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System on Hemorrhage
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Research Division, Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States

The contact activation system (CAS) exerts effects on coagulation via multiple mecha-
nisms, which modulate both the intrinsic and extrinsic coagulation cascades as well as 
fibrinolysis and platelet activation. While the effects of the CAS on blood coagulation mea-
sured as activated partial thromboplastin time shortening are well documented, genetic 
mutations that result in deficiencies in the expression of either plasma prekallikrein (PPK) 
or factor XII (FXII) are not associated with spontaneous bleeding or increased bleeding 
risk during surgery. Deficiencies in these proteins are often undiagnosed for decades 
and detected later in life during routine coagulation assays without an apparent clinical 
phenotype. Increased interest in the CAS as a potentially safe target for antithrombotic 
therapies has emerged, in large part, from studies on animal models with provoked 
thrombosis, which have shown that deficiencies in PPK or FXII can reduce thrombus 
formation without increasing bleeding. Gene targeting and pharmacological studies in 
healthy animals have confirmed that PPK and FXII blockade does not cause coagulop-
athies. These findings support the conclusion that CAS is not required for hemostasis. 
However, while deficiencies in FXII and PPK do not significantly affect bleeding asso-
ciated with peripheral wounds, recent reports have demonstrated that these proteins 
can promote hemorrhage in the retina and brain. Intravitreal injection of plasma kallikrein 
(PKal) induces retinal hemorrhage and intracerebral injection of PKal increases intra-
cranial bleeding. PPK deficiency and PKal inhibition ameliorates hematoma formation 
following cerebrovascular injury in diabetic animals. Moreover, both PPK and FXII defi-
ciency are protective against intracerebral hemorrhage caused by tissue plasminogen 
activator-mediated thrombolytic therapy in mice with thrombotic middle cerebral artery 
occlusion. Thus, while the CAS is not required for hemostasis, its inhibition may provide 
an opportunity to reduce hemorrhage in the retina and brain. Characterization of the 
mechanisms and potential clinical implications associated with the effects of the CAS on 
hemorrhage requires further consideration of the effects of PPK and FXII on hemorrhage 
beyond their putative effects on coagulation cascades. Here, we review the experimental 
and clinical evidence on the effects of the CAS on bleeding and hemostatic mechanisms.

Keywords: kallikrein–kinin system, hemorrhage, hemostasis, factor Xii, plasma kallikrein, contact activation 
system, coagulation

iNTRODUCTiON

The contact activation system (CAS) represents a group of plasma proteins, including factor XII 
(FXII), plasma prekallikrein (PPK), and high molecular weight kininogen (HK) that promotes 
inflammation and coagulation upon contact of blood with an activating surface or protease (1, 2). 
CAS activation is initiated by interactions of FXII with a negatively charged surface or a protease 
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FiGURe 1 | The contact activation system has multiple effects on 
coagulation, hemorrhage, and fibrinolysis. Exogenous tPA activates 
plasminogen and thereby mediated both plasmin-mediated fibrinolysis and 
activation of factor XII (FXII). FXIIa mediates its procoagulant effects by 
cleaving factor XI (FXI) into FXIa, which leads to the generation of thrombin. 
FXIIa also cleaves PPK into PKal, which exerts a combination of effect on 
thrombosis, fibrinolysis, and hemorrhage. PKal’s effects on hemorrhage have 
been attributed to its direct and indirect effects on collagen cleavage. In 
addition, PKal can also interferes with collagen-induced platelet activation, 
which can impair hemostasis. Activation of the kallikrein–kinin system 
generates bradykinin, which stimulates expression of both TF and tPA. 
Abbreviations: HK, high molecular weight kininogen; PPK, plasma 
prekallikrein; PKal, plasma kallikrein; BK, bradykinin; ECM, extracellular 
matrix; tPA, tissue plasminogen activator; TF, tissue factor.
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that induces a conformational change in FXII leading to its pro-
teolytic cleavage and the generation of the serine protease FXIIa 
(3, 4). The two primary substrates for FXIIa are PPK and factor 
XI (FXI). FXIIa-mediated cleavage of PPK results in its zymogen 
activation to the serine protease plasma kallikrein (PKal), which 
converts FXII to FXIIa and thereby provides positive feedback 
amplification of the CAS. The effects of the CAS on inflammation, 
vascular permeability, and edema are primarily attributed to the 
Kallikrein–Kinin System. This system involves PKal-mediated 
cleavage of HK to generate the nonapeptide hormone bradykinin 
(BK), which activates B2 receptors (B2R) that are expressed on 
a variety of vascular, neuronal, and immune cell types. Binding 
of BK to B2R activates proinflammatory signaling pathways that 
dilate vessels, induce chemotaxis of neutrophils, and increase vas-
cular permeability (5, 6). C1-inhibitor (C1-INH) is the primary 
physiological inhibitor of both FXIIa and PKal, and C1-INH defi-
ciency facilities CAS activation and BK-mediated angioedema 
(7). Both PKal and the B2R are clinically significant mediators 
of hereditary angioedema (HAE) (8, 9). In addition to its effects 
on inflammation and vascular permeability, BK has been shown 
to induce expression of both tissue factor (TF) and tissue plasmi-
nogen activator (tPA), which activates the extrinsic coagulation 
pathway and fibrinolysis, respectively (10–13) (Figure 1).

