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The definition of asthma has changed considerably in recent years, to the extent that 
asthma is no longer considered a single disease but a heterogeneous disorder that 
includes several phenotypes and, possibly, endotypes. A more detailed analysis of the 
immunological mechanisms underlying the pathogenesis of asthma shows interleukin 5 
(IL-5) to be a crucial cytokine in several asthma phenotypes. In fact, IL-5 exerts selective 
action on eosinophils, which, in turn, sustain airway inflammation and worsen asthma 
symptoms and control. Clinical trials have shown drugs targeting IL-5 or its receptor 
alpha subunit (IL-5Ra) to be a promising therapeutic approach to severe asthma, whose 
characteristics render standard therapy of little use: systemic corticosteroids only partially 
control the disease and have well-known adverse effects, and omalizumab is used for 
allergic subtypes. Analysis of the design process of clinical trials reveals the importance 
of patient selection, taking into account both clinical data (e.g., exacerbations, lung 
function, and quality of life) and biomarkers (e.g., eosinophils, which are predictive of 
therapeutic response).

Keywords: interleukin 5, precision medicine, personalized medicine, severe asthma, monoclonal antibodies, 
biomarkers, eosinophils, safety

iNTRODUCTiON

The definition of asthma has changed considerably during the last decade, to the extent that, rather 
than a single disease based on a reversible airway obstruction, asthma is now considered a hetero-
geneous disease with several phenotypes (1). The turning point was the sharp division of bronchial 
asthma into two large groups based on the expression of the type 2 helper T lymphocyte (TH2) genes 
underlying the disease, namely, TH2-high and TH2-low asthma (2). This distinction made it easier to 
evaluate the disease in terms of its pathogenic mechanisms and of the drugs administered at different 
levels of the inflammatory cascade. Evidence of the importance of this distinction in allergy and 
asthma can be seen in the fact that eosinophilic inflammation led researchers to intervene directly 
in pathogenic mechanisms to better control the disease and reduce the number of exacerbations. 
The demonstration of a close link between eosinophils and interleukin (IL) 5 shifted attention to this 
cytokine and led to the development of new drugs able to act directly on interleukin 5 (IL-5) and its 
specific receptor α-subunit (IL-5Ra).
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THe TH2-HiGH PHeNOTYPe: THe 
DiSCOveRY OF A SPeCiAL KiND  
OF iNFLAMMATiON

The clinical evidence of heterogeneity in asthmatic patients 
in terms of disease severity, age at onset, allergic sensitization, 
response to treatments, and natural history prompted researchers 
to better understand the pathophysiological mechanisms under-
lying asthma by subdividing patients into various phenotypes 
(3, 4). Different approaches have been proposed for dividing the 
groups. The Severe Asthma Research Program (SARP) study 
identified four asthma clusters based on age at onset, airflow 
limitation, comorbidities, and lung function (5). A hierarchical 
cluster analysis performed in the SARP study classified asthmatic 
patients into five groups according to age at onset, atopy, use of 
corticosteroids, and lung function (6). Schatz and colleagues 
performed a post hoc analysis, “The Epidemiology and Natural 
History of Asthma: Outcomes and Treatment Regimens” 
(TENOR) study, which confirmed the existence of various clus-
ters and phenotypes in severe asthmatic adolescents and adults 
(7). Furthermore, in a study based on a molecular approach, 
Woodruff and colleagues discovered that IL-13 can stimulate 
the expression of chloride channel, calcium-activated, family 
member 1 (CLCA1), periostin, serine peptidase inhibitor, clade 
B (ovalbumin), and serpin family B member 2 (serpinB2), all of 
which are overexpressed in asthmatic patients (8). A further step 
forward in the knowledge of this disease was made observing 
that cytokines involved in its pathogenesis were not the same in 
all asthmatic patients, therefore allowing to subdivide them in 
two different groups according to the presence, or the absence, 
of TH2 inflammation. TH2-high patients are characterized by 
the expression of IL-5 and IL-13, airway hyperresponsiveness, 
responsiveness to inhaled corticosteroids (ICS), high serum 
IgE levels, and blood and airway eosinophilia. In contrast, the 
TH2-low (healthy) group does not present these characteristics 
(2, 3, 9). In the TH2-high phenotype, which is characterized by 
eosinophilic inflammation, IL-5 is a central cytokine, with a key 
role in eosinophil differentiation, survival, activation (10, 11), 
and migration in the lungs (12, 13). In the TH2-low phenotype, 
on the other hand, the association between inflammation and the 
action of the abovementioned cytokines is less well defined, and 
the mechanisms underlying the disease in these patients remain 
little known (14, 15).

