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Eosinophils are typically considered to be specialized effector cells that are recruited to 
the tissues as a result of T helper type 2 (Th2) cell responses associated with helminth 
infections or allergic diseases such as asthma. Once at the site of injury, eosinophils 
release their cytotoxic granule proteins as well as preformed cytokines and lipid medi-
ators, contributing to parasite destruction but also to exacerbation of inflammation 
and tissue damage. Accumulating evidence indicates that, besides their roles in Th2 
responses, eosinophils also regulate homeostatic processes at steady state, thereby 
challenging the exclusive paradigm of the eosinophil as a destructive and inflammatory 
cell. Indeed, under baseline conditions, eosinophils rapidly leave the bloodstream to 
enter tissues, mainly the gastrointestinal tract, lungs, adipose tissue, thymus, uterus, 
and mammary glands, where they regulate a variety of important biological functions, 
such as immunoregulation, control of glucose homeostasis, protection against obesity, 
regulation of mammary gland development, and preparation of the uterus for pregnancy. 
This article provides an overview of the characteristics and functions of these homeo-
static eosinophils.
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inTRODUCTiOn

Eosinophils have long been perceived as terminally differentiated cytotoxic and destructive cells 
that play an effector role mainly in helminthic infections and allergic reactions, such as asthma 
(1). However, several recent studies have challenged the simplistic view of eosinophils as being 
exclusively involved in parasite destruction and allergic inflammation. Indeed, at steady state, blood 
eosinophils rapidly migrate into the gastrointestinal tract, lungs, adipose tissue, thymus, uterus, and 
mammary glands, where they are now known to exert a variety of essential homeostatic functions  
(2, 3). In this Mini Review, we summarize the advances in our understanding of the biology (distribu-
tion, phenotypic and morphological features, and ontogeny) and functions of these homeostatic 
eosinophils (hEos).

DiSTRiBUTiOn OF heos

In both humans and mice, most hEos are found in the non-esophageal portions of the gastro-
intestinal tract, where they principally reside in the lamina propria of the small intestine (4–7). 
Depending on the bibliographic source, the numbers of hEos in the gastrointestinal tract of mice 
are estimated to be 1.5- to 10-fold higher than in the blood (i.e., ranging from 3 × 105 to 2 × 106 
cells) (8, 9). Pulmonary hEos are located in the lung parenchyma of both humans and mice (10). In 
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C57BL/6 mice, the numbers of lung hEos exceed 4 × 105, which 
corresponds to two times the numbers of eosinophils present in 
the entire circulation (10). In the adipose tissue of mice, hEos 
account for 4–5% of the stromal/vascular fraction cells (11). In 
the other organs, hEos reside only transiently (8, 12–16). In mice, 
the numbers of thymic hEos increase drastically after birth to 
reach a peak at 2 weeks of age (15). Their numbers then diminish 
significantly but rise again at 16 weeks when thymic involution 
starts (15). During the first recruitment phase, hEos concentrate 
in the cortico-medullary region of the thymus, whereas they are 
more prominent in the medulla at latter time points (15). It is 
noteworthy that, in humans, hEos seem to be already present in 
the thymus of fetuses (14). In rodents, infiltration of the uterus by 
hEos coincides with the estrus cycle (12, 13). Numerous hEos are 
indeed observed in the uterus just prior to estrus, during estrus 
and 1 day postestrus, whereas only few hEos are present during 
diestrus (12, 13). The vast majority of these cells are located in the 
endometrium adjacent to the muscular layer (16). In mice, hEos 
also home to the mammary gland during postnatal development 
(17). Mammary hEos are principally found around the growing 
terminal end buds from 3 weeks until 8 weeks of age (17).

In vivo studies in humans and mice have shown that eosino-
phils spend only a short time (i.e., half-life between 3 and 24 h) in 
the circulation (8, 18, 19). By contrast, hEos remain for a longer 
time in the tissues. Indeed, their half-life is about 36  h in the 
lung and up to 6 days in the intestines, thymus, and uterus (8) 
(Figure 1). The longevity of tissue hEos seems to correlate with 
CD11c expression. Indeed, while intestine, uterus, and thymus 
hEos express CD11c, lung, and blood hEos do not express this 
marker (8, 10) (Figure 1).

Time-course studies in mice have revealed that hEos are not 
present in the lung at birth but gradually increase in numbers 
to reach a maximal density by day 7 (10). This observation sug-
gests a link between the colonization of the lung by hEos and 
the development of the microbiota. Paradoxically, however, hEos 
recruitment to the gastrointestinal tract seems to be independent 
of the bacterial flora. Indeed, prenatal mice have detectable hEos 
in their intestines, and germ-free mice display hEos levels similar 
to those of control colonized mice (5).