The acute effects of the CAS on coagulation have been 
pri marily attributed to FXIIa-mediated activation of FXI and 
thereby the intrinsic coagulation pathway leading to fibrin 

generation. Although the biochemical roles of PKal and FXIIa as 
upstream triggers for the intrinsic coagulation system were rec-
ognized over 50 years ago (14), the clinical significance of these 
factors on thrombosis and hemorrhage is not fully understood. 
It is well documented that CAS blockade results in prolonged 
coagulation times in the activated partial thromboplastin time 
(aPTT) assay (15). The absence of thrombotic and hemostatic 
abnormalities in individuals with genetic PPK or FXII deficiency 
has suggested that the CAS plays a minimal role in physiological 
coagulation. However, information from rare case studies of 
individuals with deficiencies in individual components of the 
CAS has provided limited insight into the potential clinical sig-
nificance of PKal and FXIIa in coagulation in specific diseases. 
This is further complicated by the interpretation of acquired and 
mild CAS component deficiencies, which may reflect the activa-
tion of the system rather than its suppression. Key observation 
from studies of humans with genetic FXII and PPK deficiencies 
is the absence of spontaneous bleeding disorders and increased 
bleeding risk during surgery, which are observed in individuals 
with genetic mutations in downstream in the intrinsic pathway, 
such as FIX (hemophilia B) and FXI (hemophilia C). The main 
evidence suggesting that CAS inhibition can reduce pathologi-
cal thrombosis without increasing bleeding has emerged from 
studies using PPK and FXII-deficient animals with acute and 
artificially provoked coagulation (16–20). These clinical and 
experimental findings have generated increased interest in 
the potential therapeutic opportunities of targeting the CAS 
in thrombosis. Indeed the observations of the blockade of the 
CAS results in reduced thrombosis without a concomitant 
increase in bleeding in preclinical studies have suggested that 
therapies that inhibit the CAS may offer novel strategies for safe 
and effective antithrombotics. Moreover, recent studies suggest 
that blockade of the CAS can improve hemostasis in the retina 
and brain. In this review, we discuss emerging understanding 
of the role of CAS on bleeding and hemostasis and the clinical 
implications of this research.

HeMOSTASiS

Hemostasis is the process that prevents blood loss following 
vascular injury. The mechanisms of hemostasis involve both 
serial and parallel events, mediated by the interactions between 
circulating factors in blood with components of activated or 
injured vascular tissue. Given the critical nature of hemostasis, 
the system has evolved both redundant and reinforcing mecha-
nisms that facilitate both rapid and stable cessation of blood 
loss. The sequence of events and the relative contributions and 
requirements of individual coagulation components may vary 
according to the affected tissue and type of injury, and possibly 
also the animal species. While thrombosis and hemostasis share 
a host of coagulation factors, the etiology of these processes has 
important distinctions, which may create therapeutic opportuni-
ties to selectively target thrombosis without affecting hemostasis.

Although animal models do not fully recapitulate the com-
plexity of human physiology and disease, studies on animals with 
targeted deficiencies in coagulation factors have provided insight 
into contributions of individual components of coagulation in 
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TABLe 1 | Effects of contact activation system inhibition and deficiencies in experimental models.