iNTeRLeUKiN 5

Interleukin 5 is a 13-amino acid protein that forms a 52-kDa 
homodimer related to both granulocyte-macrophage colony-
stimulating factor (GM-CSF) and IL-3. It binds to a heterodimer 
receptor on eosinophils formed by the α subunit (IL-5Ra) and the 
βc subunit, which is shared with the IL-3 and GM-CSF receptors 
(16). IL-5 is synthesized and secreted by eosinophils, TH2 cells, 
mast cells, CD34+ progenitor cells, natural killer (NK) T cells, 
and type 2 innate lymphoid cells (ILC2) (10, 17). In asthmatic 
patients, CD4 TH2 cells, CD34+ cells, mast cells, and eosinophils 
are major factors in the production of IL-5. Together with IL-3 
and GM-CSF, IL-5 plays an essential role (16) in inflammation 

and the allergic response, favoring the production, matura-
tion, proliferation, recruitment, differentiation, and survival of 
eosinophils (18, 19). In addition, IL-5 in bone marrow favors 
the differentiation of several CD34+ cells into eosinophils (20). 
Strikingly, IL-5 is associated not only with active inflammation 
but also with airway remodeling processes (21). Moreover, IL-5 
can also affect basophil and mast cell activity, owing to the com-
mon expression of several crucial receptors (IL-5R, IL-3R, IL-4R, 
IL-2Ra, and GM-CSF) in these cells (22).

ILCs are characterized by their lack of T-cell and B-cell recep-
tors (TCRs and BCRs, respectively) (23) and associated with 
tissue repair (24), the duration of the initial immune response to 
microorganisms (25), and control of proliferation of commensal 
microorganisms (26). These cells are able to produce cytokines 
quickly in response to chemical and environmental signals 
(i.e.,  IL-25, IL-33, thymic stromal lymphopoietin, and IL-1β) 
and can act on ILC growth and differentiation (27). ILCs can 
be subdivided into three different categories (ILC1s, ILC2s, and 
ILC3s), according to the production and expression of cytokines 
and transcription factors (28). Further differentiation into the 
different subtypes of ILCs depends on the phenotypic and func-
tional characteristics of the T-cell subset and the expression of 
regulatory genes, so that ILC1s are linked to TH1 inflammation, 
ILC2s to TH2-induced inflammation, and ILC3 to TH17 and TH22 
inflammation (29). Furthermore, the transcription of several 
genes, including GATA-binding protein 3 (GATA3) (30) and reti-
noic acid receptor-related orphan receptor-α for ILC2s (RORα) 
(31), is related to the differentiation of the ILC precursor in ILC2s. 
In lung tissue, they have a role in production of IL-5, suggesting 
a possible effect on the development, maturation, and action of 
eosinophils. The discovery that ILC2s play a role in the develop-
ment and maturation of TH2 cells makes them interesting as a 
possible future therapeutic target in TH2-high patients (29, 32).

eOSiNOPHiLS iN ASTHMA

Interleukin 5 acts on several types of cells. However, in airway 
disease in general and asthma in particular, eosinophils remain 
its primary target. Many papers support the pleiotropic effects 
of eosinophils in several asthma phenotypes (33–36). First, they 
play a role in the innate response to exogenous agents in airways, 
and second, they play a role in the modulation of the adaptive 
immune cascade, making them important cells in the body’s 
defense system. Eosinophils damage tissues by degranulating and 
releasing reactive oxygen species and cysteinyl leukotrienes (LT) 
(37). In vivo studies have demonstrated that exposing circulating 
eosinophils to IL-5 can activate their degranulation processes 
(38). IL-5 also stimulates eosinophilic airway inflammation 
and airway hyperresponsiveness (39). Eosinophil secretory 
granules contain not only histaminase and arylsulfatase, which 
are directly involved in allergic reactions, but also eosinophil 
peroxidase, eosinophil cationic protein, major basic protein, and 
eosinophil-derived neurotoxin. In addition, during degranula-
tion, eosinophils produce IL-5 and LT such as LTC4, LTD4, 
and LTE4 (40), which are involved in bronchoconstriction and 
secretion of mucus (16, 41), thus resulting in intensification of 
airway narrowing.
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FiGURe 1 | The role of interleukin 5 (IL-5) and eosinophils in airways.
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Severe forms of eosinophilic asthma are characterized by 
intense symptoms associated with poor disease control and high 
eosinophil levels in blood and sputum (42). Eosinophils also play 
a role in the development of asthma by thickening the reticular 
basement membrane through production of seve ral factors (i.e., 
TGF-b, VEGF, MMP-9, TIMP-1, and IL-13) (43) (Figure 1).

