in recent years. Some years ago fibrosis was regarded to be a consequence of 
long-standing inflammation with subsequent destruction of the gut wall matrix followed 
by scar formation and collagen deposition. Fibrosis in CD patients appeared to be an irre-
versible process that could hardly be influenced. Therefore, the main target in CD therapy 
was to control inflammation to avoid fibrosis development. Many of these assumptions 
seem to be only partially true. Inflammation may be a necessary prerequisite for the initia-
tion of fibrosis. However, when the pathophysiologic processes that lead to fibrosis in CD 
patients have been initiated fibrosis development may be independent of inflammation 
and may continue even when inflammation is under good medical control. Fibrosis in 
CD also may be reversible. After strictureplasty local collagen deposits decrease or even 
disappear. With new animal models for intestinal fibrosis on the horizon, we need to 
spend more efforts on understanding the factors influencing fibrosis in CD patients to 
finally find specific therapies. In this context, it will be as important to find markers and 
quantitative imaging tools to have reliable endpoints for clinical trials in fibrosing CD.
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inTRODUCTiOn

Fibrosis in general can be characterized as exaggerated accumulation of collagen-rich extracellular 
matrix (ECM) in a tissue normally containing much less connective tissue with permanent or 
transient local expansion of mesenchymal cells or mesenchymal like cells and subsequent impair-
ment of organ function (1).

Traditionally, fibrosis in Crohn’s disease (CD) has been seen as a relatively slow process needing 
many months to develop (2). In the discussion of delayed diagnosis of CD, it is usually empha-
sized that stricturing complications of CD and severe fibrosis of CD intestine could by avoided 
by a timely diagnosis (3). However, recent data indicate that this may not necessarily be the case.  
A rapid development of fibrosis in some patients seems to be possible. Rapid reoccurrence of fibrosis 
has been described in patients that undergo liver transplantation for hepatic fibrosis or cirrhosis 
(4). Rapid lung fibrosis could be induced by inhalative toxins in animal models (5, 6), and rapid 
liver fibrosis is seen in some models of primary sclerosing cholangitis (7). These data and further 
evidence support the concept that under certain circumstances fibrosis and subsequent stricture 
formation in some CD patients may be much faster than traditionally assumed.

It is evident from clinical findings that fibrosis only develops in segments of the gut where 
inflammation in the context of CD is present (1). Fibrosis in gut segments that never showed 
inflammatory involvement has not been reported. While this seems to be obvious, it is less clear 
what factors really trigger the process.
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Another “dogma” also has been revised recently. It is no longer 
believed that only primary mesenchymal cells such as fibroblasts 
or smooth muscle cells can contribute to fibrosis in CD (1). 
Cells that contribute to fibrosis in CD patients may also derive 
from intestinal epithelial cells via a process called epithelial-to-
mesenchymal transition (EMT) (1, 2, 8, 9) or from endothelial 
cells via endothelial-to-mesenchymal transition (EndoMT) (10).

A third important new aspect in the discussion is the assump-
tion that fibrosis in CD may not be irreversible (11, 12). After stric-
tureplasty in patients with CD suffering from clinical strictures the 
fibrosis in the gut wall was later on found to be reduced or even 
completely absent (13). Reversibility of fibrosis had been demon-
strated before in other fibrotic diseases such as liver fibrosis (14).

Intestinal fibrosis subsequently is neither necessarily a very 
slow process nor completely dependent on the presence of inflam-
mation, nor irreversible (1, 2, 9, 12, 15). Therefore, it appears to 
be important to review the cellular and molecular factors that 
contribute to fibrogenesis in CD.