Condition aPTT Tail bleeding Spontaneous bleeding Species Reference

FXII−/− Prolonged No changes Not reported Mice Renne et al. (16)
FXII−/− Prolonged No changes Not reported Mice Iwaki et al. (22)
Anti-FXII (9A2 and 15H8) Prolonged No changes No Primate Matafonov et al. (23)
FXII ASO Not reported No changes No Mice Revenko et al. (24)
FXII−/− or Infestin-4 Prolonged No changes No Mice Nickel et al. (25)
Infestin-4 Prolonged No changes No Mice Hagedorn et al. (26)
FXII−/− or FXII sRNAi Prolonged No changes No Rat Cai et al. (27)
PPK ASO Not reported No changes No Mice Revenko et al. (24)
Klkb1−/− Prolonged No changes Not reported Mice Liu et al. (17)
PPK ASO Prolonged No changes No Mice Bird et al. (18)
Kng1−/− Prolonged No changes Not reported Mice Merkulov et al. (28)
Bdkrb2−/− Prolonged Prolonged Not reported Mice Shariat-Madar et al. (29)

ASO, antisense oligonucleotide; aPTT, activated partial thromboplastin time; infestin-4 is an FXIIa inhibitor; 9A2 and 15H8 are anti-FXII inhibitory antibodies; FXII, factor XII; PPK, 
plasma prekallikrein.
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hemostatic mechanisms. Multiple approaches are used to quan-
tify hemostatic responses in rodents, including tail tip bleeding, 
cuticle bleeding, and tail vein transection assays. Deficiencies in 
FXII and PPK in healthy animals exert little or no effect on tail 
bleeding time despite aPTT prolongation (Table 1), in contrast to 
prothrombin deficiency, which markedly increases blood loss in 
tail wound models (21).

Deficiencies in downstream factors in the intrinsic cascade 
(such as FIX and FXI) result in bleeding disorders, demon-
strating their role in physiological hemostasis. Paradoxically, 
deficiencies in the CAS factors FXII, PPK, or HK, which trigger 
coagulation in  vitro and contribute to thrombosis in animal 
models, are not associated with a bleeding diathesis. However, 
while surgical interventions provide a general assessment of 
hemostasis, it does not fully model the potential contributions 
of the CAS in all hemorrhagic conditions. Indeed, recent studies 
have suggested that the CAS may play an important role in hem-
orrhage in the retina and brain in certain diseases (17, 20, 30).

effects of Kallikrein–Kinin System on 
Platelet Activation
The initial steps in hemostasis involve vasocontraction and the 
local aggregation of platelets to rapidly restrict bleeding at the site 
of endothelium disruption. Vascular spasm and vasoconstriction, 
which reduces local blood flow, is triggered by factors released 
from vascular smooth muscle, endothelial cells, and platelets, 
and reflexes initiated by the local sympathetic nervous system. 
Platelets adhere via glycoprotein VI (GPVI) receptors to exposed 
basement membrane collagen at the site disrupted endothelium 
to initiate platelet aggregation. This process leads to tethering 
and activation of platelets, additional platelet receptor-collagen 
interactions, and platelet plug formation. GPVI play a critical 
role in normal hemostasis, and its deficiency results in abnormal 
platelet-responses to collagen and mild bleeding tendency (31).

A report by Liu et  al. (17) has shown that PKal inhibits 
collagen-induced platelet aggregation. PKal also interferes with 
platelet aggregation induced by collagen-related peptide, a 
GPVI agonist, but not by convulin; a snake venom toxin that is 
a collagen-independent GPVI agonist. Moreover, PKal does not 
alter either thrombin’s or ADP’s effects on platelet aggregation. 