FROM eOSiNOPHiLS TO  
MONOCLONAL ANTiBODieS

Given the crucial role of IL-5 in eosinopoiesis in bone marrow and 
eosinophil recruitment and survival in peripheral tissues, several 
trials evaluated the possibility of using antibodies that target this 
cytokine (44, 45) or its receptor alpha subunit (46, 47) to regulate 
eosinophilic inflammation in uncontrolled and symptomatic 
asthmatic patients with high eosinophil counts.

Mepolizumab
Mepolizumab is a humanized monoclonal N-glycosylated IgG1/k 
antibody that binds the α-chain of IL-5, thus preventing its asso-
ciation with the α subunit of the IL-5 receptor (48). Mepolizumab 

has been tested in several diseases, including severe asthma, 
atopic dermatitis, and nasal polyposis. Clinical trials were also 
conducted to assess its direct action on eosinophilic inflamma-
tion in patients with eosinophilic esophagitis, hypereosinophilic 
syndromes, and eosinophilic granulomatosis with polyangiitis 
(34, 35) (NCT02020889, NCT00266565, NCT00716651, and 
NCT00527566) and chronic obstructive pulmonary disease 
(COPD) (NCT01463644, NCT02105961, and NCT02105948) (49).

The first evaluation of the possible effect of mepolizumab 
was carried out in a population of cynomolgus monkeys. Hart 
et al. observed a significant reduction in both blood and airway 
eosinophilia after a single dose (50).

Since the results of mepolizumab in asthmatic patients are 
generally favorable, it was recently approved by the United States 
FDA with the trade name Nucala® as add-on therapy (100 mg 
subcutaneously every 4 weeks) in patients aged ≥12 years with 
severe asthmatic eosinophilia.1,2 Furthermore, mepolizumab was 

1http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm471031.
htm.
2 http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm491980.htm. 
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recently approved by the European Medicines Agency Committee 
for Medicinal Products for Human Use.3

Reslizumab
Reslizumab is an IgG4/k humanized monoclonal antibody (51) 
that blocks circulating IL-5 and prevents it from binding to 
eosinophil receptors. Several clinical trials have evaluated the 
use of reslizumab in asthma, hypereosinophilia after administra-
tion of diethylcarbamazine for treatment of Loa-Loa infection 
(NCT01111305), and eosinophilic esophagitis (NCT00635089) 
(52). Reslizumab was recently approved for intravenous admin-
istration in the USA in patients aged ≥18 years as add-on therapy 
for severe uncontrolled eosinophilic asthma (see text footnote 2).

Benralizumab
Benralizumab differs from the abovementioned biologicals, 
since it targets the IL-5Ra subunit (53), which is expressed 
in eosinophils and basophils (54). Consequently, the effects 
of benralizumab were demonstrated not only for eosinophils 
but also for basophils. The drug induced apoptosis through 
antibody-dependent cell-mediated cytotoxicity (ADCC), where 
NK cells target cells and induce their cytotoxic action (55). The 
mechanism of action of benralizumab differs from that of other 
anti-IL-5 monoclonal antibodies, first because of its action on 
the receptor and second because of its higher affinity to human 
FcγRIIIa, resulting in enhanced ADCC action (56). In fact, 
through its enhanced ADCC activity, benralizumab reduces 
levels of circulating eosinophils and basophils (53). Therefore, it 
has been proposed as a biological drug not only in eosinophilic 
asthma but also in COPD (57), hypereosinophilic syndrome, and 
chronic rhinosinusitis.

