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Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune 
defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts 
antimicrobial effects and dampens inflammation through direct microbial interactions and 
modulation of host cell responses via a series of cellular receptors. However, low protein 
concentrations, genetic variation, biochemical modification, and proteolytic breakdown 
can induce decomposition of multimeric SP-D into low-molecular weight forms, which 
may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into 
trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation 
within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory 
diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic 
asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or 
modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D 
is a promising biomarker for lung injury. Moreover, studies in preclinical animal models 
have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial 
in these diseases. In recent years, SP-D has been shown to exert antimicrobial and 
anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid 
metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of ath-
erosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and 
diabetes, and SP-D has been associated with metabolic disorders because of its effects 
in the endothelium and adipocytes and its obesity-dampening properties. This review 
summarizes and discusses the reported genetic associations of SP-D with disease and 
the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic 
research on the mechanistic links between SP-D and respiratory, cardiovascular, and 
metabolic diseases is summarized. Perspectives on the development of SP-D therapy 
are addressed.

Keywords: surfactant protein D, respiratory distress syndrome, allergic asthma, chronic obstructive lung disease, 
atherosclerosis

SURFACTANT PROTeiN D (SP-D)

Surfactant protein D is a pattern-recognition molecule belonging to the collectin family, a group of 
collagen-containing C-type lectins. Human collectins also include surfactant protein A (SP-A), which 
has a tissue distribution and functions partially overlapping with those of SP-D. One main effect of 
SP-D is the aggregation and enhancement of phagocytosis of microbes and dying host cells. An addi-
tional classical member of the collectin family is the serum protein, mannan-binding lectin (MBL), 
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which evokes complement activation through the lectin pathway 
in a complex with MBL-associated serine proteases (MASPs) (1). 
Moreover, three novel human defense collagens: collectin-10 
(CL-10) [collectin liver 1, CL-L1, or CL-10], collectin-11 (CL-11) 
(collectin kidney 1, CL-K1, or CL-11), and collectin-12 (CL-12) 
(collectin placenta 1, CL-P1, or CL-12) have been identified 
(2–4). CL-10 and CL-11, partly in heterocomplexes with one 
another, are found in the circulation associated with MASPs and 
can induce complement activation (5). Different from the other 
collectins, CL-12 is a type II membrane protein with a fluid phase 
variant that has scavenger receptor, as well as complement activa-
tion, functions (6, 7).

Pulmonary surfactant is a multimolecular complex consisting 
of phospholipids and cholesterol (total 90%) and surfactant pro-
teins (10%). The surfactant proteins consist of the high-molecular 
weight (HMW) hydrophilic proteins, SP-A and SP-D, and the 
low-molecular weight (LMW) and extraordinarily lipophilic 
surfactant protein B (SP-B) and surfactant protein C (SP-C), 
which are essential for the biophysical properties of surfactant 
phospholipids (8).

SiTeS OF SP-D SYNTHeSiS

Surfactant protein D has been localized to both the lung and 
non-pulmonary tissues. The protein is associated with external 
or luminal surfaces of the respiratory, digestive, glandular, repro-
ductive tract, urinary, and vascular epithelia and glands (Table 1). 

Abbreviations: AHR, airway hyperreactivity; ALI, acute lung injury; ARDS, acute 
respiratory distress syndrome; AT-II cells, type II alveolar cells; BAL, bronchoal-
veolar lavage; BMI, body mass index; BPD, bronchopulmonary dysplasia; CAD, 
coronary artery disease; CCR2, C-C chemokine receptor type 2; CD14, cluster 
of differentiation 14; CF, cystic fibrosis; CL-10, collectin-10; CL-11, collectin-11; 
CL-12, collectin-12; COPD, chronic obstructive pulmonary disease; CTLA4, 
cytotoxic T-lymphocyte-associated protein 4; CTLD, C-type lectin domain; CVD, 
cardiovascular disease; DC-SIGN, dendritic cell-specific intercellular adhesion 
molecule-3-grabbing non-integrin; ECLIPSE, evaluation of COPD longitudinally 
to identify predictive surrogate endpoints; EGF, epidermal growth factor; EGFR, 
epidermal growth factor receptor; ELISA, enzyme-linked immunosorbent assay; 
FcγRII/εRI, Fc receptor γII/εI; FEV1, forced expiratory volume in 1 s; GLUCOLD, 
Groningen Leiden universities chronic obstructive pulmonary disease; GM-CSF, 
granulocyte macrophage colony-stimulating factor; GOLD, Global initiative for 
chronic Obstructive Lung Disease; GPR116, G protein-coupled receptor 116; 
GWA, genome-wide association; HDL, high-density lipoprotein; HMW, high-
molecular weight; ICS, inhaled corticosteroids; IFN-γ, interferon-γ; IgA/E/G/M, 
immunoglobulin A/E/G/M; IHC, immunohistochemistry; IL-, interleukin-; iNOS, 
inducible nitric oxide synthase; LAIR-1, leukocyte-associated immunoglobulin-
like receptor 1; LDL, low-density lipoprotein; LMW, low-molecular weight; LPS, 
lipopolysaccharide; ManNAc, N-acetylmannosamine; MASP, MBL-associated 
serine protease; MBL, mannan-binding lectin; MD-2, myeloid differentiation fac-
tor 2; Met11, methionine 11; Met11Thr, methionine11threonine; MMP-, matrix 
metalloproteinase-; NO, nitric oxide; OSCAR, osteoclast-associated receptor; 
oxLDL, oxidized LDL; PRR, pathogen-recognition receptor; RDS, respiratory dis-
tress syndrome; rfhSP-D, 60 kDa recombinant trimeric fragment of SP-D lacking 
the N-terminal but retaining a part of the collagen region; ROS, reactive oxygen 
species; RT-PCR, reverse transcription polymerase chain reaction; SDS-PAGE, 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SFTPD/Sftpd, SP-D 
gene; SIRP-α/β, signal-regulatory protein-α/β; SNO-SP-D, S-nitrosothiol SP-D; 
SNP, single-nucleotide polymorphism; SP-A/B/C/D, surfactant protein A/B/C/D; 
TGF-β1, transforming growth factor-β1; Th1/2/17, T helper 1/2/17 cell; Thr11, 
threonine 11; TLR (2/4), toll-like receptor (2/4); TNF-α, tumor necrosis factor-α; 
UPEC, uropathogenic Escherichia coli; UPIa, uroplakin Ia; WB, western blotting.

This is consistent with the role of SP-D in pattern recognition, as 
the majority of locations in which it is expressed are at interfaces 
with the external milieu or with plasma, urine, tears, cerebrospi-
nal fluid, and amniotic fluid, where the maintenance of a sterile 
milieu is critical.

Some SP-D expressing non-pulmonary sites may produce 
surfactant-like materials and phospholipidic lubrication is 
present at numerous distinct sites. A major function of SP-D in 
the lung is as regulator of pulmonary surfactant lipid levels and, 
although not investigated, it has been speculated that SP-D may 
also participate in phospholipid homeostasis at extrapulmonary 
sites (52). Moreover, SP-D is expressed in the muscle cells and 
endothelium of the cardiovascular system, where it is suggested 
to function as an inhibitor of inflammatory signaling (47, 48). The 
expression patterns of SP-D have frequently been validated by 
different observers or by the use of diverse techniques (Table 1). 
SP-D immunostaining has also been observed in infiltrating 
white blood cells; for example, in the lung (9) and placenta 
(32). Moreover, SP-D immune-staining has been detected in the 
phagolysosome compartment or as granular staining of the cell 
membrane (9). Ultrastructural studies have demonstrated the 
presence of SP-D in the endocytic compartment of rat alveolar 
macrophages, but not in biosynthetic organelles (53), indicating 
that SP-D is not produced by these inflammatory cells, but rather 
is taken up by endocytosis.

ReGULATiON OF SP-D eXPReSSiON

The proximal promoter of SP-D mediates cell type-restricted, 
basal, and glucocorticoid-stimulated promoter activities as 
demonstrated in  vitro (54). The SP-D promoter was originally 
identified containing multiple potential cis-regulatory elements 
including half-site glucocorticoid response elements, a canonical 
AP-1 consensus, several AP-1-like sequences, E-box sequences, 
several C/EBP and PEA3 motifs, putative interferon response 
elements, FoxA-bindings sites, and a GT-containing regulatory 
element and regulatory roles for AP-1 (junB, junD, c-Jun, and 
c-Fos), FoxA1/2 and GT-box binding proteins were identified 
by mutational studies (55–57). It was suggested that the permis-
sive glucocorticoid regulation of SP-D expression is caused by 
increased promoter occupancy of C/EBPβ (58). Furthermore, 
retinoblastoma protein is demonstrated to stimulate SFTPD gene 
activation by forming a complex with C/EBPs bound to the C/
EBPβ consensus site in the SFTPD promoter (59). Moreover, the 
calcineurin/NFAT pathway was demonstrated to be active in vitro 
resulting in assembly of NFATs, AP-1, and TFF-1 in a transcrip-
tional complex in the proximal promoter of mouse SFTPD (60). 
Mitogen-activated protein kinase (MAPK)-mediated upregula-
tion of SP-D expression has been reported in human corneal 
epithelial cells (61) and in human lung epithelial cells, where 
the expressional regulation was mediated via signaling through 
JNK, a MAPK (62). The expression of SP-D in corneal epithelium 
was further inhibited by pharmacological inhibitors of toll-like 
receptor (TLR)4 and myeloid differentiation primary response 
gene 88 (MyD88) signaling (44). Tumor necrosis factor-α 
(TNF-α) significantly augmented the level of SP-D expression in 
primary coronary endothelial cells. Moreover, the basal level SP-D 
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TAbLe 1 | Detection of SP-D immunoreactivity or SP-D gene (SFTPD) 
expression in human organ systems.

Organ system Localization Technique

Respiratory 
system

Trachea RT-PCR (9)

Basal and intermediate tracheal 
epithelial cells

IHC (10)

Tracheal glands IHC (10)

Lung RT-PCR (9)

Bronchial glands IHC (10)

Type II pneumocytes IHC (9, 10)

Club (Clara) cells IHC (9)

Alveoler airspace surface IHC (10)

Eustacian tube WB of lavage (11)

Seromucinous glands in 
sinonasal mucosa

IHC (12)

Sinonasal mucosa RT-PCR (13, 14)

WB of lavage (13, 14)

IHC (13)

Bronchoalveolar lavage ELISA (15); reviewed  
in Ref. (16)
WB (17–19)

integumentary 
system

Skin RT-PCR (20, 21)

Basal cells of epidermis IHC (9, 10)

Sebaceous glands IHC (10)

Eccrine sweat glands IHC (9, 10)

Hair shafts IHC (21)

Stratum spinosum in atopic 
dermatitis and psoriasis

IHC (20)

Digestive 
system

Von Ebner’s gland of the tongue
Tongue muscle

IHC (10)

Parotid gland
Submandilar gland

RT-PCR (9, 22)

Parotid gland and submandilar 
gland

WB of saliva from specific  
glands (22)

IHC (9, 10, 22)

Saliva WB (23)

ELISA (23)

Eosophagal epithelium IHC (9)

Eosophagal striated muscle cells IHC (10)

Eosophageal glands IHC (10)

Stomach RT-PCR (9)

Parietal cells of the stomach IHC (10)

Body and pyloric gastric 
mucosa

IHC (9)

Small intestine RT-PCR (9)

Crypts of Lieberkuhn Immunohistoschemistry (10)

Small intestinal mucosa IHC (9)

Liver RT-PCR (9)

Hepatocytes IHC (10, 24)

Gall bladder epithelium IHC (9)

Intra- and extrahepatic  
bile ducts

IHC (9, 10)

Pancreas RT-PCR (9)

Intercalated ducts of  
pancreatic acini

IHC (9, 10)

TAbLe 1 | Continued

Organ system Localization Technique

Urinary system Kidney RT-PCR (9, 25)

WB (11, 25)

Renal tubular epithelium IHC (10, 25)

Podocytes of the glomeruli IHC (10)

Collecting ducts of kidney IHC (9)

Urether IHC (9, 10)

Urinary bladder epithelium WB (26)

IHC (9, 26)

Reproductive 
system

Oviduct epithelium IHC (27)

Uterus RT-PCR (9)

Secretory endometrium IHC (27, 28)

Cervical tissue RT-PCR (27)

WB (27)

Cervical glands In situ hybridization (27)

IHC (10, 27, 28)

Stratified squamous epithelium 
of the vagina

(28)

Epithelium of the fallopian tube (28)

Theca interna cells of ovarian 
follicles

(28)

Theca-lutein and granulosa 
cells of the corpus luteum

(28)

Placenta RT-PCR (9, 29)

WB (29)

Amniotic epithelium IHC (30)

Chorio-decidual layers IHC (30)

Decidual cells including 
decidual stromal cells

RT-PCR (31)

IHC (31)

Cytotrophoblasts, 
intermediate trophoblasts, and 
syncytiotrophoblasts

IHC (28, 31, 32)

Amniotic fluid SDS-PAGE and amino  
acid analysis (28, 33, 34)

ELISA (30, 34, 35)

WB (34, 36)

Atomic force microscopy (37)

Testes RT-PCR (9, 38, 39)

WB (39)

IHC (10)

ELISA (39)

Spermatogonia IHC (38, 39)

Spermatocytes IHC (38, 39)

Cells of Sertoli IHC (38, 39)

Cells of Leydig IHC (38, 39)

Spermatozoal secretion WB (39)

Prostate RT-PCR (9, 39, 40)

WB (40)

Epithelial cells of prostatic 
glands

In situ hybridization
IHC (40)

IHC (10, 40)

Seminal vesicle IHC (10)

Nervous 
system

Brain RT-PCR (9)

(Continued) (Continued)
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Organ system Localization Technique

Brainstem, cerebellum, choroid 
plexus, subventricular cortex, 
pia mater, cerebrospinal fluid, 
pineal gland

RT-PCR (41)

Brainstem, cerebellum, choroid 
plexus, the circle of Willis, 
subventricular cortex, lepto-
meninx, and cerebrospinal fluid

WB (41)

Follicular stellate cells of 
anterior pituitary gland

IHC (10)

Ependymal cells in the 
ventricular region around the 
hippocampus, dentate gyrus 
small pyramid cells, choroid 
plexus, pinealocytes

IHC (41)

Cerebrospinal fluid ELISA (41, 42)

Cornea RT-PCR (43)

Corneal epithelial cells RT-PCR (44–46)

WB (44, 45)

IHC (43)

Corneal epithelial cell secretion WB (45)

Conjunctiva RT-PCR (43)

WB (43)

Lacrimal gland RT-PCR (43) 

WB (43)

IHC (10)

Nasolacrimal duct RT-PCR (43)

WB (43)

Tear fluid Dot blot (43)

WB (45)

ELISA (45)

Circulatory 
system

Myocardium RT-PCR (9)

IHC (10)

Vascular endothelium RT-PCR (47, 48)

WB (47, 48)

IHC (28, 32, 41, 43, 47–50)

Coronary artery smooth muscle RT-PCR (47)

WB (47)

IHC (47)

Plasma/serum ELISA (15); reviewed  
in Ref. (16)

Glandsa Mammary glands RT-PCR (9)

IHC (10)

Adrenal gland RT-PCR (9)

Adrenal cortex IHC (10)

Thyroid gland IHC (10)

Other Hassal’s corpuscle of thymus IHC (10)

Spleen RT-PCR (9)

Organ of corti WB of lavage (11)

Adipose tissue RT-PCR (51)

Adipocytes RT-PCR (51)

aSP-D expression in some glands is categorized together with relevant organ systems.
RT-PCR, reverse transcription polymerase chain reaction; IHC, immunohistochemistry; 
WB, western blotting; ELISA, enzyme-linked immunosorbent assay; SDS-PAGE, 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SP-D, surfactant protein D.