The basal recruitment of hEos to tissues is mainly driven by 
eotaxin-1 (CCL11), a chemokine produced by local cells such 
as epithelial cells, endothelial cells, fibroblasts, and monocytes 
(20–23). Correspondingly, hEos numbers are drastically 
reduced in the gastrointestinal tract, thymus, and uterus of 
eotaxin-1-deficient mice (5, 16, 24). Loss of CCR3, the major 
eotaxin-1 receptor (25, 26), results in defective tissue homing 
of hEos to the intestines but has no effect on the numbers of 
lung and thymus hEos (27), which likely relates to the fact that 
eotaxin-1 may act through alternative receptors such as CCR5 
(28). Interleukin (IL)-5 and IL-13, two T helper type 2 (Th2) 
cytokines, may also promote, although to a lesser extent than 
eotaxin-1, trafficking of hEos under normal conditions (3, 5). 
IL-13 enhances eotaxin-1 production (29), while IL-5 supports 
eosinophil generation from bone marrow progenitors, enhances 
their sensitivity to eotaxin-1, and sustains their survival (30–32). 
It has been recently shown that the major source of basal IL-5 
and IL-13 in the gastrointestinal tract and the adipose tissue are 

type 2 innate lymphoid cells (ILC2s) (29, 33). Moreover, after 
food intake, the vasoactive intestinal peptide stimulates intesti-
nal ILC2 to enhance their secretion of IL-5 and IL-13, linking 
eosinophil levels with metabolic cycling (29).

MORPHOLOGiCAL AnD PHenOTYPiC 
FeATUReS OF heos

hEos have been mainly characterized in mice. They display most 
of the typical features of eosinophils, including red staining gran-
ules containing toxic cationic proteins (e.g., major basic proteins) 
and combined expression of CCR3, Siglec-F, and CD125 (i.e., the 
subunit α of the IL-5 receptor) (8, 9, 34) (Figure 1). They may also 
express CD11b (intestines, thymus, and adipose tissue), F4/80 
(mammary glands, lung, and adipose tissue), CD69 (intestines 
and thymus), and CD44 (intestines and thymus) (6, 8, 10, 11, 15, 
17, 35). In addition, most tissue hEos have a segmented nucleus 
and express CD11c (8, 13, 15, 16, 24, 35). Lung hEos represent an 
exception and rather resemble resting blood eosinophils. Indeed, 
both blood and lung eosinophils have a ring-shaped nucleus 
(as is the case for mammary hEos as well), express CD62L, 
display only intermediate levels of Siglec-F, and are negative for 
CD11c (8, 10, 17, 36, 37) (Figure 1). In mouse eosinophils, such 
characteristics, especially the presence of a ring-shaped nucleus, 
are considered a sign of cell immaturity (38, 39), suggesting 
that pulmonary hEos retain an immature phenotype when 
spreading into the lungs. However, they undergo piecemeal 
degranulation and are capable of phagocytosis, demonstrating 
their functionality (10). Interestingly, the number, localization, 
and morphological, phenotypic, and transcriptomic features of 
lung hEos remain unchanged, and differ from those of inflam-
matory eosinophils (iEos), during allergic airway inflammation 
(10). iEos, which are abundantly recruited to the lung during 
airway allergy, are indeed defined as SiglecFhiCD62L−CD101hi 
cells with a segmented nucleus (CD101 being an iEos marker 
that is not expressed by lung hEos) (10). These observations 
suggest that hEos and iEos represent distinct eosinophil subsets. 
In line with this hypothesis, hEos- and iEos-like eosinophils are 
present in the blood of asthmatic mice (10), indicating that the 
differentiation of both subsets occurs even before their recruit-
ment to the tissues. Furthermore, the parenchymal hEos found 
in non-asthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) 
are phenotypically distinct from the iEos isolated from the sputa 
of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi 
cells), confirming the mouse findings (10).