These findings suggest that PKal’s effects on platelet activation 
were specific to GPVI interactions with collagen. Interestingly, the 
inhibitory effects of PKal on collagen-induced platelet activation 
were not mimicked with PPK, suggesting that the activate form of 
this protein is required for its inhibitory effect. These findings sug-
gest that PKal binding to collagen in the basement membrane at 
the site of endothelium disruption interferes with GPVI-mediated 
platelet activation during initial stages of hemostasis. PKal bind-
ing to collagen and its effects on platelet aggregation are increased 
at elevated glucose concentrations, suggesting that hyperglycemia 
enhances PKal inhibition of collagen-induced platelet aggregation 
and thereby may contribute to hematoma expansion in diabetes. 
Although the mechanism by which glucose increases the bind-
ing of collagen to PKal has not been identified, previous reports 
have suggested that an exposure of collagen to hyperglycemia can 
alter collagen conformation and facilitate protein binding (32). 
Interestingly, hyperosmolar concentrations of mannitol, a treat-
ment commonly used to reduce brain edema following stroke, 
increased hematoma expansion in non-diabetic rats and enhanced 
PKal’s inhibitory effects on collagen-induced platelet aggregation 
in  vitro. These results suggest that plasma osmolality may alter 
PKal’s effects on coagulation. The mechanism of PKal interference 
of collagen-platelet GPVI binding appears analogous to the effects 
of anopheline antiplatelet protein in the saliva of the malaria vec-
tor mosquito, which also interferes with collagen-induced platelet 
activation and hemostasis (33). Further studies are needed to map 
the domain on PKal that binds to collagen and the factors that 
modulate this binding. In addition to altering platelet interac-
tions, PKal binding to collagen may retain this enzyme at the 
site of vascular injury to facilitate its local inflammatory effects. 
In contrast to the inhibitory effects of PKal on hemostasis, FXII 
activation by collagen and laminin in the subendothelial matrix 
can lead to thrombin generation, which may promote secondary 
mechanisms of platelet activation at the site endothelium disrup-
tion (34, 35). Although these findings suggest that the CAS can 
exert both positive and negative effects on platelet activation 
during hemostasis, gene targeting and pharmacological studies 
indicated that blockade of CAS reduces cerebral hemorrhage, 
which is a primary area of concern regarding bleeding in patients 
on antithrombotic therapy.
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effects of Kallikrein–Kinin System on 
Fibrin Formation
Stabilization of the nascent thrombus involves additional coagu-
lation factors that generate and crosslink fibrin, which stabilizes 
nascent platelet plugs. FXIIa-mediated activation of FXI results 
in the activation of the intrinsic coagulation cascade, leading to 
thrombin activation and fibrinogen cleavage and the stabilization 
and expansion of clots. Although FXIIa can serve as a trigger to 
activate the intrinsic pathway from the CAS, positive feedback 
activation of FXI by thrombin can also activate this pathway fol-
lowing extrinsic activation (36–39). Thus, while FXII appears to 
contribute to arterial thrombus formation and growth, at least in 
animal models, FXII does not appear to be required for clot forma-
tion during hemostasis. Activated platelets actively contribute to 
this secondary hemostatic process by generating surface-bound 
polyphosphate nanoparticles (40), which activates FXII and 
thereby promotes local fibrin generation by the clot. Although 
FXII, PPK, or HK deficiency is not associated with bleeding, FXI 
deficiency in patients is associated with mild bleeding, suggesting 
that the role of FXI in hemostasis is independent of the CAS. 
The upstream activation of FXI by thrombin may explain why 
FXII is not required for hemostasis in contrast to FXI, where its 
deficiency is associated with hemophilia C.

Clinical trials and epidemiologic data indicate that FXI con-
tributes to thromboembolic diseases. Studies with animal models 
also suggest that the activation of FXI by FXIIa promotes patho-
logical thrombus formation (41). Furthermore, “exposed” col-
lagen also initiates the contact phase of coagulation by binding to 
FXII and enhances coagulation in vitro (35). The conversion into 
active FXIIa is dependent on repetitive negative charge exposed 
by collagen fibrils (42). van der Meijden and colleagues (43) 
showed that collagen potentiates thrombus formation via binding 
to FXII, leading to its activation and subsequent FXI activation. 
This report suggests a dual role for collagen in thrombin gen-
eration by stimulating platelet activation via GPVI and by direct 
effects on FXII. In addition, FXIa-mediated thrombin activation 
may contribute to clot stability thrombin-activatable fibrinolysis 
inhibitor-mediated removal of lysine residues on fibrin, which 
increases its resistance to fibrinolysis (44). Moreover, FXIa pro-
teolytically degrades and neutralizes TF pathway inhibitor, which 
can promote thrombin generation via the extrinsic pathway (45). 
Recently, Stavrous and colleagues (13) demonstrated that PPK 
deficiency in mice increase prostacyclin through Sirt1 and KLF4, 
which reduced vascular TF expression and thrombosis. Thus, 
while CAS’s effects on both the intrinsic and extrinsic pathways 
contribute to clot stabilization, mechanistic redundancy contrib-
uting to fibrin generation minimizes the requirements of the CAS 
in this process.

eFFeCTS OF PPK, FXii, AND C1-iNH 
DeFiCieNCY ON COAGULATiON iN 
HUMANS

Most reports have indicated that individuals with severe 
deficiencies in either PPK or FXII do not display abnormali-
ties in either thrombosis or bleeding (Table 2), and often go 

undiagnosed for decades without apparent clinical phenotype. 
The absence of a bleeding diathesis in FXII and PPK deficien-
cies appears to contradict the key role of these proteins in 
coagulation via the intrinsic pathway in  vitro, and this has 
left the physiological significance of the CAS in coagulation 
and thrombosis unclear. However, CAS could be a trigger for 
thrombosis associated with extracorporeal circuits (46) and 
cardiopulmonary bypass (47) by exposing blood to artificial 
surfaces, non-physiological shear stress, and osmotic forces. 
Administration of an antibody that neutralizes FXIIa (3F7) has 
been shown to have a similar effect as heparin in preventing 
thrombosis during extracorporeal circuits (48).