Clinical Results
Preclinical studies on monkeys, guinea pigs, and mice reported 
variable results for eosinophils in blood and bronchoalveolar lav-
age fluid, airway hyperresponsiveness, and pulmonary resistance 
(58) but showed a significant reduction in both blood and sputum 
eosinophilia in treated animals (59). Leckie et  al. performed a 
double-blind, randomized, placebo-controlled study to test a 
single dose of anti-IL-5 antibody (2.5 or 10 mg/kg) in 24 non-
smoking male patients with mild allergic asthma. On days 8 and 
29 after administration, all patients underwent a histamine chal-
lenge, an inhaled allergen challenge, and sputum induction. The 
results demonstrate that infusion of anti-IL-5 antibody decreases 
blood eosinophil levels for up to 4 weeks and sputum levels at 
4 weeks, thus leading the authors to consider this antibody a pos-
sible new approach in eosinophilic asthma (60). Further studies 
on this biological drug did not reveal significant variations in 
clinical parameters (e.g., airway hyperresponsiveness, FEV1, and 
peak flow recordings) between the mepolizumab- and placebo-
treated groups. Flood-Page and colleagues treated 24 patients 
with 3 doses of 750 mg of mepolizumab at 0, 4, and 8 weeks and 
found non-significant variations in airway hyperresponsiveness, 

3http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medi-
cines/003860/human_med_001933.jsp&mid=WC0b01ac058001d124. 

lung function (FEV1), the late asthmatic reaction to inhaled 
allergen, and peak flow recordings between placebo- and 
mepolizumab-treated groups, concluding that the role of eosino-
phils remains uncertain in asthma (61). As an explanation, the 
authors hypothesized that the effect of mepolizumab could not 
sufficiently deplete airway eosinophils and consequently act on 
respiratory function. Several hypotheses have been suggested by 
other authors. Kay and Menzies-Gow considered the possibility 
of different levels of depletion of eosinophils in bone marrow and 
airways, assuming that the antibody could not penetrate tissue 
or act systemically to reach bone marrow and bronchial mucosa 
(62). A second hypothesis allowed for the possibility that other 
cytokine mechanisms, such as IL-3 and GM-CSF, could overcome 
the mechanism blocked by mepolizumab. The authors therefore 
evaluated mepolizumab in more characteristic asthmatic patients 
to better identify subgroups of responders (63). In fact, subse-
quent studies were restricted to patients with severe asthma and 
high blood eosinophil counts and showed a significant difference 
in the exacerbation rate between actively treated patients and 
patients receiving placebo. In the first large-scale trial in this area 
(DREAM study), the reduction in exacerbations was significantly 
greater in the mepolizumab group than in the placebo group 
(48% for the 75-mg dose, 39% for the 250-mg dose, and 52% for 
the 750-mg dose) (45).

The steroid-reducing effects of mepolizumab were evaluated 
in the SIRIUS study, where 135 patients with severe eosinophilic 
asthma were treated with 100 mg of subcutaneous anti-IL-5 anti-
body or placebo every 4 weeks over a period of 20 weeks. After 
the period of optimization of the dose of oral corticosteroids 
(OCS), patients started to receive the drug or placebo and reduce 
their intake of OCS during the period from week 4 to 20. During 
the second part of the study (maintenance phase), no further 
adjustments were made to OCS doses. Eligible patients had to 
have undergone at least 6 months of maintenance OCS therapy 
(5–35  mg of prednisone or equivalent) and had an eosinophil 
count of ≥300/μL during the previous year and ≥150/μL during 
the optimization phase. The results show that patients receiving 
mepolizumab were 2.65 times more likely to reduce the dose 
of OCS than patients receiving placebo (95% CI, 1.25–4.56; 
P = 0.008), with a reduction in the frequency of exacerbations of 
32% and an improvement in quality of life measured according to 
the Asthma Control Questionnaire 5 (ACQ-5) score (64).