ORiGin OF heos

Eosinophil development depends on a complex interplay of 
several transcription factors, including GATA-binding pro-
tein-1 (GATA-1), CCAAT/enhancer-binding protein-α and -ε  
(C/EBP-α and -ε), E26 family transcription factor PU.1 (PU.1), 
and X-box-binding protein-1 (1, 3, 40–42). Among these tran-
scription factors, GATA-1 is the most selective, as attested by 
the fact that ΔdblGATA mice, in which the double palindromic 
GATA-1-binding site in the Gata1 promoter has been genetically 
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FiGURe 1 | Schematic overview of the origin, interleukin (IL)-5 dependence, phenotype, and functions of homeostatic eosinophils (hEos) in mice. hEos are 
produced in the bone marrow from the EoP precursor independently of IL-5. Conversely, inflammatory eosinophils (iEos) require IL-5 for their production. hEos are 
uniformly characterized by expression of Siglec-F, F4/80, CD125, and CCR3. hEos transit through the blood circulation to home into tissues at baseline. Blood hEos 
have a ring-shaped nucleus and express CD62L, while iEos have a segmented nucleus and do not express CD62L but express CD101. hEos homing to the tissues 
is either dependent (dark red) or independent (white) on IL-5. The IL-5-(in)dependence of thymic and mammary gland hEos remains unknown. Tissue hEos display 
distinct phenotype, half-life (T1/2), and homeostatic functions. The surface phenotype depicted shows whether hEos express (colored symbols) or do not express 
(white symbols) the indicated surface markers. When marker expression is undefined, the symbol is not present. The function described in italic has been 
suggested, but a clear demonstration is still lacking. h, hours.
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deleted, specifically lack eosinophils, including blood and tissue 
hEos (7, 10, 11, 36, 43). IL-5, which is the most specific cytokine 
for the eosinophil lineage, is dispensable for the steady-state 
production of eosinophils. Indeed, the basal numbers of blood 
eosinophils are only moderately reduced in IL-5-deficient mice, 
which are, however, unable to develop eosinophilia in the context 
of a Th2 response (44). Interestingly, recruitment of hEos to the 
tissues is independent (lungs), partly dependent (gastrointestinal 
tract and uterus), or entirely dependent (adipose tissue) on local 
IL-5 production (5, 10, 33, 44, 45) (Figure 1). Given that IL-5 
enhances eosinophil survival following migration into the tis-
sues, and that hEos that partly depend on IL-5 (gastrointestinal 
tract and uterus) have a higher half-life (see Distribution of hEos) 
than the IL-5-independent ones (lungs), one may speculate that 
the longevity of tissue hEos is directly linked to their dependence 
on IL-5. All these observations, if applicable to humans, could 

also explain why residual eosinophils are found in the blood and 
lungs of patients treated with anti-α-IL-5 antibodies (46–48).

FUnCTiOnS OF heos

Depending on the type of tissue they infiltrate, hEos are fulfilling 
completely different tasks, suggesting the local environment is 
able to drive hEos functions according to its specific needs. Here, 
we will review the tissue-specific homeostatic functions of hEos, 
also summarized in Figure 1.

Gastrointestinal Tract
Small intestinal hEos are now considered as actively contribut-
ing to intestinal homeostasis, allowing the host to cope with 
the constant and intense exposition to potentially pathogenic 
microorganisms and foreign and food antigens. In two 
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independent studies, hEos have been shown to be required for 
the development and maintenance of immunoglobulin (Ig)
A-producing plasma cells (7, 35), concordant with the function 
of bone marrow eosinophils in supporting plasma cell survival 
(49). They also promote class switching toward secretory IgA, 
components involved in the neutralization and regulation 
of intestinal microorganisms (7, 35). In addition, eosinophil 
deficiency has been associated with altered gut microbiota 
composition (7, 35), altered development of Peyer’s patches, and 
decreased mucus production in the small intestine (35), as well as 
increased numbers of Th17 cells (50) and decreased numbers of 
regulatory T cells and dendritic cells in gut-associated tissues (7).  
In vitro, Chen and colleagues have shown that small intestinal 
hEos are able to induce differentiation of naive T cells into Foxp3+ 
regulatory T cells through IL-1β- and retinoic acid-dependent 
mechanisms (51). More recently, small intestinal hEos have also 
been shown to suppress the in vitro differentiation of Th17 cells 
and intestinal T cell-derived IL-17 production by secreting large 
amounts of the IL-1 receptor antagonist IL-1Rα (50). Altogether, 
these findings are concordant with the idea that small intestinal 
hEos contribute to intestinal homeostasis by regulating adaptive 
humoral IgA responses and cellular T cell responses.