FACTORS ACTivATinG MATRiX-
PRODUCinG CeLLS

Matrix-producing cells are activated by paracrine signals, auto-
crine factors, and pathogen-associated molecular patterns derived 
from microorganisms or damage-associated molecular patterns 
that interact with pattern recognition receptors (1, 2, 12, 15). 
Transforming growth factor β (TGF-β) is an important mediator 
of mesenchymal cell activation. Its important role as a central 
regulator of fibrosis has been emphasized for many tissues and 
diseases (16–24). TGF-β expression is found to be upre gulated 
in inflamed mucosa of inflammatory bowel disease patients 
(25–28). In addition, also inhibitory molecules of TGF-β action 
such as SMAD7 are upregulated in CD mucosa (29, 30). Recent 
therapeutic approaches now target SMAD7 expression by an 
antisense oligonucleotide (Mongersen) to allow more TGF-β 
action mainly of regulatory T-cells (31). It will be interesting to 
see whether a parallel activation of mesenchymal cells can be 
prevented (32). Data on mesenchymal cell activation and collagen 
deposition derived from clinical trials that are under way with 
Mongersen will help us to understand which role TGF-β plays 
for the activation of mesenchymal cells, for the initiation of EMT  
or EndoMT and for gut wall fibrosis in CD patients.

Other factors that play an important role in activating mes-
enchymal cells are activins (33), connective tissue growth factor 
(34–36), platelet-derived growth factor, insulin-like growth 
factor (IGF-1, -2), epidermal growth factor, and endothelins 
(ET-1, -2, -3) (2, 12, 15). All of those factors increase collagen 
synthesis by mesenchymal cells upon stimulation (2, 12, 15). 
The relative contribution of the respective factors and whether 
synergies are developed is unclear. Therefore, it is also unclear 
whether targeting one of those factors in an anti-fibrotic thera-
peutic approach would make sense (1).

Besides those specific factors inflammation per se is a strong 
activator of mesenchymal cells and also contributes to EMT and 
EndoMD (1, 8). Therefore, it has been assumed by many authors 
that control of inflammation would prevent the development 

of gut wall fibrosis. This seems to be questionable now. Recent 
epidemiological data indicate that biologicals have reduced the 
number of surgeries performed due to insufficient control of 
inflammation. However, despite effective and much better control 
of inflammation the development of CD in general from a B1 phe-
notype (only inflammatory) to a B2 (fibrotic) or B3 (pene trating) 
phenotype seems not to be significantly reduced (37, 38). This 
raises the important questions whether inflammatory mediators 
and molecules trigger the fibrotic process early and whether  
this process finally becomes independent from inflammation. If 
this would be the case—and there is quite some evidence to sup-
port this assumption—the development of anti-fibrotic therapies 
would be absolutely mandatory. If we cannot interfere with the 
progression of fibrosis in a significant number of patients with 
our current therapeutic armamentarium, the need for new drug 
development becomes obvious.

AniMAL MODeLS TO STUDY FiBROSiS-
PROMOTinG FACTORS AnD  
POTenTiAL THeRAPieS

Several animal models for the study of intestinal fibrosis have 
been proposed and described (1). All of them have some advan-
tages as well as disadvantages and none of them really resembles 
intestinal fibrosis of CD patients. Spontaneous intestinal fibrosis 
does not occur in rodent models, and therefore all models require 
some manipulation and artificial conditions.

The first models used to study intestinal fibrosis were models 
in which colonic inflammation was chemically induced, such as 
the trinitrobenzene-sulfonic acid (TNBS) and chronic dextran 
sodium sulfate (DSS) colitis in mice (1). Some collagen deposi-
tion and fibrosis is observed in these models. However, fibrosis 
is usually inconsistent, and the experimental duration until the 
occurrence of fibrosis limits the applicability of the mentioned 
mouse models. In addition, the contribution of the chemical 
trigger of the inflammation (TNBS or DSS) raises some concerns 
with respect to pathophysiological relevance. Similar to those 
chemically triggered models, the injection of the bacterial wall-
derived compound peptidoglycan–polysaccharide into the gut 
wall induces inflammation and fibrosis (39). While this model 
is an example for fibrosis triggered by microbial products, it is 
unclear whether bacteria play an essential role in CD fibrosis. The 
SAMP1/Yit mouse was reported to develop spontaneous inflam-
mation with ileitis and fibrosis (40, 41). However, the access to 
this model is limited, and the extent of fibrosis seems to depend 
on the vivarium the mice are bred in.