Activation of FXII by kaolin (negatively charged aluminum 
silicate particulate) provides the basis for the aPTT, a clinical 
clotting assay, which is widely used to assess the integrity of the 
intrinsic pathway and to monitor anticoagulation with heparin. 
Deficiencies in FXII, PPK, and HK results in markedly prolonged 
aPTT and no increases in spontaneous bleeding or impairment 
in hemostasis (Table  2). Normalization of a severely increased 
aPTT (>120 s) after prolonged preincubation with aPTT reagent 
occurred in plasma deficient in PPK but not in plasma defi-
cient in FXII, HK, FXI, FIX, FVIII, and Passovoy trait plasma  
(a deficiency characterized by abnormal coagulation affecting 
the intrinsic coagulation system) or plasma containing lupus 
anticoagulant. Autoactivation of FXII in PPK-deficient plasma 
in the presence of kaolin paralleled the normalization of aPTT. 
The addition of OT-2, a monoclonal antibody neutralizing FXII, 
prevents the normalization of aPTT (66). These results suggest 
that autoactivation of FXII is responsible for normalization of a 
severely prolonged aPTT upon increased preincubation time in 
PPK-deficient plasma.

In humans, PPK deficiency is not associated with hemo-
static disorders, indicating PKal is not required for hemostasis. 
Although some case reports have associated FXII deficiency with 
prothrombotic events, a clinical study failed to demonstrate a 
significant correlation between increased risk of thrombosis and 
FXII deficiency (78). Girolami and colleagues (79) re-evaluated 
case reports on FXII deficiency and thrombosis. They showed 
that, in most cases, FXII deficiency was associated with other 
congenital or acquired prothrombotic risk factors. While these 
studies indicate that the CAS is not essential for either thrombosis 
or hemostasis, individuals with genetic deficiencies in the CAS 
are rare and it is not possible to ascertain from the anecdotal clini-
cal information whether PKal and FXIIa could have significant 
roles in thrombosis or hemostasis associated with specific clinical 
indications.

C1-inhibitor is the primary endogenous inhibitor of both 
PKal and FXIIa. HAE is a rare genetic disease caused by defi-
ciencies in C1-INH concentration (Type I) or C1-INH activity 
(Type II) (80). HAE has a prevalence of approximately 1:50,000 
and is characterized by episodes of vasogenic edema, which vary 
in severity and affected tissue, and can become life threatening 
when affecting the larynx. The primary mechanism for this 
disease is the uncontrolled activity of PKal, which results in 
increased cleavage of HK, and increased production of BK. While 
the molecular and physiological triggers for the onset of attacks 
are not fully understood, increased levels of FXIIa is observed 
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TABLe 2 | Case reports of deficiencies in contact activation system proteins.

Deficiency aPTT Thrombosis and clinical presentation Spontaneous bleeding Reference

FXII Prolonged Bilateral femoral vein thrombosis No Cei et al. (49)
FXII (mild) Slightly prolonged Venous thrombosis No Lessiani et al. (50)
FXII Prolonged Coronary artery bypass grafting No Conaglen et al. (51)
FXII Prolonged Arterial and venous thrombosis No Hellstern et al. (52)
FXII Prolonged Coronary artery bypass grafting No Moorman et al. (53)
FXII (mild) Prolonged Occlusive thrombus in the circumflex and anterior descending 

arteries
No Penny et al. (54)

FXII Prolonged Coronary artery bypass grafting No Rygal and Kuc (55)
FXII Prolonged Coronary artery disease No Cronbaugh et al. (56)
FXII Prolonged Coronary artery bypass grafting No Salmenper et al. (57)
FXII Prolonged No thrombosis No van Veen et al. (58)
FXII Prolonged Coronary artery disease No Wood (59)
FXII (mild) Prolonged Bilateral lower limb deep vein thrombosis No Vergnes et al. (60)
FXII Prolonged Retinal venous thrombosis No Borrego-Sanz et al. (61)
FXII (mild) Prolonged Deep vein thrombosis, after abdominal surgery No Cornudella et al. (62)
FXII Prolonged Cardiopulmonary bypass No Gerhardt et al. (63)
PPK Prolonged No thrombosis No van Veen et al. (58)
PPK Prolonged Coronary artery disease No Oram et al. (64)
PPK Prolonged No thrombosis No Cankovic et al. (65)
PPK Prolonged No thrombosis No Asmis et al. (66)
PPK Prolonged No thrombosis No Maak et al. (67)
PPK Prolonged No thrombosis No DeLa Cadena (68)
PPK Prolonged Ischemic stroke No Francois et al. (69)
PPK Prolonged No thrombosis Idiopathic thrombocytopenic purpura Nakao et al. (70)
PPK Prolonged No thrombosis No Lombardi et al. (71)
PPK Prolonged No thrombosis No Wynne Jones et al. (72)
PPK Prolonged No thrombosis No Poon et al. (73)
HK Prolonged No thrombosis No Cankovic et al. (65)
HK Prolonged Cardiopulmonary bypass No Davidson et al. (74)
HK Prolonged No thrombosis No Lefrere et al. (75)
HK Prolonged No thrombosis No Stormorken et al. (76)
HK Prolonged Vertebral-basilar artery thrombosis following trauma No Krijanovski et al. (77)