TAbLe 1 | Continued
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was reduced by nitric oxide (NO) synthase inhibitor l-NAME, 
inhibitor of phosphoinositide 3-kinases (PI3Ks) Wortmannin and 
inhibitor of MEK1 activation and the MAP kinase cascade PD 
98059. Inversely, SP-D expression could be increased by DETA 
NONOate (donor of NO) or insulin (activator of PI3K/Akt) (63).

Surfactant protein D expression is developmentally regulated 
and further regulated by epigenetic allele-specific expression 
outside the lung (64). Dexamethasone treatment during culture 
of fetal lung explants increased SP-D mRNA and protein (54), 
maternal steroid treatment increased fetal serum SP-D (65), and 
in vitro and in vivo studies have confirmed regulation of SP-D 
expression by glucocorticoids and shown a dramatic increase 
prior to birth (66–69). Fetal lung maturation occurs on exposure 
to glucocorticoids with a simultaneous increase in expression of 
SP-D by lung epithelial cells (70, 71). In vivo studies have further 
demonstrated an increase in SP-D mRNA after pharmacological 
inhibition of dipeptidyl peptidase activity (72) and both mRNA 
and protein after a brief 95% oxygen exposure in rats (73), and 
mRNA and protein was markedly increased following mouse 
exposure to the cytokines interleukin (IL)-4 (74, 75), IL-13 (76), 
and TNF-α (77), whereas insulin is reported to inhibit SP-D 
expression in lung epithelial cell line (78).

In addition, estrogen positively regulates expression of SP-D 
in the mouse uterus (79). Progesterone, along with estrogen 
synergizes SP-D expression, however, when administered 
alone results in negative regulation (80). SP-D transcript levels 
increased sevenfold in the prostate of castrated rats suggesting 
negative regulation by testosterone (81), while testosterone sup-
pression downregulated transcript levels of SP-D in murine testis 
(38). Moreover, serum SP-D levels increase in Turner syndrome 
patients treated with growth hormone (82).

eFFeCTS OF SP-D

The primary reported effects of SP-D include binding of bacteria, 
viruses, fungi, and, recently, helminthic parasites, for clearance 
via opsonization for phagocyte recognition (83–90). A detailed 
review of the numerous interactions of SP-D with pathogenic 
microbes was provided by Nayak et al. (91). SP-D can also bind to 
other biological or abiotic particles and participate in their clear-
ance from the airways and potential additional sites. Hence, SP-D 
is known to aggregate allergens and aid in their removal (92, 93), to 
enhance clearance of genomic DNA and apoptotic material (94), 
to aggregate and remove particulate material (95), and has the 
capacity to affect the mouse intestinal microbiota under certain 
experimental conditions (96, 97). The lectin activity of human 
SP-D favors its interactions with microbial ligands glycosylated 
with a variety of saccharides, including N-acetylmannosamine 
(ManNAc) > mannose > fucose (36, 98); however, SP-D is also 
recognized to bind a wide range of inhaled pathogens and can 
bind saccharides as well as lipids and nucleic acids, with broad 
specificity, to initiate phagocytosis. The diversity of its ligand 
interactions were recently reviewed by Jakel et al. (99).

In addition to opsonization for phagocytosis, the antimicro-
bial effects of SP-D include aggregation (100–102), which may 
enhance the efficiency of neutrophil extracellular traps (103), bac-
terial and fungal cell-membrane lysis (104–106), neutralization of 
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TAbLe 2 | SP-D-mediated cellular effects.

Cell type Main reported SP-D-mediated effects Reference

Macrophages Opsonization of pathogens, allergens, DNA, apoptotic cells, and nanoparticles for phagocytosis; actin polymerization and chemotaxis; 
induction of MMP-1/3/12, IL-6/10/12, and IFN-γ expression; reduction of allergen induced and modulation of LPS-induced NO and 
IL-12 production and CD14/TLR signaling

(84, 87, 93, 
95, 114, 115, 

117–132)

Monocytes Opsonization of pathogens for phagocytosis; chemotaxis; induction of IL-6/10, TNF-α, and IFN-γ expression; inhibition of viral entry (128, 
133–137)

Neutrophils Opsonization of pathogens for phagocytosis; chemotaxis; modulation of virus-induced respiratory burst (84, 85, 135, 
138–141)

Eosinophils Inhibition of eotaxin-triggered chemotaxis and eosinophilic cationic protein degranulation; increased apoptosis in activated cells; 
reduced TGF-β1 production

(142–144)

Lymphocytes Inhibition of T cell proliferation and activation; repression of TLRs activation and TNF-α, IFN-γ, Th17, and IL-6 expression; delayed 
apoptosis after short-term incubation; induction of apoptosis in activated lymphocytes after extended incubation

(137, 
145–152)

Basophils Inhibition of IgE binding to the allergens of Aspergillus fumigatus and hence blocking allergen-induced histamine release from basophils (153)

Mast cells Decreased allergen-induced IgE-dependent degranulation (154)

Dendritic cells Modulation of antigen presentation; induced uptake of particles or antigens; maintenance of DC-SIGN expression; reduced TNF-α 
secretion

(93, 95, 
117, 150, 
155–157)

NK-cells Suggested stimulation of IFN-γ secretion (134)

Epithelial cells Suggested repression of fungal spore binding; repression of bacterial binding; increased allergen binding and uptake; neutralization of 
viral infectivity; inhibition of proliferation and migration of human lung adenocarcinoma cell line trough suppression of EGF signaling; 
inhibition of the expression of inflammatory cytokines through TLR4 signaling in corneal epithelial cells

(25, 26, 44, 
46, 158–162)

Fibrocytes Reduced TGF-β1 and CXCR4 expression (163)

Smooth 
muscle cells

Repression of TNF-α- and LPS-induced IL-8 release (47)

NK-cells, natural killer cells; MMP-1/3/12, matrix metalloproteinase 1/3/12; IL-6/8/10/12, interleukin 6/8/10/12; IFN-γ, interferon-γ; LPS, lipopolysaccharide; NO, nitrogen oxide; 
CD14, cluster of differentiation 14; TLR (4), toll-like receptor (4); TNF-α, tumor necrosis factor-α; TGF-β1, transforming growth factor-β1; Th17, T helper 17 cell; IgE, Immunoglobulin 
E; DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; EGF, epidermal growth factor; CXCR4, C-X-C chemokine receptor type 4; SP-D, 
surfactant protein D.
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infectivity (107–109), or dampening of innate signaling evoked 
by microbe-derived ligands (110).

Surfactant protein D enhanced phagocytosis and additional 
antimicrobial activity is beneficial to the host; however, in some 
rare cases, SP-D binding to pathogens can be a risk factor contrib-
uting to deterioration of (murine) disease and increased pathogen 
burden, for example, of hypocapsular Cryptococcus neoformans 
(111, 112) and Pneumocystis carinii (113). Initial studies of SP-D 
interactions with Mycobacterium tuberculosis demonstrated 
reduced bacterial uptake by macrophages, whereas in vivo studies 
suggest that SP-D is dispensable for immune control of infection 
(114–116).

SP-D-MeDiATeD CeLLULAR ACTivATiON

A wealth of data from in  vitro studies demonstrate that SP-D 
modulates immune cell, epithelial cell, fibrocyte, and smooth 
muscle cell functions (Table 2).

SP-D ReCePTORS

The identification of SP-D receptors is important for understand-
ing its immune-regulatory and homeostatic functions in different 
cell types. A series of SP-D receptors, or receptor candidates, have 
been identified; however, the cellular effects of SP-D via some of 

these receptors have yet to be determined mechanistically and 
validated by independent research.

Cluster of Differentiation 14 (CD14)/TLR/
Myeloid Differentiation Factor 2 (MD-2)
Initially, SP-D was demonstrated to interact in a Ca2+-dependent 
manner with glycosylated CD14 via its C-type lectin domain 
(CTLD), thereby inhibiting lipopolysaccharide (LPS) binding 
(164). Subsequently, allergen-induced activation of macrophages 
and dendritic cells by SP-D mediated by suppression of the CD14/
TLR signaling pathway was discovered (117). Furthermore, 
SP-D can inhibit the cell surface binding of LPS to TLR4/MD-2-
expressing cells and attenuate MD-2 binding to LPS through 
the CTLD (118, 165, 166). Moreover, SP-D modulation of 
epithelial responses to additional microbial stimuli was recently 
documented as dependent on TLR4 and MyD88 (44). Such 
observations may partially explain the results of in vivo studies 
indicating that SP-D inhibits inflammation caused by bacterial 
LPS (167–169). SP-D can also bind to TLR2 (165).

Signal-Regulatory Protein-α (SiRP-α)/
Calreticulin/CD91
In a highly cited study from 2003, it was suggested that free SP-D 
binds to the cellular receptor, SIRP-α, through its CTLD, resulting 
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in an inhibitory signal preventing activation of mononuclear 
phagocytes, nuclear factor-κB activation, and secretion of inflam-
matory cytokines through phospho-p38-dependent signaling. 
By contrast, when the CTLD is occupied by a ligand, SP-D was 
suggested to interact with a cell surface receptor complex consist-
ing of CD91 and calreticulin, through its collagen-like domain, 
promoting inflammatory cell activation (170). However, the 
main focus of the study was SP-A interactions. Consequently, the 
evidence for direct SP-D/SIRP-α binding was weak and CD91/
calreticulin interactions were only demonstrated for SP-A. The 
study inspired further research, which validated the binding of 
SP-D to N-glycosylated sites in the membrane-proximal domain 
of SIRPα, and to SIRPβ, a related SIRP (171). Moreover, in the 
absence of inflammation, SP-D can suppress the phagocytic 
function of alveolar macrophages by binding to SIRPα, thereby 
altering the activity of its downstream signaling effectors. By 
contrast, during LPS-induced inflammation, recruited mono-
nuclear phagocytes partly escape SP-D-mediated inhibition and 
contribute to cell clearance (119) while IL-12p40 production 
is suppressed (120). Glucocorticoid treatment further relieves 
SP-D-driven suppression of apoptotic cell uptake through down-
regulation of SIRPα (172).

At the same time that SP-D interaction with SIRPα was 
validated, it was demonstrated that an interaction of SP-D with 
macrophage calreticulin appeared to be dependent on biochemi-
cal modification of SP-D. S-nitrosothiol (SNO)-SP-D, formed 
by nitrosylation of N-terminal cysteines in SP-D, but not native 
SP-D, was chemoattractive for macrophages, inducing down-
stream p38 phosphorylation. The authors suggested that SP-D 
acts to integrate the status of the lung lining, initiating inflamma-
tory responses under various pathological conditions, through 
calreticulin-mediated signaling, while maintaining a quiescent 
state through SIRPα signaling in the absence of stress (173).

Leukocyte-Associated immunoglobulin-
Like Receptor 1 (LAiR-1)
Leukocyte-associated immunoglobulin-like receptor 1, which is 
a receptor expressed on most immune cells, and for which colla-
gens are high-affinity ligands, is an inhibitory SP-D receptor. The 
collagen stalk of SP-D is essential for the interaction with LAIR-1, 
which results in functional reduction of reactive oxygen species 
(ROS) signaling in a neutrophilic cell line (174). The authors 
therefore suggested that a lack of SP-D/LAIR-1 interaction could 
be responsible for the increased production of hydrogen perox-
ide in lung homogenates previously observed in SP-D deficient 
(Sftpd−/−) mice (175).

Osteoclast-Associated Receptor (OSCAR)
Another collagen receptor, OSCAR, expressed in inflammatory 
C-C chemokine receptor type 2 (CCR2) + monocytes and mac-
rophages, can functionally interact with multimeric (cruciform) 
SP-D, resulting in a pro-inflammatory response. This interaction 
leads to TNF-α release from CCR2+ monocytes and apparent 
internalization of the SP-D/OSCAR complex in alveolar mac-
rophages (133). OSCAR is also expressed in osteoclasts, dendritic 
cells, and endothelial cells (176).

Fc Receptor γii (FcγRii/CD32)
Surfactant protein D binding to FcγRII (CD32) on eosinophils 
has been detected by flow cytometric analysis and may explain 
the inhibitory effect of SP-D on IgG and serum-triggered eosino-
philic cationic protein degranulation by eosinophils (142).

NKp46
Sftpd−/− mice have reduced expression of pulmonary interferon-γ 
(IFN-γ) when exposed to ozone; therefore, it was hypothesized 
that IFN-γ-producing natural killer (NK) cells interact with SP-D 
through the glycosylated membrane receptor, NKp46. Indirect 
evidence for such an interaction came from the reduced bind-
ing between SP-D and NK cells obtained from NKp46−/− mice, 
relative to those from NKp46+/+ mice; the authors of this study 
suggested that this interaction may be involved in the IFN-γ-
dependent impaired dendritic cell homing to lymphoid tissue in 
Sftpd−/− mice (134).