To be able to study therapeutic interventions with the target 
of inhibiting intestinal fibrosis we established a new—but still 
very artificial model. For the study of bronchiolitis obliterans 
and bronchial fibrosis, pulmonologists had developed a hetero-
topic transplant model of trachea in rats (42). We adopted this 
model and investigated whether the heterotopic transplanta-
tion of small intestine into the neck fold of rats would also be 
followed by the development of fibrosis. Indeed, we detected 
a rapid fibrosis of the small intestinal wall occurring within 
2 weeks (43). This was associated with increased expression of 
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FiGURe 1 | Heterotopic transplantation, revascularization, and luminal occlusion of the graft. (A) Small bowel resections are extracted from C57BL/6 mice. 
(B) For isogeneic transplantation, the resection (arrow) is implanted into subcutaneous tissue in the neck of C57BL/6 mice. (C) The graft is freed from the pouch  
and harvested from the neck of the recipient 14 days posttransplantation. (D–F) Grafts in the neck of recipient animals observed in situ present a decreased  
length but are otherwise macroscopically intact. Blood vessels from the surrounding tissue stretch toward the graft where they form a dense network (twofold 
magnification). (G) Histologic cross sections of freshly isolated small intestine (day 0). Small bowel resections are extracted from C57BL/6 mice, implanted into 
C57BL/6 mice for isogeneic transplantation, and explanted at (H) day 2, (i) day 6, and (J) day 14 after transplantation. Transmitted light microscopy, H&E staining. 
Grafts revealed luminal occlusion.
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typical mediators of fibrosis such as αvβ6 integrin, IL-13, and 
TGF-β (43). Further, we detected a loss of intestinal epithelium 
morphology, could demonstrate exaggerated collagen deposi-
tion, which led to luminal wall thickening culminating in a 
veritable fibrotic occlusion of the intestinal lumen (43). As the 
available reagents to study fibrosis in rats are limited and it was 
desirably to study certain knockout or transgenic animal models 
we investigated whether the heterotopic transplant model also 
would work in mice (Figures  1A–C). As expected, we found 
a similar time course of development of fibrosis in the mouse 
model (44). C57BL/6 mice are used as donors for isogeneic trans-
plantation into C57BL/6 recipients in this model. Interestingly, 
a rapid revascularization occurs in the intestinal grafts in the 
neck fold (Figures  1D–F). In small intestinal grafts isolated 
up to 21 days after transplantation, the lumen was obstructed 
by granulation tissue and fibrotic material (Figures 1G–J and 
(44)). The grafts partially had lost their typical crypt structure 
which in some specimen occurred already at day 2 after trans-
plantation indicating that hypoxia may have an important role 
for this development. Collagen layer thickness was observed to 
be significantly increased in grafts in a time-dependent manner 
[Figures 2A,B; (44)]. Confirmatively, Tgf-β and collagen mRNA 
was observed to be significantly increased in a time-dependent 
manner [Figures 2C–E; (44)].

We used this newly developed model to study established anti-
fibrotic drugs and their effect on the development of fibrosis (44). 
Pirfenidone so far is the best established therapy for idiopathic 
lung fibrosis (45–47). When we applied pirfenidone three times 
a day for 6 days by oral gavage, we found that the collagen layer 
was significantly decreased in comparison to the collagen layer 
thickness in grafts from vehicle treated mice (44). Similar, TGF-β 
mRNA expression was significantly decreased upon pirfenidone 
treatment compared to vehicle (44).