aPTT, activated partial thromboplastin time; FXII, factor XII; PPK, plasma prekallikrein; HK, high molecular weight kininogen; NA, not available.
Mild, 50 to 20% of control.
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in this disease (81) which suggest that attacks are mediated by 
the CAS. Since HAE is not associated with coagulopathies, this 
disorder provides an opportunity to evaluate the effects of the 
CAS on downstream coagulation pathways, independent of 
confounding input associated with comorbidities of thrombosis 
and hemostasis. Indeed, plasma obtained from HAE subjects 
during edematous attacks display shortened aPTT, compared 
to plasma collected from these subjects during remission (82, 
83). In addition, FXIa activity, prothrombin fragment F1  +  2, 
thrombin-anti-thrombin complex, and FVIIa are elevated in 
subjects with HAE during an attack (81, 83, 84). The absence of 
apparent clinical coagulopathies in HAE during attacks could be 
due to compensatory mechanisms that occur during attacks and/
or requirements of additional factors not activated by the CAS to 
initiate or promote thrombosis formation.

eFFeCTS OF PPK AND FXii DeFiCieNCY 
ON COAGULATiON iN RODeNTS

Consistent with PPK and FXII deficiencies in humans, PPK, 
and FXII-deficient mice display prolonged aPTT (Table  1). 
Pharmacological inhibition of FXIIa and deficiency in either FXII 
or HK genes have been shown to protect mice from experimen-
tally induced thrombosis (16, 24, 26, 28), indicating the potential 

role of the CAS in thrombotic disease. Cheng and colleagues 
(41) demonstrated that a neutralizing antibody to FXI (14E11) 
had a comparable effect to FXI deficiency in a FeCl3 model of 
thrombosis. Antibody 14E11 binds FXI and interferes with FXI 
activation by FXIIa, suggesting that thrombus formation in this 
model requires FXI activation by FXIIa. These data have gener-
ated interest in developing strategies to therapeutically inhibit 
FXIIa and contact activation to treat or prevent thromboembolic 
disorders. Interestingly, thrombosis protection in mice was 
greater with FXII deficiency than with FXI deficiency, suggesting 
that FXII may exert effects on coagulation that do not require 
FXI (41).

Factor XII-deficient mice showed defective thrombus forma-
tion (16) and protective effect against experimental ischemic 
stroke (85) and pulmonary embolism (86). Intravital microscopy 
showed that the initial adhesion of platelets at the site of injury is 
not affected by FXII deficiency, although the formation and sta-
bilization of three-dimensional thrombi is impaired (16). Similar 
defective thrombus formation was observed in FXI−/− mice (87, 88).  
Furthermore, FXII deficiency or pharmacological inhibitor of 
FXIIa showed decreased infarct volume without the presence of 
intracerebral hemorrhage (ICH) (85). Reconstitution of FXII-
deficient mice with human FXII protein restored susceptibility 
for ischemic stroke. A recent report by Nickel and colleagues 
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(25) has shown that prostasomes released from prostate cancer 
activated FXII and that both FXI- and FXII-deficient mice are 
protected against cancer-associated thrombosis (25). However, 
the observation that PPK-deficient mice were not protected in the 
prostasome-induced thrombosis model is surprising and appears 
different than other CAS-associated thrombosis models, which 
require PPK. Taken together, these findings suggest that coagula-
tion mediated by intrinsic pathway through FXII is critical for 
pathological thrombus formation in certain conditions without 
being relevant for hemostasis.

In addition, the CAS mediates effects on thrombosis via the 
kallikrein–kinin system. Genetic ablation of Kng1 in mice showed 
a delayed time to carotid artery occlusion in a laser injury model 
(28). BKB2R−/− mice have prolonged bleeding time and delayed 
carotid artery occlusion times in the rose Bengal thrombosis 
model and these effects were attributed to increased expression of 
angiotensin receptor 2 and elevated nitric oxide and prostacyclin 
levels (29). These findings suggest that the BK system contributes 
to the effects of the CAS on coagulation.