G Protein-Coupled Receptor 116 (GPR116)
The phenotype of GPR116 (Ig-Hepta) deficient mice is very 
similar to that of Sftpd−/− mice, including accumulation of sur-
factant lipids, enlarged alveoli, hypertrophy of type II alveolar 
(AT-II) cells, decreased surfactant uptake by type II alveolar cells 
(AT-II cells), accumulation of enlarged foamy macrophages, and 
enhanced expression of the matrix metalloproteinase 12 (Mmp12) 
gene. Therefore, it was hypothesized that this adhesion class of 
G protein-coupled receptor may interact with SP-D. GPR116 is 
highly expressed in type II pneumocytes and immunoprecipita-
tion of flag-tagged recombinant proteins supports SP-D as a likely 
ligand of this receptor (177).

Uroplakin ia (UPia)
Uroplakin Ia is a glycoprotein expressed on bladder urothelium 
that serves as a receptor for FimH, a lectin in bacterial pili, and 
this interaction initiates uropathogenic Escherichia coli (UPEC) 
infection. SP-D binds directly to UPIa, which is rich in high 
mannose glycans, and thereby inhibits the adherence and cyto-
toxicity of UPEC in a human bladder epithelial cell line. These 
in vitro observations were supported by the results of experiments 
demonstrating that exogenous administration of SP-D inhibited 
UPEC adherence to the bladder and dampened UPEC-induced 
inflammation in mice (26).

epidermal Growth Factor Receptor (eGFR)
Surfactant protein D binds directly to high mannose-type 
N-glycans in EGFR and the interaction blocks the binding of 
epidermal growth factor (EGF) to EGFR, suppressing EGF 
signaling and inhibiting the proliferation and migration of two 
human lung adenocarcinoma epithelial cell lines, indicating that 
lung cancer cells are regulated by SP-D via autocrine mecha-
nisms (158, 178).

Additional receptor candidates, Jäkel and Sim, demonstrated 
that SP-D can bind to a 20- to 22-kDa structure on macrophages 
and dendritic cells in a calcium-dependent manner; however, 
they were unable to identify the nature of the structure (179). 
Interaction of SP-D with dendritic cell-specific intercellular 
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FiGURe 1 | Multimerization of surfactant protein D (SP-D). (A) Regions of the trimeric SP-D subunit. The subunit structure has been drawn to the approximate 
dimensions of the protein domains. Adapted with permission from Ref. (190). (b) Multimerization of the trimeric SP-D subunit (3 chains) into 4-subunit cruciform  
(12 chains) or fuzziball >4-subunit (>12 chains) structures of SP-D. (C) Schematic overview of how multimeric SP-D is implicated in antimicrobial defense. Binding of 
multimeric SP-D to microbe-associated glycans may block interaction of the microbe with its receptors, aggregate the microbes, or SP-D may act as an opsonin, 
enhancing endocytic uptake of the microbe in host cells. Only fuzziball SP-D multimers are shown for simplicity. CTLD, C-type lectin domain.
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adhesion molecule-3-grabbing non-integrin reduces SP-D-
mediated HIV-1 capture and transfer to CD4+ T cells (180).

ADDiTiONAL iNTeRACTiNG HOST 
MOLeCULeS

Secreted host molecules, reported to bind SP-D include decorin 
(181); the protease inhibitor, alpha(2)-macroglobulin, which 
enhances bacterial agglutination and protects SP-D against 
elastase-mediated degradation (182); deleted in malignant brain 
tumor 1/gp340, which enhances SP-D-mediated viral aggrega-
tion (183, 184); and defensins, which, according to subtype, may 
cause SP-D to precipitate out of bronchoalveolar lavage (BAL) 
fluid or have additive viral neutralizing activity when combined 
with SP-D (185, 186). Moreover, various classes of immuno-
globulin, including IgG, IgM, IgE, and secretory IgA, bind SP-D. 
SP-D aggregates immunoglobulin-coated beads and enhances 
their phagocytosis and IgM–SP-D complexes effectively opsonize 
late apoptotic cells and enhance their clearance by alveolar mac-
rophages in the lungs (121, 187).

SP-D STRUCTURe, DeCOMPOSiTiON, 
AND PROTeOLYTiC DeGRADATiON

The amino acid sequence (375 aa) of the mature SP-D monomer 
consists of four structural domains: (1) an N-terminal domain 
involved in intermolecular disulfide bond formation; (2) a colla-
gen domain, important for spacing of the CTLDs; (3) an α-helical 
neck region involved in protein trimerization and spacing of 
the CTLDs; and (4) a globular C-terminal CTLD (Figure 1A), 

responsible for Ca2+-dependent binding of microbial ligands 
(188). The SP-D protein structure is stabilized by assembly into 
trimers and multimers via two conserved cysteine residues in the 
N-terminal domain (33, 189).

The individual “arm” length of an SP-D monomer is approxi-
mately 46 nm (188), making it a molecule with dimensions the 
same order of magnitude as certain viruses, as shown by electron 
microscopy (191). The molecular mass of SP-D molecules ranges 
from <100 to >1,000 kDa, as a consequence of different degrees 
of multimerization. Disulfide-bridge dependent trimerization of 
SP-D into subunits and further multimerization into cruciform 
or fuzziball structures (astral bodies), which can contain 32 (or 
more) trimeric subunits (17, 192) (Figure  1B), provides the 
spatial arrangement required for high-avidity interaction of the 
CTLDs with multivalent microbial ligands (85, 100). The effects 
of SP-D thus depend on the degree of multimerization for the 
binding of ligands (108, 115) (Figure 1C) or the cellular receptors 
evoking major SP-D antimicrobial effects.

HMw AND LMw SP-D

High-molecular weight SP-D multimers are only partly depend-
ent on disulfide crosslinking of the N-termini, and a proportion 
of SP-D subunits are non-covalently associated. This allows 
interconversion between HMW SP-D and LMW SP-D trimers, 
as demonstrated using size permeation chromatography (36) 
(Figure 1B). The HMW/LMW ratio depends on the concentra-
tion of the protein in solution, with low-protein concentrations 
favoring the decomposition of multimers into trimers. In addi-
tion, the HMW/LMW ratio increases with affinity purification of 
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SP-D, suggesting that ligand-binding facilitates assembly of SP-D 
trimers into multimers (36).

A single-nucleotide polymorphism (SNP), rs721917, in the 
SP-D gene (SFTPD) results in expression of either methionine 
or threonine at position 11 (Met11Thr) in the mature protein. 
The HMW/LMW ratio in body fluids appears to vary according 
to the amino acid at this position, with 1:(1–1.6) for methionine 
11 (Met11) and 1:(3–5) for threonine 11 (Thr11) allelic variants 
(36, 37), as assessed by monoclonal immunodetection of SP-D 
CTLDs after size permeation chromatography. HMW SP-D 
exhibits markedly increased binding to a majority of microbial 
ligands and microbes (36, 37), which calls into question the role 
of LMW SP-D, other than as a large reservoir of subunits avail-
able for assembly of HMW SP-D when enriched on microbial 
surfaces; however, whereas HMW SP-D binds preferentially 
to intact influenza A virus and bacteria, trimeric SP-D favors 
Ca2+-independent binding to isolated bacterial LPS (37). Use 
of ManNAc-affinity chromatography, in place of traditional 
maltose-affinity chromatography, allowed preparation of 
enriched natural trimeric human SP-D, facilitating investigation 
of this molecule. Natural LMW SP-D also binds to endogenous 
circulating ligands including low-density lipoprotein (LDL), 
oxidized LDL (oxLDL), and high-density lipoprotein (HDL), in 
a partially Ca2+-independent manner, whereas HMW SP-D does 
not bind lipoproteins (36).

IN VIVO STUDieS OF SP-D SiZe 
vARiANTS

Transgenic Sftpd−/− mice expressing either the human SP-D Met11 
or Thr11 allelic variants were generated to test the hypothesis that 
this allelic variation is implicated in disease; however, the expres-
sion of the allelic variants was under the control of a promoter 
for ubiquitous expression. Consequently, the distribution of 
SP-D levels in the lung and serum appeared to differ from that of 
endogenous SP-D. This made comparisons of effects with normal 
mice difficult, despite sustained allele-dependent HMW/LMW 
SP-D distribution. The low transgene expression levels in the 
lung generated pulmonary phenotypes in both transgenic mice 
somewhat resembling Sftpd deficiency, which is characterized by 
mild emphysema and the presence of foam cell-like macrophages 
(193–197). Alternative studies made point mutations affecting 
the N-terminal cysteines involved in the stabilization of SP-D 
HMW multimers, or deletions of the collagen region and/or 
the N-terminal region. Such studies demonstrated that trimeric 
SP-D subunits have the same saccharide selectivity as multim-
ers, but appear to have a weaker and more restricted range of 
antimicrobial activity (85, 100, 198, 199). In vivo studies, where 
the N-terminal cysteine mutated SP-D was overexpressed, or an 
SP-D collagen deletion mutant protein expressed, in Sftpd−/− or 
wild-type mice demonstrated that native SP-D is essential for 
pulmonary phospholipid homeostasis and prevention of airspace 
enlargement (189, 200). Collectively, those studies suggested that 
multimerization is important; however, in  vivo administration 
of repeated high doses of a 60-kDa recombinant trimeric frag-
ment of SP-D [60-kDa recombinant trimeric fragment of SP-D 
lacking the N-terminal but retaining a part of the collagen region 

(rfhSP-D)], lacking the N-terminus but retaining part of the col-
lagen region, appeared to have similar effects to native SP-D in 
reducing lipidosis, apoptotic macrophages, alveolar type II cell 
numbers, and airspace enlargement in mice (201, 202), suggesting 
that the homeostatic effects of SP-D are predominantly mediated 
by the CTLD, and that high therapeutic levels of trimeric human 
SP-D may compensate for a relatively low target avidity. Trimeric 
rfhSP-D has subsequently been used successfully in antimicrobial 
or anti-inflammatory therapy in a series of in vivo studies (110, 
203–206) and can also induce apoptosis of activated immune 
cells (143, 145). However, rfhSP-D has also failed to demonstrate 
effects in some contexts (92) and the extent to which the effects 
of full-length multimeric SP-D can be mimicked by high levels of 
trimeric SP-D is not yet entirely clear.

GeNeTiC vARiATiON AFFeCTiNG  
SP-D STRUCTURe

According to a study of adult twins, genetic factors explain an 
estimated 83% of variation in constitutive serum SP-D levels. 
Moreover, the rs721917 SFTPD SNP is associated with serum 
levels of SP-D (207) and explains 39% of phenotypic variation 
(36), with the Met11 allelic variant associated with the highest 
levels (37). Both allelic variants were detected at relatively high 
frequencies (Thr11/Thr11 = 0.18, Met11/Thr11 = 0.43, Met11/
Met11 = 0.36) in a North European population (208). Moreover, 
the rs721917 allelle frequency distribution is highly similar in 
different populations (209, 210), although ethnic differences are 
documented (211).

Consistent with genetic determination of SP-D levels, the 
constitutive distribution of HMW and LMW SP-D in human 
body fluids is also genetically determined, with individuals 
homozygous for the Met11 allele having a relative predominance 
of HMW SP-D and Thr11 allele homozygotes more LMW SP-D. 
The dependency of SP-D molecular size on rs721917 genetic vari-
ation is supported by the size distribution of recombinant SP-D 
expressed from the two allelic variants in a human cell line (37). 
The varying abilities of the allelic variants to assemble into mul-
timers is postulated to be attributable to the different hydropho-
bic properties of Met and Thr, or partial O-linked glycosylation 
of the Thr11-residue, which may affect close-proximity disulfide 
bonding, thus limiting the stability of Thr11-variant multimers 
(34, 37).

Several studies have linked rs721917 with clinical pathologies 
(Table 3), which may indicate involvement of SP-D size variation 
in pathogenesis. Some rs721917 association studies have demon-
strated a strong interaction with smoking, including in preclinical 
cardiovascular disease (CVD) (212–214). Moreover, some data 
are contradictory; for example, SNP-analysis associated rs721917 
variation with chronic obstructive pulmonary disease (COPD) 
(215), whereas genome-wide association (GWA) analysis did not 
confirm this association, although several other SFTPD SNPs 
were identified as associated with COPD (216). Recently, an 
association of rs721917 variation with SP-D size variation was 
reported in respiratory disease (217); however, the overall conclu-
sion from studies of rs721917 variant associations is that both 
allelic variants may be deleterious in different disease contexts, 
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TAbLe 3 | SFTPD rs721917 (Met11Thr) variation in disease.

Study Population Allele Cases/controls Reference

Acute RDS German No association 52/46 (218)
Allergic rhinitis Chinese Thr11 216/84 (219)
Asthma German No association 322/270 (220)
Atopy in asthma Black Met11 162/97 (221)

Cardiovascular disease
Atherosclerosis, preclinical Danish Thr11 396 preclinical cases (214)
Atherosclerosis, preclinical Danish Met11-smoking interaction 396 preclinical cases (214)
Coronary stenosis Norwegian Thr11 130/100 (222)

Chronic lung allograft dysfunction with reduced survival Columbian Thr11 191 cases/NA (223)
COPD Mixed Thr11b 389/472 (224)
COPD Japanese Thr11 188/82 (225)
COPD Pakistani Met11 115/106 (215)
COPD, survival, change in FEV1, positive bronchodilator response Chinese Thr11a 192/128 (226)
Lowest lung function in smokers Danish Thr11 492 smokers/1017 non-smokers (212)
Emphysema Japanese Thr11 160/971 (225)

Community-acquired pneumonia
Multi-organ dysfunction syndrome Spanish Thr11 178/1,186 (227)
Acute RDS Spanish Thr11 29/510 (227)

Cystic fibrosis, renal involvement Spanish Thr11 210/NA (228)
Diabetes, type II Spanish Met11 440/2,270 (229)
Inflammatory bowel disease American No association 256/376 (230)
Interstitial pneumonia Japanese Thr11 93/1,249 (231)
Lung cancer Japanese Thr11 140/1,202 (231)

Prematurity
Bronchopulmonary dysplasia Greek Thr11a 71 neonates (232)
Diverse respiratory outcomes Danish Met11 202/211 (233)
RDS German No association 283 preterm infants (234)

Preterm birth, spontanous Finnish Met11 406/201 (235)
Rheumatoid arthritis, erosive disease Danish Thr11 456/533 (213)
Respiratory syncytial virus infection Mixed Thr11a 148/NA (236)
Respiratory syncytial virus infection Finnish Met11 84/93 (209)
Tuberculosis Mexican Thr11 178/101 (237)

SFTPD Met11Thr allelic variant with association to increased risk are indicated.
COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; Met11, methionine 11; RDS, respiratory distress syndrome; Thr11, threonine 11.
aInformation derived from haplotype analysis.
bGenetic associations were attempted replicated in additional cohorts in the same study, but SFTPD Met11Thr association was only reported significant in 1 out of 4 cohorts.
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although the majority of studies suggest disease associations with 
the Thr11 allele.

biOCHeMiCAL MODiFiCATiON OF SP-D

Posttranslational modifications of SP-D include partial hydrox-
ylation of proline and lysine residues in the collagen-like region. 
Furthermore, SP-D can undergo glycosyl-galactosyl O-linked 
glycosylation of hydroxylated lysine residues and O-linked 
glycosylation of N-terminal threonines. N-glycosylation 
of SP-D also occurs within the collagen-like region. These 
modifications are partial, hence the molecular weight of 
resulting molecules varies from 37 to 50 kDa, as assessed by 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and mass spectrometry (34, 188, 238–241). Some 
posttranslational SP-D modifications may alter its propensity 
for multimerization and a fraction of LMW SP-D purified from 
normal body fluid (late amniotic fluid) is unable to assemble 
into multimers (36). This fraction probably contains modified 
or partly degraded SP-D and appears to be enriched under 
inflammatory conditions.