In the MENSA study, mepolizumab was administered at 
75 mg intravenously or 100 mg subcutaneously to 385 asthmatic 
patients aged between 12 and 82 years with recurrent exacerba-
tions. In the first group, who received intravenous mepolizumab, 
the exacerbation rate decreased by 32%, whereas in the second 
group, who received mepolizumab subcutaneously, the rate fell 
by 53%, that is, significantly higher in patients receiving mepoli-
zumab subcutaneously (44). In a further two major trials, the 
number of exacerbations was significantly reduced in patients 
receiving mepolizumab (45, 65). As previously described, the 
reduction in the frequency of exacerbations in treated patients is 
certainly one of the most interesting results from clinical trials. 
After examining the results of clinical trials with mepolizumab in 
severe asthmatic patients, the Cochrane Collaboration concluded 
that the best results for reduction in the exacerbation rate were 
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seen in patients with elevated blood eosinophil counts. In fact, two 
studies, MENSA and DREAM, demonstrated that a significant 
clinical reduction in exacerbation rates occurred in hypereosino-
philic patients (RR, 0.52; 95% CI, 0.43–0.64; participants = 690). 
Nevertheless, an analysis of four studies with heterogeneous serum 
eosinophil levels showed a non-significant difference between the 
mepolizumab group and the placebo group in terms of decreased 
frequency of exacerbations (RR, 0.67; 95% CI, 0.34–1.31; par-
ticipants  =  468; I2  =  59%) (66). Another meta-analysis of the 
efficacy of mepolizumab in asthmatic patients demonstrated that 
patients in the placebo group had more exacerbations (173 of 324; 
53.4%) during the study than the mepolizumab group (91 of 310; 
29.3%). The pooled analysis evidenced a significant reduction in 
the risk of exacerbation (0.30; 95% CI, 0.13–0.67, P = 0.004) (67). 
The most recent study on mepolizumab (MUSCA) evaluated the 
effect of the drug on health-related quality of life (HRQOL). This 
randomized, double-blind, placebo-controlled, parallel-group, 
multicenter, phase 3b trial included 274 patients in the mepoli-
zumab arm and 277 in the placebo arm, both with a history of at 
least two exacerbations requiring treatment during the previous 
year, despite daily use of high-dose ICS combined with other 
controller medicines. A significant change was observed in the 
St. George’s Respiratory Questionnaire score at week 24, with 
an improvement in symptoms and HRQoL in patients receiving 
mepolizumab, compared with those receiving placebo (68).

The other IL-5 antagonist, reslizumab, also displayed 
encouraging results. Castro et  al. reported a significant reduc-
tion in asthma exacerbation rates in a phase 3 study of patients 
aged 12–65 years with asthma that was inadequately controlled 
using medium–high doses of ICS. Blood eosinophil counts were 
>400/μL, and patients had experienced one or more exacerba-
tions in the previous year (69).

The reduction in the exacerbation rate was also the primary 
outcome measure in clinical trials investigating the use of 
benralizumab, an anti-IL-5Ra subunit monoclonal antibody. 
Nowak and colleagues reported the results of a phase two, ran-
domized, double-blind, placebo-controlled study, where a single 
intravenous dose of 0.3 or 1 mg/kg of benralizumab or placebo 
was administered to patients who presented at the emergency 
department because of asthma exacerbation. The aim of this 
study was to evaluate whether a single dose of an anti IL-5Ra 
agent could reduce the future risk of exacerbation in patients who 
had recently experienced an acute episode of asthma. The authors 
concluded that benralizumab reduced asthma exacerbation 
rates by 49% (3.59 vs 1.82; P = 0.01) and the number of exac-
erbations requiring admission to hospital by 60% (1.62 vs 0.65; 
P  =  0.02) in both groups (46). Interestingly, in a double-blind 
phase 2 study involving adult patients with uncontrolled asthma 
despite therapy with medium–high doses of ICS and long-acting 
β-agonists who had had between two and six exacerbations in 
the previous year, Castro et al. reported a relevant reduction in 
exacerbations in patients with a peripheral blood eosinophil 
count of at least 300/μL (70). On the other hand, improvements in 
lung function with anti-IL-5 or anti IL-5Ra monoclonal antibod-
ies were less relevant (44, 45, 65, 70, 71). More recently, Bleecker 
and colleagues described the results of the SIROCCO study, a 
double-blind, parallel-group, placebo-controlled phase 3 clinical 

trial involving 12- to 75-year-old asthmatic patients with at least 
two exacerbations in the previous year despite optimal inhaled 
therapy. Patients were divided into two parallel arms. In the first, 
400 patients received benralizumab 30  mg every 4  weeks and 
398 patients every 8 weeks. In the second, 275 patients received 
30 mg every 4 weeks and 267 patients every 8 weeks. The results 
confirmed the efficacy of benralizumab in severe eosinophilic 
asthma in terms of exacerbation and safety (72). It is noteworthy 
that similar results in terms of reduction in the frequency of exac-
erbations were obtained in the CALIMA study, which evaluated 
the efficacy of administering 30 mg of benralizumab every 4 or 
8 weeks (47).

Changes in exacerbation rates have been shown to be 
favorable and encouraging overall, although improvements in 
FEV1 and in HRQOL did not reach statistical significance. Some 
studies showed improved pulmonary function (44, 64, 70, 71), 
whereas others did not (45, 46, 63, 65), and this variability in 
results was also described for HRQOL in other clinical studies 
(45, 46, 64, 65, 70, 71).