POTeNTiAL ROLe OF THe KALLiKReiN–
KiNiN SYSTeM iN HeMORRHAGe

Components of the CAS are normally restricted from contact 
with the vascular basement membrane by the endothelium. 
Vascular hyperpermeability enables components of the CAS 
to leak into the subendothelial space and gain contact with the 
basement membrane. The potential functions of the CAS in the 
subendothelial space have received relatively little attention. PKal 
binds to collagen (89), which may contribute to the retention of 
its catalytic activity in the extracellular matrix (ECM) at the site of 
injury and thereby enable local amplification of its inflammatory 
and edematous actions. Moreover, PKal in this subendothelial 
space may have additional substrates and functions, which are 
not apparent in the plasma.

Diabetic Retinopathy
In diabetic retinopathy, retinal vascular hyperpermeability can 
lead to diabetic macular edema (DME); the leading cause of 
vision loss in working-age adults in most developed countries 
(90). Proteomic analysis of vitreous fluid from patients with DME 
has revealed increased concentrations of PPK, HK, and FXII in 
this fluid compared with people without DME (91–93). These 
increases have been attributed to the increased diffusion of these 
CAS components from the blood into the neuroretinal intersti-
tial fluid and vitreous humor. Recent reports have shown that 
intravitreal injection of PKal alters both retinal vascular function 
and ultrastructure. A single injection of PKal in the vitreous of 
rats induced retinal vascular hyperpermeability and retinal layer 
thickening (94), whereas two injections of purified PKal into the 
vitreous caused retinal bleeding that appeared similar to retinal 
microhemorrhages that occur in diabetic retinopathy (30). While 
injections of BK mimicked PKal’s effect on retinal permeability 
and thickening at 24 h repeated injections of BK did not cause 
retinal bleeding at 48 h. These findings suggest that PKal in the 
subendothelial space may contribute to retinal hemorrhages, 

which are a hallmark of advanced stages of diabetic retinopathy. 
Proteomics has been used to investigate the effects of PKal that 
may contribute to this disruption of the blood–retinal barrier. 
Analyses of conditioned media from both cultured pericytes 
and astrocytes incubated with PKal have revealed increases in 
proteolytic fragments of ECM proteins, including multiple col-
lagen isoforms 1–6, laminin β1 and γ1, nidogen 1 and 2, and 
fibronectin, compared with conditioned media from cells that 
were not exposed to PKal (30, 95). In a purified system, PKal was 
shown to cleave COL4A, suggesting that PKal can proteolytically 
cleave collagen (30). Although the causes of retinal bleeding in 
diabetic retinopathy are not yet known, these studies suggest a 
mechanism by which vascular permeability, via the extravasation 
of PKal, may contribute to retinal hemorrhage, in part, medi-
ated by the proteolytic degradation of the vascular basement 
membrane.

Cerebral Hematoma Formation
Diabetes and hyperglycemia are associated with increased ICH 
and worse clinical outcomes following a cerebrovascular accident 
(96–98). Diabetes and acute hyperglycemia in non-diabetic 
rodents increase hematoma formation in an experimental model 
of ICH (17). In this report by Liu et al., intracerebral injection 
of autologous blood induced hematoma expansion, which was 
ameliorated by PPK deficiency and PKal inhibition. Moreover, 
intracerebral injection of purified PKal mimicked the effects of 
autologous blood injection on hematoma expansion in diabetic 
animals. PKal has been reported to mediate plasminogen activa-
tion (99, 100), which could potentially increase fibrinolysis in the 
ICH model. However, intracerebral injection of neither tPA nor 
plasmin mimicked the effects of PKal on hematoma expansion 
in diabetic animals (17). Moreover, covalently deactivated PKal 
also induced hemorrhage in this model, suggesting that PKal’s 
effects in this model were not mediated by its catalytic activity. 
The effects of hyperglycemia and PKal on ICH are rapid, within 
30 min, suggesting an effect on an early step in hemostasis. Since 
in vitro studies have shown that PKal binding to collagen inter-
feres with its effects on GPVI-mediated platelet activation, these 
findings suggest that PKal may decrease platelet plug formation, 
which plays an early step in hemostasis.