Glycosylation variants
Surfactant protein D can undergo O-linked glycosylation of 
Thr11 and this variant is essentially present in the trimeric form 
(34). Moreover, endothelial SP-D appear with lower molecular 
weight band pattern in SDS-PAGE and may represent immature 
intracellular protein, or a posttranslationally modified version of 
SP-D, different from the forms produced by lung cells or cells that 
generate SP-D in amniotic fluid (214); however, this remains to 
be explored.

One type of disease-induced modification of SP-D is suggested 
to be increased levels of core fucose in the SP-D N-glycan. The 
N-glycan is not expected to affect the quaternary structure of SP-D 
and normal SP-D N-glycan comprises core fucose; however, the 
glycosylation is only partial (240) and depends on fucosyltrans-
ferase activity. Glycomic analysis demonstrated that the levels of 
core-fucosylated N-glycan in SP-D are increased, relative to total 
SP-D, in smoking COPD subjects, but not in non-smokers (241).

Nitrosylation
The two N-terminal cysteines at positions 15 and 20 of the 
SP-D N-terminal region are implicated in inducible nitric oxide 
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synthase (iNOS)- and NO-mediated control of multimerization 
of SP-D through formation of S-nitrosothiol SP-D (SNO-SP-D) 
(173). SNO-SP-D levels increase during inflammation, and its 
formation results in decomposition of SP-D multimers (173, 
242–245). Radiation-induced lung injury is thus reported to result 
in iNOS-dependent disruption of SP-D multimers in mouse BAL 
(246). As described earlier, SNO-SP-D, but not SP-D (neither 
multimeric nor trimeric), is chemoattractive for macrophages 
and can induce cellular p38 phosphorylation, indicating that 
SNO-SP-D reacts differently with cellular receptors compared 
with SP-D (173).

Oxidative Damage
Non-reducible crosslinking of HMW SP-D occurs in normal late 
amniotic fluid (36), in BAL from alveolar proteinosis (17), and 
in asthma patient BAL after provocation with an allergen (242). 
Formation of tyrosine-dependent covalent crosslinking within 
the neck/CTLD of SP-D is a result of reactive oxidant species 
(ROS), including peroxynitrite activity, and reduces SP-D ligand 
aggregation (247).

Additional oxidative damage is caused by neutrophil myelop-
eroxidase and its specific reactive oxidant product, hypochlor-
ous acid. Hypochlorous acid can cause abnormal but reducible 
N-terminal disulfide crosslinking of SP-D, and although the 
mechanism is not fully elucidated, these modifications result in 
loss of the aggregating activity of SP-D in vitro and in the context 
of acute inflammation in vivo (248).

Proteolytic Degradation
Surfactant protein D is subjected to diverse types of proteolytic 
degradation, resulting in the release of LMW breakdown prod-
ucts (<30  kDa). Various studies have demonstrated that SP-D 
can be fragmented in the human lung (249–252), and relevant 
enzymes include host proteases such as neutrophil elastase, 
cathepsin G, protease 3, and MMP-9, along with elastase pro-
duced by Pseudomonas aeruginosa, and house dust mite protease 
(253–261).

Clinically relevant proteolytic degradation of SP-D is 
observed in different settings, including acute lung injury (ALI) 
(262) and cystic fibrosis (CF) BAL. SP-D degradation by CF 
relevant proteases is well described; neutrophil elastase appears 
to be the most important contributor and reduces the CTLD 
lectin activity of SP-D in  vitro (249, 250, 254, 263); however, 
the functional consequences of this have been questioned, as 
physiological concentrations of calcium can delay or abolish SP-D 
proteolysis (250, 254). Some studies have shown that, although 
present, the proteolytic fragmentation of SP-D does not appear 
to be responsible for reduced SP-D lectin activity in CF, which 
is instead suggested to be mediated by oxidative modifications 
(18). Nevertheless, SP-D levels are decreased in elastase-positive 
CF BAL samples, and the depressed levels are generally suggested 
to result from proteolytic activity (249, 250, 264). Clinical SP-D 
deficiency is not documented; however, BAL levels of SP-D may 
decrease during disease to levels that prevent immunodetection 
(264–266).

Surfactant protein D breakdown products are also detected in 
samples obtained from patients with severe asthma. In one recent 

study, no breakdown products were detected by western blotting 
(WB) in BAL, whereas the authors succeeded in identifying 
breakdown products in serum after a StrataClean Resin™ incu-
bation step. The detection of breakdown products correlated with 
increased enzyme-linked immunosorbent assay (ELISA)-based 
detection of serum SP-D, at the expense of BAL SP-D. Hence, the 
ELISA readout may represent a mixture of complete and degraded 
SP-D forms (19). LMW SP-D breakdown products, together with 
trimeric SP-D, and non-reducible SP-D, can be separated by size 
permeation chromatography and WB, as demonstrated using 
BAL obtained from children with gastroesophageal reflux (267) 
and serum from patients with asthma (217).

DeTeRMiNANTS OF SP-D LeveLS

Surfactant protein D is a hydrophilic molecule and a variety 
studies using disease selected cohorts have demonstrated that 
variation in levels of BAL or circulatory SP-D may be associated 
with pulmonary disease, as previously reviewed (16). Moreover, 
sex, smoking, adiposity, and age were reported as important 
determinants of constitutional levels of circulating SP-D in a 
homogenous Caucasian population (208); however, studies of 
age-induced changes in SP-D levels are contradictory. Rat studies 
have demonstrated an association between reduced alveolar SP-D 
levels with increased oxidative damage (268). By contrast, studies 
of human alveolar SP-D levels demonstrated no detectable change 
in its levels with aging (269), neither was induction of human nor 
mouse alveolar SP-D observed during aging, alongside induction 
of cytokines and oxidants (270). Although a clear age-related 
induction of circulating SP-D was reported in Danes (208), this 
relationship has not been identified in all ethnicities (271), and 
may not occur in the presence of disease (272, 273).

Translocation of SP-D from Lung to blood
Loss of air–blood barrier integrity is responsible for the outward 
intravascular leakage of secreted lung proteins and inward 
edematous flooding in the interstitium and air spaces (274). A 
concentration gradient of SP-D thus allows SP-D synthesized in 
the respiratory tract to leak into the bloodstream in acute and 
chronic lung injury following cigarette smoke exposure, as dem-
onstrated using mice (77, 275, 276) and shown in human subjects 
(277). Thus, in some settings, including acute cigarette smoke 
exposure, SP-D may be decreased in BAL while being simulta-
neously enriched in serum (16, 252, 277). Smoking status is a 
strong predictor of such translocation (208, 277, 278). Examples 
include investigations of SP-D variation in COPD (252, 279, 280), 
asthma (19), and CF (249, 250, 264, 265, 281, 282). Studies in 
rabbits and humans have provided evidence for molecular size-
dependent clearance of proteins from the air spaces of the lung 
(274); however, although highly anticipated, this study did not 
conclusively confirmed that LMW SP-D can translocate from 
the lung into the blood more easily than HMW SP-D (Figure 2). 
Herbein and Wright (283) reported that SP-D clearance from 
lavage was elevated in LPS-treated lungs compared with control 
lungs, due to the increased SP-D uptake in tissue neutrophils, and 
such clearance may also contribute to decreased alveolar SP-D 
levels in disease.
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FiGURe 2 | Circulatory spill-over of pulmonary surfactant protein D (SP-D) in inflammatory disease. SP-D is synthesized by Club cells, type II alveolar cells, and 
endothelial cells, and the levels of SP-D multimers and trimers in the serum are highly genetically determined. In the inflamed lung, the production of trimeric SP-D is 
increased, due to various chemical modifications and proteolytic breakdown of the protein, and loss of air–blood barrier integrity allows spill-over of pulmonary SP-D 
into the circulation. For simplicity, only alveolar damage is illustrated. Moreover, only fuzziball SP-D multimers are depicted.
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Interpretation of the quantitation of SP-D in alveolar fluid 
and serum in various pulmonary diseases may be hampered 
because anti-SP-D antibodies may have varying affinities for 
oxidized and/or crosslinked species, as recently discussed by 
Atochina-Vasserman (284). HMW and LMW SP-D structural 
variants have been examined in BAL by native gel electrophoresis 
in various clinical pulmonary diseases and, as described above, 
different studies have demonstrated that levels of trimeric SP-D 
increase in BAL in inflammatory disease, and that trimeric SP-D 
is composed of both partially degraded, oxidized, and inactive 
SP-D, as well as a Thr11-glycosylation variant (50 kDa) (18, 19, 
242, 249, 252, 262, 267, 285).

identification of Modified or Degraded 
SP-D in Clinical Samples
Variation in SNO-SP-D
The presence of SNO-SP-D in BAL from clinically relevant samples 
has recently been demonstrated. SNO-SP-D was indirectly iden-
tified in BAL from patients with Hermansky–Pudlak syndrome 
type 1 (122) and directly detected in samples from asthmatic 
patients after segmental challenge with allergen (242). Hence, a 
role for SNO-SP-D as a disease marker is conceivable, as it is 
enriched in BAL from patients with pulmonary disease (122, 
242). An ELISA-based method to measure circulating SNO-
SP-D in COPD patients has been developed using anti-SP-D 
capture antibodies and antibodies reacting with S-nitrosylated 
groups for detection; however, this approach did not identify 
an association with disease severity and found only a weak cor-
relation with radiologist score of emphysema, while possible 
associations with disease activity have not been verified (286). 
Nevertheless, detection of circulating SNO-SP-D in additional 
pulmonary diseases is warranted.

Variation in Fucosylated SP-D
A similar ELISA-based approach has been applied for meas-
urement of fucosylated SP-D, demonstrating the presence 

of a core-fucose in N-glycans groups on serum SP-D, and an 
association of circulating levels of fucosylated SP-D with COPD 
outcomes. This modification represents a promising circulat-
ing disease-associated SP-D biomarker candidate, although in 
initial experiments measured levels of fucosylated SP-D could 
not adequately separate never-smokers, COPD smokers, and 
COPD (241).

Variation in SP-D Degradation Products
An alternative approach to simple SDS-PAGE-based measure-
ment of SP-D degradation products in BAL or serum is per-
meation chromatography-based size separation; however, both 
techniques may be biased by genetic size variants (encoded by 
rs721917) and by oxidative crosslinking. Moreover, enzymatic 
neutrophil elastase degradation of SP-D and consecutive pro-
duction of monoclonal antibodies against proteolysis products 
did not appear to result in immunological recognition of 
disease-specific SP-D breakdown products (286). Although 
various proteases are known to degrade SP-D, this approach 
has not yet been developed sufficiently to enable detection of 
disease-induced SP-D neoepitopes.

THe ROLe OF SP-D iN ReSPiRATORY 
DiSeASe

Circulating SP-D levels and genetic variants in SFTPD are associ-
ated with the development, progression, and severity of various 
pulmonary diseases. The variation of constitutional serum SP-D 
levels spans a >30-fold range (208); therefore, disease-induced 
serum levels may exhibit considerable overlap with control 
levels. Nevertheless, the significance of disease-induced levels in 
prognosis is underscored by association of serum SP-D with mor-
tality in pulmonary disorders, including COPD (287), idiopathic 
pulmonary fibrosis (288), and ALI/acute respiratory distress 
syndrome (ARDS) (289). Genetic or phenotypic SP-D variation 
is associated with ALI/ARDS (289–293), lung injury in critically 
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ill mechanically ventilated patients (294), respiratory distress 
syndrome (RDS)/bronchopulmonary dysplasia (BPD) (233, 234, 
295), community-acquired pneumonia (227, 296), viral infec-
tion (297–300), asthma (19, 242), lung cancer (178, 301, 302), 
pulmonary aspergillosis (281), interstitial lung disease (15, 288, 
303–305), and COPD (215, 224, 280). This review is concerned 
with the role of SP-D in RDS/BPD, asthma, and COPD.

RDS and bPD
Genetic Association
Fetuses carrying the SFTPD rs721917 Met11 allele have been 
associated with spontaneous preterm birth (235), and an 
initial genetic association of SP-D with pulmonary outcomes 
in premature infants was suggested by the observations that 
2-marker SP-D/SP-A haplotypes including the Met11 allelic 
SP-D variant were protective against the development of RDS 
(306) and harmful in BPD (232), respectively. Subsequently, the 
rs1923537 polymorphism, located downstream of SFTPD, was 
demonstrated as associated with RDS and the requirement for 
oxygen supplementation at day 28 (a proxy of mild BPD) in very 
early preterm birth infants (234), whereas other SFTPD SNPs, 
including rs721917 (Met11Thr), were not associated with either 
RDS or BPD in that study or a subsequent investigation (307). 
Similar tendencies were observed in another study, although the 
genetic Met11 SP-D variant appeared to be protective for BPD 
defined radiologically and with requirement for supplemental 
oxygen at a gestational age of 36 weeks (295). In the most recent 
study, several SNPs in SFTPD, including the Met11 variant, were 
found to be positively associated with circulating SP-D levels and 
harmful in respiratory distress, the requirement for oxygen sup-
plementation at day 28, and respiratory support (233).

Although they generated conflicting data, the above studies 
support a contribution of SP-D genetic variation to pulmonary 
outcomes in prematurity, and the discrepancies between studies 
may be explained by differences in statistical power, different 
mean gestational ages and the associated variation in requirement 
for oxygen supplementation at day 28/36, or the investigated 
SNPs or haplotypes may reflect variation at other, causative vari-
ants. No association between SFTPD alleles and neonatal mortal-
ity has been identified, and this may explain the persistence of 
high-frequency SNPs associated with respiratory outcomes in 
prematurity. No association was identified between SP-D SNP 
variation and diffuse lung disease enriched for genetic surfactant 
dysfunction (308).