The fact that the patients enrolled in early trials did not show 
a significant reduction in the number of exacerbations could 
be due to two factors. First, in the case of baseline circulating 
eosinophilia, Castro et al. (69) found that the eosinophil cutoff 
value at baseline was higher than that described by Leckie and 
colleagues (60). Second, the exacerbation rate of the active 
population receiving the investigational product may have been 
different. In early trials, patients had mild-to-moderate asthma 
and a low number of asthma exacerbations in the previous year. 
In addition, the reduction appears less significant than that of 
active groups in later studies, which were characterized by higher 
baseline exacerbation rates and a more consistent reduction in 
the frequency of asthma flares (Table 1).

Safety
The safety data provided by clinical trials are generally reassuring, 
at least in the populations included (74). All IL-5 antagonists seem 
to be well tolerated. No deaths or severe reactions were reported 
for either intravenous or subcutaneous administration. The 
serious adverse events described in the trials with intravenous 
mepolizumab (hydrocephalus/cerebrovascular disorder, consti-
pation, gastrointestinal disturbance, and asthma exacerbation) 
were not considered treatment-related by clinicians (63, 73). The 
SIRIUS study reported adverse events in 83% of patients receiving 
the drug subcutaneously and in 92% in the placebo group (see 
text footnote 1). The most common adverse events reported were 
headache, injection-site reactions, and nasopharyngitis, with 
similar frequencies in the active and placebo groups. Asthma 
exacerbations were reported in 3% of mepolizumab patients 
and in 12% of placebo patients (64). In one of the mepolizumab 
studies (MENSA), the frequency of adverse events was similar in 
all three groups: 84% in patients receiving intravenous mepoli-
zumab, 78% in the subcutaneous group, and 83% in the placebo 
group. The reduction was significant if the events that were judged 
drug-related by clinicians (17% intravenous, 20% subcutaneous, 
and 16% placebo) are taken into account (44). Once again, the 
most common adverse events reported were nasopharyngitis, 
injection-site reactions, headache, and upper respiratory tract 
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TABLe 1 | Clinical trials on anti-interleukin 5 (IL-5) and IL-5Ra antagonists: main results and safety findings.

Reference; study exacerbations Other endpoints Common adverse events Serious adverse events

MePOLiZUMAB

Chupp et al. (68); 
MUSCA study

Improvement in QoL ⇧ FEV1 (176 mL in 
mepolizumab group)

⇩ Exacerbations

Headache, nasopharyngitis, back 
pain, urticaria, arthralgia, arrhythmias, 
injection-site reactions

5% of patients in mepolizumab group has 
serious adverse events (asthma, systemic 
reactions)

Ortega et al. (44); 
MENSA study

⇩ Exacerbations (with 
intravenous medication, 
47%; with subcutaneous 
administration, 53%)

⇧ FEV1 (100 mL intravenous 
administration, 98 mL 
subcutaneous administration)

Nasopharyngitis, upper respiratory tract 
infection, and headache

Incidence of 7% in intravenous group, 8% 
in subcutaneous, 14% in placebo

Bel et al. (64); SIRIUS 
study

⇩ Exacerbations (32%) Improvement in Asthma 
Control Questionnaire 5 score

Headache, nasopharyngitis, injection-
site reaction

Asthma exacerbations, pneumonia  
(both in placebo group)

Pavord et al. (45); 
DREAM study

⇩ Exacerbations (48% 
with 75-mg dose and 
39% with 250-mg dose)

No change in FEV1

No change in ACQ scores
Headache, nasopharyngitis, infusion-
related reaction

3 deaths (1 septic shock after acute 
pancreatitis, fatal asthma attack,  
suicide)

Nair et al. (73) ⇩ Exacerbations ⇩ Eosinophil count (in sputum 
and blood samples)

1 patient with shortness of breath 
(heart failure-related), 1 patient with 
aches and tiredness

No drug-related events recorded
1 death in placebo group

Haldar et al. (65) ⇩ Exacerbations  
(2.0 vs. 3.4 drug/
placebo)

Improvement in AQLQ score
⇩ Eosinophil count (in sputum 
and blood samples)
No change in FEV1

Facial flushing, rash, pruritus, erectile or 
ejaculatory dysfunction, fatigue

Severe acute asthma

Flood-Page et al. (63) Reduction at higher  
doses of drug

No improvement in lung 
function or symptoms

Upper respiratory tract infection, 
asthma, headache, rhinitis, bronchitis, 
sinusitis, viral infection, injury, back 
pain, nausea, and pharyngitis