Adipose Tissue
Eosinophils have been emerging as central regulators of adipose 
tissue metabolism and metabolic health. In adipose tissues, hEos 
are present together with alternatively activated macrophages 
(AAMs), and such hEos produce IL-4, thereby favoring the 
polarization of adipose macrophages toward the alternatively 
activated phenotype (11). AAMs play a crucial role in glucose 
homeostasis and development of beige fat, which improves 
glucose tolerance, insulin reactivity, and, hence, protects against 
obesity (11, 52, 53). In the absence of adipose hEos, AAMs are 
greatly reduced and biogenesis of beige fat is impaired (11, 54). 
Moreover, eosinophil-deficient mice on high-fat diet develop 
obesity, insulin resistance, and impaired glucose tolerance (11). 
Conversely, wild-type mice on a high-fat diet but infected with 
the gastrointestinal nematode Nippostrongylus brasiliensis, which 
triggered a greater eosinophil recruitment in the adipose tissues, 
exhibit a long-lasting improved sensitivity to insulin and glucose 
tolerance (11).

This important hEos/macrophage axis is regulated by ILC2s, 
which sustain adipose hEos and AAMs (33), and is promoted by 
microbiota depletion (55) and caloric restriction (56).

Uterus
It is known for decades that hEos infiltrate the non-pregnant 
uterus of rodents and humans in a cyclic manner, with a peak 
during estrus (13, 57, 58), but few studies have assessed their 
potential contribution to the physiology of uterus and to repro-
ductive functions. Gouon-Evans and Pollard examined eotaxin-
deficient animals, in which recruitment of hEos to the uterus 
was impaired, and found a delay in the establishment of the first 
estrus cycle along with the first age of parturition in those animals 
compared to wild-type controls (16). While these observations 
point toward a potential role for hEos in preparing the uterus for 
pregnancy (16), they must be balanced by the fact that the timing 

of establishment of subsequent estrus cycles in mature mice is not 
affected by the absence of eosinophils (16). Most importantly, no 
fertility issues have been reported in constitutively eosinophil-
deficient mice (36, 59), demonstrating that hEos are not essential 
for normal reproduction.

Thymus
The presence of thymic hEos in the close vicinity of immature 
double-negative thymocytes and their abundance in neonates 
suggest that they may contribute to the process of central toler-
ance and negative T-cell selection (15). Supporting this, thymic 
hEos numbers rapidly increase and hEos cluster with apoptotic 
bodies in an acute model of MHC-I-dependent negative selec-
tion (15). Another report proposes that hEos may contribute 
to the clearance of apoptotic cells, as eosinophil-deficient mice 
subjected to irradiation-induced thymocyte death are impaired 
in their ability to phagocyte apoptotic cells (43). However, the 
definitive proof of a homeostatic role for thymic eosinophils in 
the process of negative T-cell selection is currently lacking.

Mammary Gland
A role for eosinophils in regulating postnatal mammary gland 
development has been proposed in mice (17). Indeed, ablation 
of hEos recruitment to the mammary glands in eotaxin-deficient 
animals resulted in a reduced number of branches of the mam-
mary ductal tree and of terminal end buds (i.e., the precursors 
of alveolar buds) (17). A similar phenotype was observed in the 
mammary tissue of IL-5-deficient mice as compared to the one 
from wild-type mice, although the specific contribution of IL-5 
itself vs. IL-5-dependent eosinophils has not been assessed in this 
model (60). Nevertheless, such IL-5-mediated developmental 
events appear to have functional consequences, as IL-5-deficient 
nursing dams gave rise to decreased litter size and weanling 
survival, a phenomenon rescued when IL-5-deficient pups were 
nursed by IL-5-sufficient dams (60).

Lungs
Microarray analyses revealed that lung hEos, unlike lung iEos, 
express several genes, such as Anxa1, Nedd4, Runx3, Serpinb1a, 
and Ldlr, that are implicated in the maintenance of lung immune 
homeostasis, and especially in the negative regulation of Th2 cell 
responses (10). In line with this observation, eosinophil-deficient 
ΔdblGATA mice exhibit increased sensitivity to house dust mites 
(10), confirming that lung hEos are endowed with the capacity 
to prevent Th2-driven airway allergy. This immunosuppressive 
function of lung hEos is linked to their unique ability to inhibit 
the maturation, and therefore the pro-Th2 function, of allergen-
loaded dendritic cells (10).

COnCLUSiOn

Although hEos are far from being fully characterized, it is fas-
cinating to see how fast our understanding of the complexity of 
their phenotype and functions is growing. The fact that these 
cells exert crucial homeostatic roles at multiple levels merits 
further investigations and is of medical importance. Indeed, anti-
eotaxin-1 and eosinophil-depleting agents, such as humanized 
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anti-IL-5 receptor antibodies and anti-Siglec-8 molecules, are 
currently being developed to treat eosinophilic disorders such 
as allergic asthma (9, 61–66), and one has to keep in mind the 
possibility that such drugs may disrupt tissue homeostasis by 
preventing organ-specific homing of hEos or by affecting their 
survival or functions.
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