Phenotypic Association
Surfactant protein D expression in the fetal distal airways 
increases with advancing gestation and is evident in 10-week-old 
fetuses; however, in lungs from infants with RDS and BPD, only 
open terminal airways were bordered with SP-D expression. 
Injured areas lined with hyaline membranes, or alveoli filled 
with hemorrhage, infection, or edema fluid, were lightly stained 
or unstained, whereas serous cells of bronchial and tracheal 
glands were consistently stained, particularly in infants with lung 
inflammation (10).

The percentage of multimeric SP-D in neonatal BAL, which is 
capable of binding microbial compounds, appeared to be lower 

in preterm than term infants (309), and alveolar SP-D may 
essentially be absent in the presence of RDS, increasing after 
surfactant treatment (310, 311). However, an increase in preterm 
BAL SP-D the first day (day 1) after birth has been demonstrated 
(309, 312), in parallel with a transient increase in capillary SP-D 
levels. This transient, circulatory increase was predominantly 
observed in infants homozygous for the rs721917 Met11 allele 
and was more apparent in infants with respiratory distress or 
receiving respiratory support. Such observations suggest that 
genetic SP-D variation determines the magnitude of induction 
of respiratory support-dependent systemic SP-D levels. Serum 
SP-D levels, which were not significantly affected by antenatal 
steroids, were positively associated with gestational age, mode of 
delivery, risk of later septicemia, and risk of respiratory distress 
(65, 233, 313). A recent study correlated serum SP-D measured at 
later time points (day 3 and day 7 after birth) in preterm infants 
and found no relation with the requirement for mechanical 
ventilation or oxygen, or with the development of BPD using 
that approach (314).

Basic Research
Mouse fetal pulmonary SP-D expression increases with advancing 
gestation, and levels predominantly elevate shortly before birth, 
stimulated by vascular endothelial growth factor signaling and 
glucocorticoid treatment (54, 66–69, 71, 315, 316). Pulmonary 
SP-D expression is therefore very low in experimental prematu-
rity (317); however, various studies of the Sftpd−/− lung phenotype 
do not support a role for SP-D in normal fetal or postnatal lung 
development, although the vast accumulation of phospholipids 
in the Sftpd−/− lung have effects on surfactant homeostasis. 
Rather, these studies support a role for SP-D in emphysema and 
fibrosis development during airway remodeling processes later 
in life, as recently reviewed by Bersani et al. (318).

An early study of baboons showed that both the expression 
and protein secretion of pulmonary SP-D precede that of SP-A 
in normal gestational development in the baboon, and they 
are comparable to, or exceed, adult levels during advancing 
gestational age. In line with observations of the induction of 
circulating SP-D with respiratory support, data from premature 
baboons receiving 100% oxygen for 10 days to produce chronic 
lung injury indicated that lavage concentrations of SP-A reached 
a low percentage of that of normal adults, while those of SP-D 
equaled the amounts present in normal adults. The combined 
lavage SP-A/SP-D pool reached a low percentage of that of 
normal adults and the authors concluded that the combined 
decreased concentration of surfactant host-defense proteins 
may augment proclivity to infection and worsening injury (319). 
This suggestion was partly supported by a subsequent experi-
ment demonstrating an increased tendency for lung infection in 
the same model; however, the major experimental effects were 
related to massive depletion of SP-A (320). Surprisingly, Sftpd−/− 
mice are resistant to hyperoxia, which may be partly explained 
by phospholipid and SP-B-mediated induction of surfactant 
resistance to inactivation (321).

Consistent with clinical lung maturation, the major effects 
of experimental chorioamnionitis are fetal lung inflamma-
tion, increased airway surfactants, and increased lung volumes 
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(322–324), while the pro-inflammatory stimulus of chorioam-
nionitis is also commonly associated with preterm delivery and 
subsequent RDS (325, 326). A clinical study did not support 
an association of increased SP-D in amniotic fluid with intra-
amniotic infection (327). In contrast, studies of mice and lambs 
have demonstrated a clear induction of SP-D expression in the 
fetal lung after LPS treatment (328, 329), although an earlier 
study indicated greater fluctuations in SP-D expression (330). 
Furthermore, studies using transgenic mice overexpressing rat 
SP-D under the SP-C promoter demonstrated that SP-D enhances 
cytokine production in the fetal and maternal compartments on 
maternal LPS exposure. Moreover, a significantly higher propor-
tion of the pups born to dams overexpressing SP-D were stillborn 
after LPS treatment compared with those from wild-type mice 
(331). Moreover, mice that are doubly deficient in both SP-D 
and SP-A had delayed parturition and decreased expression 
of inflammatory and contractile genes (332). A recent study 
extended these findings, demonstrating that Sftpd−/− female mice 
have fertility defects, evidenced by smaller litter size, increased 
pre-implantation embryo loss, and elevated uterine inflamma-
tion, when mated with wild-type males; however, in support of 
previous findings, maternal LPS administration did not result in 
increased embryo loss or pro-inflammatory responses in Sftpd−/− 
females (333).

In contrast to the surprising association between high intra-
amniotic SP-D and preterm birth, addition of recombinant 
human SP-D to commercial surfactant containing SP-B and SP-C 
alone improved surfactant function by protecting the premature 
lung from ventilation-induced inflammation and by increasing 
its resistance to protein inhibition of surfactant function and 
changing its biophysical properties and structure when tested in 
lambs shortly after birth (334). Although pulmonary inflamma-
tion was not blocked by SP-D, exogenous SP-D was effective in 
a model of endotoxin shock in newborn preterm lambs, where 
intratracheal administration prevented systemic inflammation 
and decreased cytokine expression in the spleen and liver (169).

Asthma
Genetic Association
Although structural SP-D polymorphisms are not associated with 
allergic bronchial asthma (220), an association with decreased 
atopy was identified in black subjects (221).

Phenotypic Association
Several studies have documented induction of BAL or systemic 
SP-D levels in asthma, which may be attributable to a combination 
of induced SP-D synthesis in airway epithelia (335) and increased 
air–blood barrier integrity, as described ealier.

Levels of SP-D are increased in BAL samples from allergic 
asthma patients (336), may further increase after segmental 
allergen challenge, and be correlated with those of BAL eosino-
phils, which in turn are correlated with NO content in BAL and 
oxidized SP-D species (242). Baseline SP-D levels are elevated in 
serum from patients with allergic asthma, and further elevated 
after allergen challenge, which is predictive for the late asthmatic 
response and for eosinophil cationic protein concentrations post-
challenge (337).

Recent studies have supported these initial observations and 
demonstrated that sputum SP-D is increased in severe asthma or 
severity of exacerbation (338, 339), that serum SP-D increases 
stepwise in mild to moderate and severe disease, and correlates 
inversely with lung function and directly with small airway resist-
ance (273). Mackay et al. (19) demonstrated that serum SP-D was 
increased in severe asthma with mixed eosinophilic and neutro-
philic inflammation and enriched for SP-D breakdown products. 
The latter observation was supported by the recent findings of 
Fakih et al. (217) of a significantly decreased HMW/LMW serum 
SP-D ratio in asthmatic patients. In the studies of Mackay et al., the 
BAL/serum SP-D ratio was reported to be decreased, implicating 
depletion of SP-D from BAL due to leakage of degraded SP-D to 
the serum. Furthermore, serum SP-D levels were inversely associ-
ated with alveolar neutrophil infiltration and alveolar endotoxin 
levels (19).

Investigations that did not support a relationship between 
asthma and SP-D variation include one of the earliest studies of 
serum SP-D (340), and a recent study of serum SP-D by Akiki 
et al. (341). These discrepancies may be explained by differences 
in the distributions of mild and severe asthma between investiga-
tions. Serum SP-D enrichment is observed in pulmonary aller-
gies (342–346) and allergic rhinitis (219), which is considered 
to be a manifestation of the same underlying disease processes 
as asthma (347), and basic research has demonstrated a link 
between SP-D and T helper 2 cell (Th2)-mediated inflammation. 
Thus, differences in clinical observations may also be due to a lack 
of stratification for different distributions of allergic asthma, or 
asthma characterized by a Th2-high profile, which accounts for 
approximately 50% of patients with steroid naïve asthma (348), 
and the impact of neutrophilic inflammation or pathogenic load, 
as implicated by the observations of Mackay et al. (19).

Basic Research
Allergic asthma models have provided insight into the physi-
ological influence of SP-D in the development of Th2 type allergic 
asthma. The use of Sftpd−/− mice as allergic asthma models has pro-
vided both clear and subtle allergic asthma phenotypes; however, 
uniform data have been obtained from studies using exogenous 
administration of SP-D (110, 197, 349). A large body of studies 
have used rfhSP-D in treatment protocols and, although rfhSP-D 
did not efficiently aggregate and opsonize pollen grains relative 
to native SP-D (92), both SP-D and rfhSP-D appear to dampen 
the majority of aspects of the allergic phenotype. Intranasal 
administration of SP-D/rfhSP-D in murine models of pulmo-
nary hypersensitivity induced by diverse allergens and antigens 
suppresses specific IgE levels in serum, reduces peripheral and 
pulmonary eosinophilia, and causes T helper 1 cell polarization 
from the allergic Th2-mediated inflammation to varying degrees 
(110, 123, 144, 203, 204, 206, 221, 349–353). In one model, 
beneficial effects of exogenous SP-D were observed when it was 
administered 6 h after, but not 24 h before, allergen challenge. A 
single application of rfhSP-D to allergen-sensitized mice led to a 
dampening of the allergic airway response equilibrium, similar to 
the effect of budesonide (352).

Moreover, allergen exposure induced SP-D protein levels in 
an IL-4/IL-13-dependent manner, resulting in increased murine 
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alveolar SP-D levels (353, 354), and this negative feedback loop 
appears to protect the airways from inflammatory damage after 
allergen inhalation, as described in a recent review (355). SP-D 
in lavage and tissue is derived from AT-II cells and Club cells; 
however, it is also synthesized in hyperplastic goblet cells of 
inflamed lungs (356).

Additional beneficial SP-D effects in asthma may be antici-
pated in virus-induced asthma, because of the anti-viral effects 
of SP-D; however, deleterious effects may also be expected due 
to disease-induced formation of SNO-SP-D. Disease-related 
proteolysis is suspected to render a fraction of SP-D malfunc-
tioning or deleterious (260), nevertheless, the overall effects of 
SP-D appear to be beneficial in the context of allergic asthma. 
The main reported individual steps leading to SP-D-dependent 
experimental phenotypes are illustrated in Figure 3.

Some of the effects illustrated in Figure  3 remain unclear. 
SP-D can increase pollen starch granule (PSG)-positive cells 

in  vitro and accelerate PSG binding/uptake in  vivo; however, 
studies by Winkler et al. (93) demonstrated that it did not affect 
total clearance of PSGs from the mouse lung nor enhance T-cell 
proliferation induced by PSG-positive dendritic cells. Hence, the 
different results obtained using human cell cultures or clinically 
isolated cells, compared with those from mice models, require 
further investigation.

A wider role for SP-D in Th2 immunity was recently proposed 
in a study of infection with the helminth Nippostrongylus bra-
siliensis. Elevated SP-D production in Th2 immunity is partly 
driven by IL-4 and IL-13. In turn, SP-D can exert negative 
feedback control of Th2 responses (90, 353); however, whereas 
allergic asthma studies identified increased type 2 immunity in 
Sftpd−/− mice, similar effects were not observed in N. brasiliensis 
infections. The results of these investigations demonstrate that 
elevated SP-D can enhance type 2 immunity and suggest that 
SP-D is an important modulator of protective IL-13 producing 
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type 2 innate lymphoid cell-mediated and alveolar macrophage 
responses against N. brasiliensis (90).

Chronic Obstructive Pulmonary Disease
Genetic Associations
Associations of polymorphisms or haplotypes in, or flanking, 
SFTPD with COPD, emphysema, and COPD survival have 
been identified in various populations and by GWA studies 
(215, 216, 224–226, 360–362). As reviewed by Lock-Johansson 
et al. (363), specific SNP associations have not been validated 
in all investigated populations (363). The SNPs associated 
with COPD and circulating SP-D levels differed within some 
investigations, suggesting distinct genetic influences on COPD 
susceptibility and SP-D levels. In addition, two coding SNPs in 
SFTPD were associated with expiratory lung function in a study 
of preclinical smoke-induced lung injury (212), suggesting that 
structural variants of SP-D affect the susceptibility of COPD 
development in smokers. Recently, Mendelian randomization 
analyses were used to analyze serum SP-D-associated genetic 
variants and their association to COPD in the largest study 
executed until today. Variants were tested for association 
with COPD risk in 11,157 cases and 36,699 controls and with 
11  years decline of lung function in 4,061 individuals. This 
study concluded that variants associated with increased serum 
SP-D levels decreased the risk of COPD and slowed the lung 
function decline (364).

Effects of Smoking
The majority of studies of smokers have reported reduced 
alveolar levels of SP-D (252, 269, 278, 365), and alveolar epithelial 
injury after LPS instillation was more severe in smokers than 
non-smokers, with increased circulatory SP-D and decreased 
BAL SP-D (277). These clinical observations are supported by 
in  vitro observations that nicotine can cause reduced levels of 
SP-D in human airway epithelial cells (366). Additional studies 
have demonstrated increased circulating SP-D with tobacco 
smoking or other types of noxious exposure, including data 
from a twin study showing that smoking monozygotic twins had 
markedly increased serum SP-D relative to their non-smoking 
twins, despite the very high heritability of serum SP-D levels 
(208, 252, 280, 340, 367, 368); however, smoke-induced serum 
levels may not be clearly evident in mixed populations of res-
piratory patients, where SP-D levels may be influenced by other 
processes (369). As described earlier, cigarette smoke disrupts 
the quaternary structure of SP-D molecules (252). However, 
an initial attempt to construct an immunoassay for proteolytic 
SP-D breakdown products in serum did not provide additional 
information regarding COPD (286).