250 mg (hydrocephalus/cerebrovascular 
disorder, constipation, and gastrointestinal 
disturbance),  
750 mg (asthma exacerbation)

ReSLiZUMAB

Castro et al. (69) ⇩ Exacerbations Worsening of asthma symptoms, 
upper respiratory tract infections, 
nasopharyngitis

2 anaphylactic reactions

Castro et al. (71) ⇩ Exacerbations (less 
than other study)

⇩ Blood and sputum 
eosinophils, especially in 
patients with nasal polyposis
Improvement in ACQ and lung 
function

Nasopharyngitis Pneumonia, worsening of asthma

BeNRALiZUMAB

Bleecker et al. (72); 
SIROCCO study

⇩ Exacerbations
– ⇩ 45% in Q4W
– ⇩ 51% in Q8W

⇧ FEV1

– 106 mL Q4W
– 159 mL Q8W
Improved HRQoL

Nasopharyngitis, worsening of asthma Allergic granulomatous angiitis, panic 
attack, paresthesia, injection-site 
erythema

FitzGerald et al. (47); 
CALIMA study

⇩ Exacerbations
– ⇩ 36% in Q4W
– ⇩ 28% in Q8W

⇧ FEV1

– 125 mL Q4W
– 116 mL Q8W
Improve of HRQoL

Nasopharyngitis, worsening of asthma Urticaria, asthma, herpes zoster, chest 
pain

Nowak et al. (46) ⇩ Exacerbations ⇩ Blood eosinophils
No improvement in lung 
function and HRQoL

Asthma, headache, dizziness, cough, 
pyrexia, bronchitis, anxiety, muscle 
spasms, and hyperhidrosis

Pyrexia, tachycardia, and anxiety

Castro et al. (70) ⇩ 40% Exacerbations 
in 100 mg group, but 
not in the 2 mg and the 
20 mg groups

Dose–response findings
⇧ Lung function and HRQoL

Nasopharyngitis and injection-site 
reactions

100 mg: acute cholecystitis, herpes 
zoster, polyarteritis nodosa, and  
uterine leiomyoma
20 mg: erythema nodosum

Laviolette et al. (53) ⇩ Exacerbations Nasopharyngitis, nausea
One patient received an intravenous 
dose of 1 mg/kg: chills, headache, 
asthenia, nausea, dysgeusia, tremor, 
dizziness, hot flush, hyperhidrosis, 
and swelling with a decreased white 
blood cell count, decreased neutrophil 
count, and increase in C-reactive 
protein

Thyroid storm with hospitalization
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infections (44). In their trial on hypereosinophilic syndrome, 
Roufosse and colleagues reported the long-term safety results 
of 750 mg of mepolizumab administered every 9–12 weeks. The 
serious adverse events comprised four deaths, although only one 
was considered possibly drug related by clinicians. One patient 
died because of angioimmunoblastic T-cell lymphoma with 
cardiopulmonary failure (75). Three deaths were reported in the 
DREAM study: one case of septic shock secondary to pancreatitis 
(60-year-old woman), a fatal asthma attack (56-year-old man), 
and a case of suicide (54-year-old man) (45).

Adverse events with benralizumab in clinical trials were 
rare. Laviolette et al. reported a higher rate of adverse events in 
the benralizumab group than in the placebo group with both 
subcutaneous and intravenous administration (53). The most 
common adverse events were nasopharyngitis and headache in 
the intravenous group and nasopharyngitis and nausea in the 
subcutaneous group. One patient receiving 1  mg/kg of ben-
ralizumab intravenously experienced 15 adverse events [chills, 
headache, asthenia, nausea, dysgeusia, tremors, dizziness, hot 
flushes, hyperhidrosis, and swelling on day 0, with a decreased 
white blood cell count (2.3 × 103/μL), decreased neutrophil count 
(1.1 × 103/μL), and increased C-reactive protein level (1.61 mg/
dL) measured on day 1 after dosing]. A patient with a prior history 
of hyperthyroidism, who was receiving 200 mg of benralizumab 
subcutaneously, experienced a thyroid storm 50  days after the 
first dose and 23 days after the last one. The patient was hospital-
ized for 8 days and subsequently completed the study. In this case, 
the physician considered the adverse event to be severe but not 
treatment related (53). Nowak and colleagues reported headache, 
dizziness, cough, pyrexia, bronchitis, anxiety, muscle spasms, and 
hyperhidrosis, with several serious events considered related to 
the study drug in four patients (pyrexia, tachycardia, and anxiety) 
(46). Castro reported adverse events in 72% of patients receiving 
benralizumab compared with 65% in the placebo group. The most 
common adverse events were nasopharyngitis and injection-site 
reactions (70). Safety may also be compromised by the onset of 
specific diseases secondary to the reduction in the eosinophil 
count and, therefore, potentially, the reduction in their protective 
effects. In this regard, no significant data have been reported or 
suspected in trials that explored these monoclonal antibodies. 
Additional data on safety vis-à-vis the reduction in the eosinophil 
count were added by Gleich et al., who claimed that depletion of 
these cells in both animal models and humans appears to have no 
harmful effects on health (76).