FACTORS invOLveD in TiSSUe 
ReMODeLinG

Additional factors involved in intestinal fibrosis that have not 
been discussed so far regulate the turnover of the ECM (2, 12, 
15, 48). It is generally assumed that in normal tissue, i.e., in the 
normal intestinal wall there is a fine balance between ECM pro-
duction and degradation (1). This balance is maintained on one 
hand by matrix metalloproteinases (MMPs) that break down and 
degrade ECM, and on the other hand tissue inhibitors of matrix 
metalloproteinases (TIMPs) that counteract this degrading activ-
ity. Under pathophysiologic conditions, when ECM production is 
increased and surpasses degradation intestinal fibrosis will occur. 
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FiGURe 2 | Collagen layer thickness and Tgf-β, Col1a1, and Col3a1 mRNA are significantly increased in grafts from the heterotopic transplantation model in  
a time-dependent manner. Small bowel resections are extracted from RAG2 knockout mice and implanted into RAG2 knockout mice for isogeneic heterotopic 
transplantations. (A) Sirius Red staining. Transmission light microscopy and polarized light microscopy. (B) Collagen layer thickness measurement using  
transmission light microscopy confirmed significantly increased collagen layer thickness in a time-dependent manner (**p < 0.01, ***p < 0.001, ANOVA,  
Dunn’s multiple comparison test). Thickness was calculated from at least eight places in representative areas at 10-fold magnification for each single graft.  
(C) Tgf-β qPCR. (D) Col1a1. (e) Col1a3. *p < 0.05, ***p < 0.001, Kruskal–Wallis test, Dunn’s multiple comparison test.
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In human, CD strictures increased expression of MMPs, and also 
TIMPs has been observed. However, it is difficult of course to 
functionally investigate the balance and dynamics between the 
different pro-degrading and degradation-inhibiting proteins and 
mechanisms.

Further functions of MMP-9 include the regulation of cell 
migration, invasion, cell signaling as well as induction and regu-
lation of EMT in multiple tissues (49–51). In fact, MMP-9 is the 
most abundantly expressed tissue degrading and remodeling pro-
tease in inflamed CD tissue (52). In biopsies from CD patients, 
MMP-9 was found as latent (pro-) and mature form (53). Further, 
serum and urinary levels of MMP-9 correlate with disease activity 
in CD patients. It has been suggested that MMP-9 serum levels 
could be a useful marker of CD disease activity in children. In 
DSS colitis in mice, targeted deletion of MMP-9 has a protective 
effect, whereas mice overexpressing MMP-9 develop more severe 
colitis (53).

As MMPs are obviously involved in intestinal fibrosis, we 
determined the expression of tissue remodeling proteases MMP-
2, -9, -13, and TIMP-1 in our heterotopic transplant model by 
real-time PCR. When mice were treated with pirfenidone, a sig-
nificant decrease in MMP-9 mRNA expression was observed (44).  

Similar, MMP-2, -13, and TIMP-1 mRNA expression was decreased  
upon pirfenidone (44).

Further, we investigated, whether the therapeutic neutra-
lization of MMP-9 by specific antibodies would alter the 
development of fibrosis in the heterotopic transplant model. 
When we treated mice in our model with two different anti-
MMP-9 antibodies, the lumen of the intestinal grafts was only  
partially obstructed, and some crypt structures were still pre-
sent (53). Whereas the collagen layer was much thicker in grafts  
harvested from the isotype control-treated group, grafts har-
vested from anti-MMP-9 antibody-treated mice showed almost 
“normal” collagen layer thickness (53). Treatment with the two 
anti-MMP-9 antibodies was followed by lower accumulation 
of newly synthesized collagen, significantly thinner collagen 
layer, and lower collagen-specific amino acid hydro xyproline. 
Expression of MMP-9 and TIMP-1 were not significantly 
changed by the MMP-9 antibody treatment (53). When we 
assessed gelatinase activity in homogenates from our grafts 
by zymography and by ELISA, all day-14 explants exhibited 
increased total MMP-9, and the MMP-9 antibody treatment 
was followed by some reduction of MMP-9 activity in the 
explants (53).
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SUMMARY

We have just started to more specifically understand the factors 
and pathways that lead to intestinal fibrosis. This is necessary to 
address the high clinical need of focused treatment of fibrosis in 
CD patients. New animal models may be helpful to screen for 
successful therapies. In some models, such as the heterotopic 
transplant model of small intestinal segments, pirfenidone and 
anti-MMP-9 antibodies have provided promising results. Further 
studies will be necessary to confirm these results and to find 
additional factors promoting development of fibrosis in CD.
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