Differentiation between COPD, Smoking,  
and Other Respiratory Diseases
Whether SP-D levels can differentiate COPD from smoking 
or other respiratory diseases is uncertain. Some studies have 
noted significant decreases in SP-D in BAL samples from COPD 
patients compared with current smokers (252, 279), while 
others have not (269, 278). In a multicenter study, “Evaluation 

of COPD Longitudinally to Identify Predictive Surrogate 
Endpoints” (ECLIPSE), of approximately 2,000 individuals with 
COPD, higher serum SP-D levels were reported among COPD 
patients relative to current and former smokers without respira-
tory obstruction. As the largest difference in serum SP-D levels 
occurred between non-smokers and current/former smokers, 
it was concluded that SP-D is a powerful biomarker for smok-
ing; however, there was no difference in serum SP-D levels in 
individuals with COPD, or in smoker controls with chronic 
bronchitis, compared with those who did not have this symptom 
(280). In addition, there are examples of smaller studies that have 
not shown significant differences between COPD smokers and 
control smokers (226, 370, 371).

Chronic obstructive pulmonary disease is a heterogeneous 
disease with several features that overlap with asthma, which 
has important therapeutic implications for some patients. Data 
from a randomized control trial of inhaled glucocorticoid 
therapy in COPD (Groningen Leiden universities chronic 
obstructive pulmonary disease) confirmed that alterations 
in airway gene expression may coexist in asthma and COPD, 
and suggested that Th2 inflammation is important in a subset 
of patients with COPD who have no history of asthma (372). 
Despite the vast body of experimental evidence for a role of SP-D 
in eosinophil-mediated allergy/asthmatic disease, there is no 
reported evidence linking changes in SP-D expression/function 
and eosinophil activity in COPD; however, independent studies 
have provided evidence that supports elevation of circulating 
SP-D in COPD compared with asthma patients; thus, SP-D may 
differentiate these two diseases. Yet, these studies may not have 
controlled sufficiently for the effects of smoking or the severity 
of asthma (340, 341). Size separation of HMW and LMW serum 
SP-D appeared to provide a clear distinction between controls 
and COPD subjects, with the HMW/LMW ratio significantly 
decreased in COPD after controlling for smoking and additional 
confounders; however, a similar association was evident for 
asthmatic patients (217). Additional studies have suggested that 
smoking-related SP-D variation is prognostic in lung cancer 
(301, 302).

Phenotypic Associations
Severity
In the ECLIPSE study, serum SP-D levels were not associated 
with COPD disease severity, as defined by the Global Initiative 
for chronic Obstructive lung Disease status, and there was no 
association with forced expiratory lung function (280). Some 
smaller studies have reported similar findings (272, 341, 373, 
374); however, Ju et  al. (375) reported an association with the 
BODE (Body-mass index, airflow Obstruction, Dyspnea, and 
Exercise) index of severity (375).

There are contradicting data regarding the association between 
circulating SP-D and expiratory lung function. The discrepancy 
indicates that there may be an inverse correlation between serum 
SP-D and forced expiratory lung function only in smokers with 
and without COPD (212, 226, 252, 370, 376–379). Such cor-
relations may be difficult to identify in cohorts including both 
smokers and non-smokers (380), because the two groups exhibit 
opposite associations with SP-D variation (212). In addition, 
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the correlation may also be affected by differences in COPD 
treatment.

A recent analysis of data from independent longitudinal 
population-based cohorts suggested that a large proportion of 
individuals who develop airflow limitation exhibit a rapid decline 
in forced expiratory volume in 1  s (FEV1) from a normal level 
of lung function in early adulthood, whereas another fraction 
had a relatively gradual rate of FEV1 decline, but started from 
a low initial FEV1 value (381). In this regard, circulating SP-D 
has been suggested to provide the means to identify those 
smokers with low initial lung function who are at highest risk 
of COPD development and thus eligible for early intervention 
with pharmacological treatment, in addition to recommendation 
of tobacco-smoking cessation (212). Nevertheless, longitudinal 
studies are warranted to validate the use of SP-D measurements 
as information complementary to spirometric testing for early 
detection.

Treatment
Surfactant protein D is a rather stable marker when measured 
repeatedly within a few months (252, 280, 382). Nevertheless, 
Sin et al. (376) reported a significant association between serum 
SP-D decline and dyspnea improvement within a 3-month study 
(376). Inhaled corticosteroids (ICS), ICS/long-acting beta(2)-
agonist combinations, or prednisolone were also reported to 
significantly reduce plasma concentrations of SP-D and, in some 
reports, changes in SP-D levels were associated with symptom 
scores (279, 280, 373, 383). By contrast, ICS use was indepen-
dently associated with higher SP-D levels in BAL, and AT-II 
cells isolated from adult rat lungs responded to dexamethasone 
treatment by significantly increasing SP-D (279). However, 
some studies have not validated SP-D as a marker of COPD 
treatment (374).

Activity
Increased levels of circulating SP-D have been reported dur-
ing exacerbation of COPD compared with stable COPD (384, 
385). The observations from these cross-sectional studies were 
extended by longitudinal studies demonstrating that the level 
of circulating SP-D decreases in the weeks after hospitalization, 
due to exacerbation, but ultimately increases some months after 
hospitalization (375, 386, 387). The variation in levels after the 
onset of exacerbation appeared to mirror the white blood cell 
count and was ascribed to the effects of glucocorticoid treat-
ment (386).

Chronic obstructive pulmonary disease subjects from the 
ECLIPSE cohort, as well as other cohorts, who had the high-
est serum SP-D concentrations at baseline also had increased 
risk of exacerbation during the follow-up period (226, 280, 
370). The ECLIPSE consortium subsequently performed a 
more detailed analysis and concluded that the association 
with SP-D levels did not persist after adjustment for history 
of exacerbation (388). Overall, the reported data indicate that 
SP-D is a robust marker for treatment effects, but that the 
utility of circulating SP-D as marker for prediction of COPD 
exacerbation may be limited, despite induction of serum SP-D 
in the acute phase.

Emphysema and Mortality
Further data analyses from the ECLIPSE cohort have dem-
onstrated that baseline serum SP-D levels are associated with 
baseline lung density and its decline over time (389); however, 
the correlation between SP-D and emphysema was recently 
challenged by observations of serum SP-D variation in smok-
ing, pulmonary emphysema, and combined pulmonary fibrosis 
and emphysema (CPFE), where serum SP-D was clearly induced 
only in the CPFE group compared with the other groups (390). 
Moreover, a study of indium-exposed workers demonstrated 
that increased serum SP-D was more closely associated with 
progression of interstitial changes than with progression of 
emphysema (391). The ECLIPSE consortium subsequently 
confirmed that COPD is a highly heterogeneous disease with 
poor correlations between FEV1, symptoms, quality of life, 
functional outcomes, and biomarkers in general (392), which 
highlighted the need for patient subgrouping. The consortium 
then included serum SP-D into a multi-marker cluster analysis 
of COPD subgroups and found that it was reduced among 
individuals with more severe emphysema, but higher among 
those with progressive emphysema. The resulting data suggest 
that high-circulating SP-D levels could indicate highly active 
disease and progression, whereas low levels may reflect loss 
of lung tissue, and thus more severe emphysema. The authors 
further concluded that the implications of SP-D appeared to 
differ from cluster to cluster (393). Furthermore, the ECLIPSE 
and COPDGene multicenter cohort studies both indicated that 
combinations of multiple biomarkers, including SP-D, are much 
more strongly predictive of airflow limitation, emphysema, and 
mortality than any individual biomarker; however, the amount 
of variance explained by the multiple biomarkers was lower than 
that of clinical variables (394).

Together with the observation that circulating SP-D is associ-
ated with the hard endpoint “all-cause mortality” in COPD (287), 
its relationship with treatment effects and inverse correlation with 
FEV1 in smokers indicates that SP-D is a useful COPD marker 
within specified prognostic subgroups and in multi-marker 
analyses. Multi-marker analyses including SP-D may be useful to 
limit clinical trials to subgroups of patients likely to benefit from 
a given intervention or serve as surrogate endpoints.

Basic Research
Semi-quantitative studies on aging Sftpd−/− mice (395) have 
indicated that they develop progressive emphysema, increasing 
septal wall thickness (395–397), and subpleural fibrosis (194), 
which may indicate a phenotype that combines emphysematous 
and fibrotic changes in the lungs. Highly detailed stereological 
investigations of the long-term progression of lung parenchymal 
remodeling, destruction, and septal wall thickening in aging 
Sftpd−/− mice were recently undertaken by Schneider et al. (398). 
These investigations concluded that the unchallenged aging 
Sftpd−/− pulmonary phenotype was characterized by airspace 
enlargement only, without septal wall thickening (fibrosis) or 
destruction (emphysema). The age-induced airway enlarge-
ment was suggested to result from unexplained altered airway 
mechanics. The authors further suggested that the discrepancies 
in observations with previous studies might partly result from 
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the different genetic backgrounds of the mouse strains used and 
ongoing alveolarization in C57BL6 mice (398).

Although the role of SP-D in spontaneous airway remodeling 
was recently questioned, several studies of Sftpd−/− mice chal-
lenged with noxious stimuli have provided clear evidence for a 
role of SP-D in pulmonary inflammation and emphysema devel-
opment, which are essential components of COPD pathophysiol-
ogy. These results support a role for SP-D in modulating alveolar 
macrophage activation, oxidant production, and MMP activity, 
leading to emphysema-like and fibrotic changes of the lung, 
and histological and morphometric studies have demonstrated 
airspace enlargement and/or emphysema development associ-
ated with Sftpd deficiency. Inflammatory and structural changes 
may be reversed or prevented by local treatment with rfhSP-D 
or full-length SP-D (200, 202, 399, 400). These changes appear 
to predominantly affect the alveolar compartment, and there is 
no apparent SP-D-dependent effect on vascular physiology after 
cigarette smoke exposure (401).

In contrast to findings in humans with COPD, in Sftpd−/− mice 
neutrophil infiltration was not associated with lung remodeling 
during emphysema development (175). Moreover, alveolar levels 
of SP-D in mice and rats may increase after pulmonary exposure 
to noxious stimuli (276, 402–405), in contrast to the majority of 
findings in humans; however, reductions of SP-D in rat BAL after 
exposure to noxious stimuli have been reported (406). Viral and 
bacterial respiratory tract infections amplify the chronic inflam-
mation in COPD by triggering pathogen-recognition receptors, 
as recently reviewed by Brusselle et al. (407). Additional benefi-
cial SP-D effects in COPD development or progression may be 
anticipated due to the anti-viral and anti-bacterial effects of SP-D. 
The main individual steps contributing to the SP-D-depressed 
experimental phenotypes relevant to COPD are illustrated in 
Figure 4.

The phenotype of mice deficient for the proposed SP-D recep-
tor, GPR116, is highly similar to that reported for Sftpd−/− mice, 
including alveolar enlargement, enhanced ROS production, 
accumulation of foamy macrophages, and enhanced expres-
sion of Mmp12. The surfactant lipid changed induced by SP-D 
may be attributable to its effects on alveolar type II cell activity 
(177, 193, 414). Although GPR116 deficiency also causes an 
emphysema-like phenotype that is associated with alveolar mac-
rophage activation (177, 416), the phenotypes of neither GPR116 
nor Sftpd-deficient mice fully reflect those of human COPD. 
Mouse alveolar macrophages become foamy with lipid-laden 
phagosomes due to extensive uptake of surfactant lipids (177, 
417, 418); however, in human pathology, foamy macrophages are 
found in diverse disorders, including diffuse pan-bronchiolitis 
or bronchiolitis associated with bronchiecstasis (419), diseases 
of surfactant homeostasis (420), extrinsic allergic alveolitis 
(421), and tuberculosis, rather than in COPD. Moreover, the 
alveolar accumulation of surfactant lipids in the two types of 
gene deficiency appears to reflect aspects of pulmonary alveolar 
lipoproteinosis, derived from defective granulocyte macrophage 
colony-stimulating factor signaling (124, 396, 422), or other 
types of macrophage exhaustion. Thus, the appearance of foamy 
macrophages in the Sftpd−/− lung may not be specific to COPD-
related processes, although induction of MMP-12-synthesizing 

foamy macrophages results after exposure of mice to cigarette 
smoke (276), and foamy macrophages provide a source of ROS 
and inflammatory signaling in mouse models as a result of Sftpd 
deficiency (125).

SP-D iN NON-ReSPiRATORY DiSeASeS

Genetic SP-D variation, altered local protein expression, and 
serum variation have been reported in extrapulmonary diseases 
involving autoimmune disorders [including rheumatoid disease 
(213, 423–426) and diabetes (229, 427)] and in diseases involving 
specific organs [including the intestines (230, 428), skin (20), 
brain (41), and large arteries (214, 429)]. In some cases, the asso-
ciation between circulatory SP-D and extrapulmonary disease 
may be partly explained by the coexistence of respiratory disease 
or the pulmonary effects of disease (430–434). The antimicrobial 
or anti-inflammatory effects of SP-D at extrapulmonary sites have 
been demonstrated using animal models or cell culture, including 
disease models of the eye (258, 261, 435), pancreas (436), kidney/
urinary tract (437, 438), gastric mucosa (439–441), intestine 
(442), gestational tissue (27, 331, 443), and large arteries (48). 
Inflammation-modulatory effects of SP-D at extrapulmonary 
sites is, to a certain degree, similar to SP-D-mediated effects in 
the pulmonary compartment, yet unique extrapulmonary effects 
are emerging in studies of CVD, such as atherosclerosis, and also 
in metabolic disease.