Clinical Perspectives
Considering that almost all clinical trials performed with IL-5 and 
IL-5Ra antagonists showed favorable results in terms of efficacy 
and safety, new therapeutic perspectives can be hypothesized. 
Despite the encouraging results, the response to these drugs must 
be assessed in real life, although this is unlikely, since these drugs 
have only recently been marketed. Nevertheless, several recent 
studies have reported promising results in real life, for example, 
the MUSCA study in patients treated with mepolizumab (68). In 
daily clinical practice, clinicians will be required to identify the 
patients who will benefit most from these targeted therapies. The 
fact that IL-5 and IL-5Ra antagonists have been tested targeting 

not only severe asthma but also other diseases (some of which are 
associated, e.g., nasal polyposis) could pave the way for the dis-
covery of biomarkers that enable the clinician to chose the right 
drug for the patient. In fact, the choice of one drug over another 
could, at least for the time being, be guided by comorbidities for 
which a drug has been tested and another not, choosing the one 
that covers both diseases. Although the evaluation of comorbidi-
ties could be an interesting starting point in patients with severe 
eosinophilic asthma, reliable biomarkers (i.e., periostin, eosino-
phils, IgE, and galectin-3) that predict the response to a targeted 
biological therapy are urgently needed.

THe PRiMARY ROLe OF BiOMARKeRS

The development of new biological therapies to target not only 
IL-5 but also other TH2 cytokines including IL-4 and IL-13 (77, 78) 
and the incoming introduction of biosimilar drugs (79) raise the 
question of which therapy is best suited to a specific patient. The 
answer to this question may lie in the identification of biomarkers 
that predict therapeutic responses. An ideal biomarker should be 
easy to collect and evaluate, non-invasive, inexpensive, and sensi-
tive (80). Many studies have proposed biomarkers for the manage-
ment of asthmatic patients, including serum total IgE levels (IgEs) 
(81), exhaled nitric oxide (FeNO), blood and sputum eosinophil 
count (82, 83), and the possible role of galectin-3 obtained by 
bronchial biopsy in early studies (84) and now less invasively in 
serum (85) or serum periostin (86) as biomarkers of TH2-induced 
upper airway inflammation. Biomarkers are urgently needed to 
assign the most appropriate therapeutic strategy to a specific 
patient, according to the underlying asthmatic mechanism of 
inflammation. Consequently, therapy could switch from a “one 
size fits all” approach (the clinician prescribes a drug and, if this 
fails, a new prescription is made) to an approach based on “per-
sonalized medicine” or “precision medicine,” where a biomarker 
could help physicians to phenotype patients and choose the most 
appropriate therapy (87–90).

CONCLUSiON

For many years, eosinophilic inflammation has been considered 
a predominant mechanism in the development of asthma. IL-5 
has been evaluated as a possible therapeutic target solely for its 
role in the development and action of eosinophils. Although 
initial trials results are not encouraging, it seems that choosing 
the optimal candidate, i.e., one with severe asthma and a high 
serum eosinophil count, could lead to a reduction in the fre-
quency of exacerbations. The better results observed in patients 
with high eosinophil counts have led several authors to suggest 
>300–400/μL as a cutoff. Therefore, based on clinical trial results, 
it will be necessary to screen patients before prescription of anti-
IL-5 and IL-5Ra drugs to choose the right patient for the right 
drug, i.e., one who is more likely to respond to a specific therapy. 
Eosinophils are currently the only suitable biomarker for these 
drugs, and every effort should be made to discover new biomark-
ers that enable more personalized and precise prescription. The 
role of biomarkers will become fundamental, leading clinicians 
to choose the best anti-IL-5 and IL-5Ra drugs for their patients.
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