Thrombolysis
Tissue plasminogen activator is the only approved treatment 
for thrombotic stroke (101). While its prompt administration 
of tPA following stroke onset has been shown to improve 
clinical outcomes, its use is limited due to an increased risk 
of intracranial hemorrhage when tPA is used after the recom-
mended 3 h therapeutic window, which can negate the potential 
benefits of vascular recanalization. Although the mechanisms 
that mediate the increase in hemorrhage induced by tPA are 
not fully understood, we have shown that both PPK and FXII 
deficiency markedly reduce tPA-induced hemorrhagic conver-
sion in mice with a thrombotic middle cerebral artery occlusion 
(20). Studies using purified proteins, as well as plasma, revealed 
that plasmin activates FXII and cleaves it into a fragment with a 
molecular weight slightly higher than the expected size of FXIIa 
light chain generated with PKal (20, 102–105). Plasmin cleaves 
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FXII at Arg353 leads to zymogen activation and the generation 
of FXIIa (104). Plasmin’s effects on FXIIa activity is markedly 
increased in the presence of dextran sulfate (104) and inhibited 
by e-aminocaproic acid and a FXIIa inhibitory mAb (105). These 
reports have suggested that plasmin-mediated cleavage of FXII 
increases FXIIa-like activity. The consequences of plasmin-
mediated cleavage of FXII at Lys346 on FXIIa-like catalytic 
activity are not yet available. Plasmin-mediated cleavage of 
FXII could facilitate its autoactivation and/or cleavage by PKal 
in plasma, which would thereby activate the kallikrein–kinin 
system.

These findings have suggested that the CAS may either 
worsen vascular damage or impair hemostasis in the cerebral 
vasculature following tPA administration. Studies using human 
plasma have shown that tPA’s effects on the CAS are mediated by 
plasmin (20), which has been identified as a physiological activa-
tor of the CAS (104, 105). Although the clinical significance of 
this pathway in hemorrhagic conversion in ischemic stroke is 
not yet available, two lines of evidence support the conclusion 
that tPA therapy activates the CAS in stroke patients. First, a 
recent report by Marcos-Contreras and colleagues has shown 
that intravenous infusion of tPA in patients result in plasma HK 
cleavage (106), suggesting that the tPA activates the circulating 
CAS. Second, tPA therapy can cause orolingual angioedema 
that has been attributed to increased BK action (107, 108, 109), 
suggesting that tPA increases CAS activity. In addition to reduc-
ing hemorrhage, PPK, and FXII deficiency also reduced infarct 
volume and cerebral edema in mice with stroke treated with tPA. 
These findings are consistent with previous reports showing that 
blockade of the CAS has neuroprotective effects in mice with 
filament-mediated middle cerebral artery occlusion (85, 110). 
Although it is tempting to speculate that inhibition of either 
PKal or FXIIa during the administration of tPA may ameliorate 
hemorrhagic transformation and provide neuroprotection dur-
ing thrombolytic therapy, additional information on the role of 
the CAS on stroke outcomes in animal models is needed.

THeRAPeUTiC iMPLiCATiONS AND 
CONCLUSiON

Currently available anticoagulants used for prevention or 
treatment of thromboembolic events [heparins, vitamin K 
antagonists (for example, warfarin), and inhibitors of thrombin 

or factor Xa] all target enzymes of the coagulation cascade that 
are essential for the formation of fibrin, a protein necessary for 
controlling injury-related blood loss. As a result, currently used 
anticoagulants increase the risk of bleeding and are associated 
with an increase risk in potentially life-threatening hemorrhage 
(111). Bleeding is the primary complication of anticoagulation 
therapy and a significant risk of all currently used anticoagulants, 
even when maintained within their therapeutic ranges (112). 
The CAS exerts effects on coagulation at multiple levels. CAS 
activation of PPK has been implicated in promoting spontane-
ous microvascular bleeding and the impairment of collagen-
induced platelet activation. In addition, both PPK and FXII, 
via activation of the intrinsic coagulation cascade promotes clot 
stabilization and growth. Feedback activation of FXI by throm-
bin contributes to clot stabilization and may explain the lack 
of dependence of hemostasis on FXII and PPK. PKal has been 
implicated in promoting spontaneous microvascular bleeding 
and the impairment of collagen-induced platelet activation. 
Pharmacological blockade of PKal has been shown to provide 
beneficial effects on cerebral hemostasis in animal models. 
Although inhibition of the CAS reduces provoked arterial and 
venous thrombosis in animal models, the clinical significance 
of the CAS in thrombosis is not yet available. The clinical 
indications for targeting the CAS for thrombosis will require 
the identification of thrombotic processes that are dependent 
on the CAS, which potentially include interactions with arti-
ficial surfaces and disease processes that generate factors that 
activate FXII. In addition, inhibition of the CAS may provide 
an opportunity to reduce cerebral hemorrhage, which is one of 
the primary concerns of increased bleeding risk associated with 
current antithrombotics.
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