Cardiovascular Disease
Association with All-Cause Mortality
A recent study of constitutional circulating SP-D measurements 
in an elderly twin population, where subclinical disease was likely 
to be present, demonstrated a relationship between the highest 
SP-D levels and increased all-cause mortality. Female twins 
with the highest SP-D levels had a significantly increased risk of 
dying before their co-twin during the study follow-up period. 
Adjustment of this analysis for intrapair differences in smoking 
pack-years did not affect the association, indicating that SP-D 
is not merely a proxy for smoking in reflecting mortality (444). 
A study of dementia in the elderly reached a similar conclusion 
about the association with all-cause mortality, without a gender-
bias (445). Hence, it is possible that SP-D is associated with CVD, 
which is the number one cause of death globally.1

The Relationship between Pulmonary Impairment 
and CVD
The sources of circulating SP-D are not entirely clear, and it is pos-
sible that spill-over of SP-D from the diseased arterial wall into 
the circulation may affect total serum levels, in addition to the 
lung, as a main contributor. COPD and coronary artery disease 
(CAD) frequently coexist, COPD is an independent risk factor 
for CAD and increased risk for cardiovascular mortality, and 
patients with diagnosed and treated COPD are at increased risk 
for hospitalization and death due to CVD (432, 446–451). These 
correlations suggest that the association of SP-D with all-cause 
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(2) decrease of macrophage transforming growth factor-β (TGF-β) production and fibrocyte recruitment (163). These SP-D effects may partly enable suppression of 
age-induced influences; (3) increased septal wall thickening by fibrotic deposition (194, 397); (4) airspace enlargement and loss of surface area of alveolar epithelia 
(194, 202, 397, 414); (5) suppression of the production of ROS and NO by macrophages, and possibly additional cell types (125, 194, 395, 409, 411). Fibrotic and 
emphysematic changes in the lung may also depend on inhibition of iNOS by SP-D (397, 413). (5/6) SP-D suppresses metalloproteinase production in alveolar 
macrophages (125, 194) and putatively additional cell types. The result is an overall decrease in pulmonary protease activity via oxidant-sensitive pathways (125, 
194); (7) prolonged alveolar epithelial cell and macrophage survival after cigarette smoke extract exposure or oxidative stress (276, 410); (8) increased efferocytosis 
(94, 121, 170, 201, 415); (9) opsonization of microbes for phagocytosis (91). (10) The resulting effects of SP-D relevant for COPD-like phenotypes in vivo include 
dampening of chronic low-level pulmonary inflammation predominantly mediated by macrophages and correlated with reduced oxidative stress and protease activity 
(125, 194), which can prevent changes in pulmonary elastance due to both tissue breakdown and fibrotic build up that occur sequentially with increasing age and 
exposure to noxious stimuli (395, 397, 409, 413). Leakage of pulmonary SP-D to the circulation in COPD has been demonstrated using clinical samples (280). Only 
trimeric SP-D and fuzziball SP-D multimers are shown for simplicity.
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mortality may be rather complex. Some recent studies have 
demonstrated that SP-D levels correlate with alveolar leakage in 
heart failure (433), and with the presence of submassive pulmo-
nary embolism (434), supporting the hypothesis that variation in 
circulatory SP-D results from disease-mediated lung damage in 
some types of CVD.

Genetic Association
Recently obtained data indicated nominal associations between 
SFTPD coding variants, including the Met11Thr polymorphism, 
and subclinical atherosclerosis, and demonstrated that the 

direction of the effects was dependent on tobacco smoking, but 
independent of circulating SP-D levels (214). An additional study 
identified a borderline significant association of the Met11Thr 
polymorphism with advanced atherosclerosis, and this variation 
was observed to significantly contribute to the risk of arterial 
stenosis when included in a complex model with other inflam-
matory gene variants (222).

Phenotypic Association
As suggested above, innate immune factors, including SP-D, may 
provide a link between respiratory and vascular morbidity and 
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mortality. In this context, circulating SP-D was positively associ-
ated with both all-cause mortality and cardiovascular mortality in 
a large study of the Vancouver Coronary Angiography Cohort by 
Hill et al. (429), and inclusion of SP-D into a multi-marker analysis 
improved risk prediction across all levels of risk. There was also a 
significant positive association of SP-D with triple vessel disease 
and a borderline association with total cholesterol; however, no 
associations with other serum lipid fractions or diabetes mellitus 
were observed in that study. SP-D was also associated with all-
cause mortality in the ECLIPSE COPD cohort (287), as described 
above, and in a study of the relationships among COPD, coro-
nary artery calcification, and mortality using the same cohort, 
circulatory SP-D was correlated with Agatston score (432). The 
relationship between SP-D and CVD is further supported by the 
observation of Hu et  al. (452) of positive associations between 
circulatory SP-D levels and carotid artery intima-media thickness 
and severe coronary artery calcification, which persisted after 
multivariate adjustment. Hill et al. (429) and Hu et al. (452) did 
not report BAL SP-D or other means of monitoring the presence 
of lung disease and, therefore, did not address the question of the 
organ source of circulatory SP-D.

Basic Research into the Role of SP-D  
in Atherosclerosis
Surfactant protein D expression, as well as expression of the 
SP-D-receptor, OSCAR, which induces secretion of TNF-α by 
CCR2 + inflammatory monocytes exposed to SP-D, was localized 
to the tunica intima and tunica media of clinical atherosclerotic 
plaques (48, 133). Arterial SP-D expression is documented both 
in endothelial cells (48) and coronary smooth muscle cells (47), 
where the pattern of expression regulation implicates SP-D in 
modulation of inflammation, and TNF-α induces SP-D expression 
in both cell types (47, 63). Direct interaction between LMW, but 
not HMW, SP-D and HDL, LDL, and oxLDL was demonstrated 
using ELISA-based assays (36). These observations suggest that 
the dominant effects of SP-D in the vasculature may not be the 
multivalent interactions with microbes, but rather may include 
specialized LMW SP-D-mediated effects on lipid metabolism.

The SP-D receptor, OSCAR, is expressed by cell types relevant 
for atherogenesis, including monocytic cells (133), neutrophils 
(453), dendritic cells (454, 455), and endothelial cells (456). 
Sftpd deficiency is shown to be protective in a diet-induced 
atherosclerosis model in C57BL/6 mice. Endogenous SP-D can 
influence systemic plasma lipids and inflammation, reducing 
HDL cholesterol and triglyceride levels while increasing those 
of TNF-α in mice maintained long term on a cholate-rich diet. 
Intravenous treatment with rfhSP-D for 5 days resulted in reduc-
tion in HDL cholesterol, but also, in parallel, in LDL cholesterol 
and total cholesterol, while there was no effect on triglycerides. 
The role of SP-D-mediated modulation of plasma lipids in 
atherogenesis is thus uncertain. However, the long-term effects 
of these events were not studied (48). A subsequent study using 
double-deficient apolipoprotein E (Apoe)−/− Sftpd−/− mice showed 
similar quantitative effects in decreasing lesion size. Moreover, 
Sftpd deficiency resulted in less macrophage accumulation, 
and more smooth muscle cell coverage of lesions (457). In that 
study, endogenous SP-D reduced several plasma lipid fractions, 

including total cholesterol and induced circulatory IL-6, rather 
than TNF-α. In contrast to the two previous studies, a study using 
double-deficient LDL-receptor (Ldlr)−/−Sftpd−/− mice did not pro-
vide clear evidence for a role of SP-D in atherogenesis (Sorensen, 
unpublished data).

Bridges et al. (410) reported that SP-D was a potent inhibitor 
of oxidation of LDL to oxLDL in in vitro assays, but later ascribed 
the majority of the effects to residual EDTA in the SP-D vehicle 
in a published erratum. However, the consequences of Sftpd 
deficiency in atherogenesis may also result from the antioxidant 
effects of SP-D and the effects on the formation of ROS and in 
NO-mediated signaling, although these aspects have not been 
investigated in detail in the vascular system.

A potential link between low SP-D levels and the sequela of 
atherosclerosis was recently demonstrated using cerebrospinal 
fluid samples from patients with cerebral infarction (41). Almost 
simultaneously, a mouse model of cerebral ischemia was analyzed, 
but showed no effect of Sftpd deficiency; however, that model was 
based on permanent occlusion of the middle cerebral artery and 
did not involve atherosclerosis (49).

The main reported individual steps leading to SP-D-enhanced 
experimental outcomes relevant for atherosclerosis are illustrated 
in Figure 5.

Metabolic Disease
Relationship between Pulmonary Impairment  
and Metabolic Disease
In addition to the association of SP-D with CVD, possible causes 
of the association between circulating SP-D and all-cause mor-
tality may include the role of SP-D in metabolic homeostasis. 
As described earlier, the brain, pancreas, gut, and endothelium 
express SP-D, and these locations suggest potential effects in sys-
temic metabolism. Diabetes and metabolic syndrome are frequent 
comorbidities in COPD patients (459–462). COPD, diabetes, 
and the metabolic syndrome are all related to systemic inflam-
mation, which may explain their cooccurrence (463). Moreover, 
pulmonary function impairment is well recognized in diabetes 
and may be attributable to increased pulmonary bacterial coloni-
zation due to hyperglycemia and exacerbation of COPD, among 
the additional causes recently discussed by Kinney et al. (464). 
By contrast, a reduced ability to eradicate pathogens may cause 
frequent respiratory tract infections, and chronic inflammation 
resulting in insulin resistance and type 2 diabetes, as reviewed by 
Fernández-Real and Pickup (465). Moreover, cigarette smoking 
is an independent predictor of type 2 diabetes, although the link 
between lower vital capacity and diabetes risk is independent of 
cigarette exposure and stronger in never-smokers (466).

Obesity is the most frequent cause of insulin resistance 
(467) and, although impaired lung function is present before 
the development of metabolic syndrome or diabetes, the asso-
ciations between pulmonary and metabolic impairment may, at 
least partly, result from the effects of obesity, as recently shown 
in the longitudinal Strong Heart Study (468). Multiple cellular 
and molecular mechanisms of the innate immune system may 
contribute to this relationship, as reviewed by Lackey and Olefsky 
(469). Several studies have independently identified positive asso-
ciations between lung function impairment and full metabolic 
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syndrome or obesity (470–473), and metabolic biomarkers are 
predictors of impaired lung function in response to particulate 
inhalation (474).

Overall, the close relationship between metabolic and respira-
tory impairment suggests that lung innate immunity, as inferred 
from genetic or phenotypic SP-D variation, could reside at the 
intersect of inflammation, obesity, and insulin resistance.

Genetic Association
Multivariate genetic analysis was used to investigate genetic 
associations of serum SP-D with factors involved in metabolic 
syndrome in a twin study (GEMINAKAR). The study found that 
genetic correlations between traits differed, but were close to 
zero for SP-D versus body mass index (BMI), which may indicate 
that the common genetic contribution to the regulation of the 
traits (i.e., pleiotropy) is significant but limited. There was no 
significant genetic correlation between serum SP-D and HDL 
cholesterol or total cholesterol, and the study did not investigate 
possible genetic associations between SP-D and diabetes (208). 
A subsequent study by Ortega et  al. (51) demonstrated that a 
common SNP variant in the SFTPD promotor, which is positively 
associated with circulating SP-D levels, was enriched in individu-
als with lower BMI and decreased percentage fat mass. A study by 
Pueyo et al. (229) showed that the presence of the variant SP-D 
allele, Met11, increased the odds of developing insulin resistance 
and type 2 diabetes, especially among women. Moreover, this 
SNP, and others in the SFTPD genomic region, were significantly 
associated with glucose homeostasis, insulin sensitivity, and type 
2 diabetes, according to GWA datasets, and these associations 
were independent of circulating SP-D concentrations (229). A 
borderline significant inverse association was observed between 
free LPS concentration in plasma and circulating SP-D in subjects 
homozygous for Thr11, but not those homozygous for Met11, in 

a small subpopulation of the study. This observation indicates 
that the different genotypes may predispose to differing buffer-
ing capacity in metabolic endotoxemia (229), consistent with 
observations by Leth-Larsen et al. (37), showing that Thr11 SP-D 
bound preferentially to LPS compared with Met11 SP-D (37).

Phenotypic Association
Fernández-Real et  al. (427) evaluated serum SP-D in four dif-
ferent cohorts and found that SP-D concentrations were signifi-
cantly decreased in non-obese populations with type 2 diabetes, 
and that they were correlated with several metabolic variables, 
including BMI, and fasting and post-load glucose levels. Obese 
subjects showed significantly decreased serum SP-D concentra-
tions, and weight loss led to further significantly decreased serum 
SP-D concentrations, while serum SP-D concentrations were 
not significantly associated with lung function parameters in 
these studies. When multiple linear regressions were performed 
using data from subjects with altered glucose tolerance, fasting 
glucose and fasting triglycerides were identified as independently 
contributing to 33% of SP-D variance (427). However, a recent 
study by López-Cano et al. (475) demonstrated increased serum 
SP-D in diabetes in obese patients with type 2 diabetes. Moreover, 
serum SP-D in this population was independently and inversely 
associated with FEV1 in the obese diabetes patients and the 
authors concluded serum SP-D might be a useful biomarker for 
detecting lung impairment in obese patients with type 2 diabetes.

The findings of Ortega et al. (51) supported previous observa-
tions that SFTPD was expressed in human adipose tissue and adi-
pocytes, and this expression was decreased in both omental and 
subcutaneous adipose tissue from obese subjects with and without 
type 2 diabetes, compared with the control group. Omental SP-D 
expression was inversely associated with several metabolic vari-
ables, including BMI, percentage fat mass, waist circumference, 
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and fasting glucose; and positively associated with the expression 
of insulin receptor substrate 1 and fatty acid synthase, suggesting 
that SP-D may effect glucose tolerance in fat tissue or vice versa.

At least two previous studies demonstrated decreased consti-
tutional circulating SP-D in obese or overweight subjects after 
correction for gender, smoking, and age, which may support an 
initial influence of the processes leading to accumulation of fat 
tissues on the correlations between SP-D and metabolic impair-
ment. As a part of the Danish population-based twin study on 
metabolic syndrome, GEMINAKAR, serum SP-D was identified 
as significantly and inversely associated with weight and waist 
circumference in men, and with BMI in both sexes (476). Similar 
findings were obtained from a Chinese population-based cohort 
(271). Moreover, the relationship was also observed in patients 
who were obese and had ALI (477).

Basic Research into the Role of SP-D in Metabolism
Three independent studies have demonstrated a link between 
Sftpd deficiency and obesity (457, 476, 478). According to a 
study by Stidsen et al. (478), body mass development in Sftpd-
deficient mice was significantly increased compared with that 
of corresponding wild-type mice receiving both ad libitum and 
fixed energy intake diets. The study also identified a significant 
redistribution of body fat in parallel to obesity-related insulin 
resistance, as well as increased metabolic endotoxemia associated 
with the Sftpd deficiency in this model (478). Relative insulin 
resistance in Sftpd-deficient mice was later validated by Hirano 
et  al. (457). Additional links between SP-D and body fat mass 
include the observation of decreased SP-D expression in human 
adipose tissue with increasing BMI (51), and direct SP-D interac-
tions with fatty acids (479).

Furthermore, SP-D was linked to metabolic homeostasis in 
two independent studies seeking to identify genes involved in β 
cell adaptation during mouse pregnancy or in rat perinatal regen-
erating pancreas. The studies demonstrated that Sftpd mRNA 
and protein levels in β cells exhibited large but transient perinatal 
increases (480, 481). TNF-α- and IL-1β-induced expression of 
SP-D in islets was demonstrated (480), suggesting that TNF-α 
induction of SP-D is a general effect for many cell types.

No direct role of SP-D in experimental diabetes development 
has been demonstrated; however, the development of diabetes in 
mother rats is accompanied by delayed pulmonary histogenesis 
and decreased SP-D expression in the pups (482). Moreover, viral 
neutralization by SP-D in vitro was abolished in the presence of 
glucose at levels commonly found in diabetic mice (483), which 
may contribute to reduced anti-viral protection in diabetes.

SUMMARY, iNCLUDiNG UNReSOLveD 
QUeSTiONS

SP-D effects and variants
Widespread SP-D expression has been documented in a multi-
tude of studies and underscores the fact that, although the lungs 
remain a major site of SP-D synthesis, the essential effects of SP-D 
in innate immunity can be expected at numerous additional sites, 
and various examples of such extrapulmonary effects have now 

been investigated and documented. For many years, research 
into SP-D-mediated immune-modulation has primarily focused 
on its roles in phagocytosis and efferocytosis, opsonization, and 
oxidative signaling in phagocytes. However, analyses of SP-D 
interactions with various white blood cells, epithelial cells, 
fibrocytes, and smooth muscle cells have provided more detailed 
insights into SP-D-modulated pathologies, and imply that addi-
tional cellular SP-D-mediated effects remain unexplored. Further 
examples include endothelial cells and adipocytes, where SP-D 
expression is reported, but where the effects of its expression 
remain largely unknown. Gaps in knowledge regarding the role 
of SP-D in non-immune cells and the levels of expression of SP-D 
during homeostasis and disease have the potential to hamper the 
design and interpretation of both in vivo experiments and clinical 
biomarker studies.

In support of observations of SP-D-induced cellular signal-
ing, more than 10 different SP-D receptors or receptor complexes 
have been identified; however, the majority of studies suggesting 
new SP-D receptors have yet to be validated by independent 
researchers. In the majority of reports, the pulmonary effect of 
SP-D signaling is the dampening of inflammation. Pulmonary 
suppression of inflammation is thus the documented outcome 
when applying SP-D or rfhSP-D treatment, despite the potential 
inflammatory side effects of SP-D variants, which are unable to 
form HMW SP-D due to modifications, or which may represent 
proteolytic breakdown products.

Low-molecular weight SP-D is characterized by preferential 
binding to LPS and circulating lipoproteins, compared with 
HMW SP-D; however, the effects on pro- or anti-inflammatory 
cellular signaling resulting from the recognition of such com-
plexes have not been explored. Moreover, it is unknown to what 
degree interaction of SP-D with LPS and lipoproteins mediates 
assembly of LMW into HMW forms in  vivo, as observed with 
immobilized ManNAc ligands in  vitro. However, observations 
suggest different effects of LMW SP-D compared with HMW 
SP-D and studies of a previously proposed role for collectins 
in quenching the immune-activating effects of hydrophobic 
polymers, such as lipids or cholesterols from lipoprotein particles 
(484), are warranted, particularly for LMW SP-D.

In contrast to the primarily anti-inflammatory effect of SP-D in 
the lung, during development of mouse atherosclerosis the major 
impact of SP-D appears to be enhancement of inflammation (48, 
457) and this is also the case during fetoplacental development 
(331). Such observations could potentially be explained by site-
specific expression of SP-D receptors. Determination of the con-
tribution of SP-D-mediated OSCAR signaling to respiratory and 
non-respiratory disease may help to clarify the reasons underlying 
conflicting observations of pro- and anti-inflammatory effects of 
SP-D.

There is a paucity of in  vivo data confirming native SP-D 
structural size variation-dependent effects in disease, although 
initial attempts have been made using Sftpd−/− mice overexpress-
ing the common human SFTPD Met11Thr variants to determine 
their effects on the degree of SP-D multimerization. By contrast, 
various studies have demonstrated that treatment with the LMW 
rfhSP-D molecule may rescue histogenesis in Sftpd−/− mice and 
resolve inflammation both in Sftpd−/− and Sftpd+/+ mice. This 
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suggests that this particular fragment may be capable of signaling 
through the same set of cellular receptors as endogenous SP-D, 
or that some in vivo inflammatory effects may be ameliorated by 
high local concentrations of SP-D, regardless of the distribution 
of HMW and LMW SP-D. However, rfhSP-D has also failed to 
demonstrate effects in several settings and the question of the 
extent to which the effects of full-length multimeric SP-D may 
be mimicked by high levels of trimeric SP-D has yet to be fully 
answered.

The degree to which SFTPD variants affect SP-D structural 
size in disease also remains to be elucidated. Nevertheless, the 
Met11Thr polymorphism, which affects the degree of multim-
erization in non-diseased populations, has also been identified 
as associated with numerous respiratory diseases, as well as with 
CVD and metabolic diseases. Such SFTPD Met11Thr associations 
with disease may indicate that, not only the expressional levels of 
SP-D but also its ability to form multimers, are essential SP-D-
mediated effects beyond interaction with multivalent ligands and 
clearance thereof. Overall, the majority of data from genetic stud-
ies of this particular polymorphism indicate associations of the 
Thr11 allele with diverse clinical conditions. However, this allele 
has also been reported as protective in some diseases, including 
severe respiratory syncytial virus infection, which can cause 
infant death, and in which the allele is observed at a relatively 
high frequency.

Phenotypic SP-D variation induced  
by Disease-Related Processes
The lungs are among the five largest organs of the human body, 
and SP-D concentrations in the alveolar lining fluid appear to 
be higher relative to circulating levels. Thus, loss of air–blood 
barrier integrity in respiratory disease may cause pulmonary 
SP-D to translocate, leading to an increase in systemic levels, 
despite the huge variation in constitutional levels. Clinical SP-D 
deficiency is not documented; however, BAL levels of SP-D may 
decrease during respiratory disease to a level that does not allow 
immunodetection, while circulatory levels rise. However, it has 
not been conclusively confirmed that LMW SP-D will translocate 
from the lung into blood more easily than HMW SP-D, and just 
two studies (19, 217) have confirmed increased levels of circulat-
ing LMW SP-D in respiratory disease.

The translocation of SP-D appears to be reflected in a change 
of the ratio between BAL SP-D and circulating SP-D. This ratio 
is effective for differentiation of respiratory cases from controls 
and smokers, which is not always possible using isolated serum 
or BAL measurements (252); however, due to the invasive nature 
of sampling, SP-D measurements in BAL do not provide useful 
means for disease monitoring. Few attempts to monitor LMW 
SP-D, or breakdown products of SP-D, have been reported, and 
these primarily rely on the use of native gel electrophoresis, which 
may not be applicable to large-scale analysis. The development of 
immunoassay-based methods, which have previously been used 
to detect circulating extracellular matrix epitopes (485, 486), is 
warranted for studies of SP-D as disease biomarker. Whether 
particular LMW SP-D species are enriched in the lung or other 
organs requires further exploration.

biomarker Utility
This review has focused on SP-D variation as prognostic marker 
for infant respiratory distress syndrome and BPD, moderate 
and severe asthma, and COPD. The involvement of SP-D in 
these clinical respiratory diseases is partly supported by genetic 
analyses. The data regarding SFTPD associations with RDS and 
BPD are conflicting, and an association of SFTPD with atopy has 
been demonstrated, but not with asthma. Moreover, associations 
of polymorphisms within or flanking SFTPD have been identified 
in various populations of COPD patients and by GWA, although 
the overlap between observations is not complete.

By contrast, circulating SP-D levels appear to be uniformly 
increased with disease severity, particularly in RDS and asthma, 
and are associated with further progression or exacerbation of 
disease, and with mortality from COPD. Clinical measurements 
of SP-D primarily support that the total circulating SP-D can be 
used to correct for the background variation in SP-D in interstitial 
lung diseases or to facilitate differentiation of idiopathic pulmo-
nary fibrosis from other idiopathic interstitial pneumonias when 
included into a multi-marker array (15, 304, 487). Nevertheless, 
measurement of total circulating SP-D may also prove to be valu-
able in multi-marker-based identification of disease subtypes for 
pharmacological testing in other types of respiratory disease, 
including COPD (393).

RDS and BPD
Important information has been obtained about SP-D variation 
in premature infants, including the normal range of SP-D in term 
and preterm newborns and the influence of perinatal factors; 
however, there is a paucity of independent studies validating 
the observed association between the highest serum SP-D levels 
measured day 1 after birth and the most severe outcomes in 
premature infants, which warrants further validation.

Allergic Asthma
Recent research findings support increased circulating SP-D in 
moderate or severe asthma and in addition to allergic rhinitis. Yet, 
SP-D breakdown products were also enriched in the blood system 
in severe asthma, indicating that such fragments may provide a 
more specific measure of disease activity.

Chronic Obstructive Pulmonary Disease
Although SP-D levels are highly increased in response to smok-
ing, the highest circulating SP-D levels appear to be not only 
proxies for smoking but also related to disease outcomes after 
adjustment for smoking, hence providing a robust marker for 
treatment effects. Association with mortality has been identi-
fied in CVD in cohorts selected, and not selected, for COPD. 
The presence of CVD is thus anticipated to be a significant 
contributor to induction of circulating SP-D levels in COPD. 
The authors of the ECLIPSE study stressed that division of 
the COPD population into more homogenous subgroups with 
similar prognoses provides the potential to test interventions. 
That study further underscored that monitoring of biomarker 
arrays including SP-D is useful as an indicator of disease prog-
nosis, or for prediction and monitoring of clinical responses to 
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an intervention; however, this strategy is yet to be validated in 
randomized clinical trials.

In general, there appears to be an untapped potential for 
monitoring circulating LMW SP-D or SP-D neoepitopes, with 
the aim of separating disease cases from controls, as well as for 
use in disease prognosis. Specific proteases are known to degrade 
SP-D, and this aspect has not yet been pursued sufficiently to 
identify disease-induced SP-D neoepitopes. More elaborate 
immunoassay-based methods, which have been previously used 
to detect circulating extracellular matrix epitopes, are warranted 
for studies of SP-D breakdown product variation in respiratory, 
as well as non-respiratory, diseases and experimental data sup-
port the presence of such circulating breakdown products. This 
approach has the potential to provide measures of disease and 
organ specific SP-D breakdown products.

It remains to be determined whether those subjects presenting 
with the highest circulating SP-D levels are prone to the develop-
ment of clinical disease due to the presence of preclinical lung 
injury or CVD and if monitoring of SP-D may facilitate early 
intervention.

Circulating SP-D is confounded by adiposity and diabetes, 
and experimental and genetic links have been established to these 
disorders; however, these associations have not been explained 
mechanistically. The correlation between circulating SP-D and 
adiposity is inverse and may, therefore, counteract phenotypic 
associations with both respiratory disease and CVD.

PeRSPeCTiveS: ReCOMbiNANT  
SP-D TReATMeNT

Alveolar levels of endogenous SP-D may be vastly decreased in 
respiratory disease, particularly RDS, but also in severe asthma 
and COPD, and preclinical tests of treatment by local SP-D 
enrichment have been undertaken in animal models. Alveolar 
SP-D may be further modified, cleaved, or tightly bound to other 
components.

RDS and bPD
Pulmonary instillation of SP-D is beneficial, for example, in 
preterm ventilated lambs representing a clinically relevant model 
for preterm surfactant needs, and also in allergic asthma models 
and smoke-induced pulmonary injury. While currently used 
surfactant therapeutic formulations lacking SP-D have greatly 
reduced mortality from RDS, a significant proportion of patients 
develop oxygen dependency and ventilatory requirements 
extending beyond the first week of life, especially among survi-
vors of very low-birth weight and extreme prematurity. Using the 
preterm lamb model, treatment effects were more pronounced in 
animals treated with surfactant (Survanta®) enriched with SP-D 
versus those receiving surfactant alone. This suggests that there 
is a therapeutic potential for the use of SP-D as a supplement 
to current surfactant formulations for the treatment of neonatal 
RDS or development of BPD, which merits clinical investigation.

Allergic Asthma
A multitude of in  vivo data support the beneficial effects of 
exogenous SP-D treatment for allergic asthma and pulmonary 

infections. Treatment with exogenous SP-D may have dual effects 
in asthma, targeting both inflammation and fibrotic develop-
ment, and induced anti-inflammatory effects comparable with 
those obtained by treatment with budesonide. By contrast, 
Survanta® did not have a suppressive effect in a mouse model 
of a house dust mite-induced inflammatory asthma process. In 
addition, exogenous SP-D could reduce fibrotic depositions in 
house dust mite allergen challenged mice, or when administered 
throughout the experimental period of bleomycin treatment for 
the induction of pulmonary fibrosis. However, it remains to be 
seen whether exogenous administration of SP-D can attenuate 
fibrosis in wild-type mice and when it is administered only 
during the fibrotic phase. Such experiments will be crucial to 
add weight to the potential of SP-D as a therapeutic intervention 
in allergic asthma or other respiratory diseases characterized 
by fibrotic deposition, including BPD, COPD, and idiopathic 
pulmonary fibrosis.

COPD and Atherosclerosis
The effects of exogenous SP-D in models of COPD and ath-
erosclerosis require validation by independent laboratories and 
further mechanistic studies. However, observations from basic 
cardiovascular studies and studies of metabolism, suggest that 
systemic side effects from exogenous SP-D treatment include 
disturbance of circulating lipoprotein levels and whole-body fat 
distribution. Such observations imply that local administration 
of SP-D for the treatment of respiratory disease may be preferred 
over systemic induction of SP-D expression. However, the 
understanding that SP-D may also be harmful in atherogenesis 
and in infection during fetoplacental development suggests that 
the development of pharmaceutical means to induce tissue or cell 
type-specific inhibition of SP-D is warranted.

Additional Potential Types of Treatment 
and Applications
Additional potential treatments that have been suggested include 
the use of covalently bound complexes, comprising antibody 
crosslinked to point mutated SP-D (299, 488), or introduction 
of specific N-linked glycans (489), in enhanced anti-viral or 
anti-bacterial therapies (490); for example, genetically engi-
neered SP-D, which is resistant to proteolysis and relevant for 
the treatment of P. aeruginosa (250, 260); reduction of lung 
inflammation and injury after allogeneic hematopoietic stem 
cell transplantation (491); inclusion of SP-D in nasal spray for 
chronic rhinosinusitis with polyps (13); alleviation of pneu-
monia severity and intestinal injury in Staphylococcus aureus 
pneumonia (441) or pulmonary aspergillosis (205). Moreover, 
therapeutic approaches have been suggested to increase tran-
scription of SP-D (62, 492).

Development of Therapies
No clinical trials treating patients with recombinant SP-D have 
yet been undertaken, despite the body of preclinical data sup-
porting significant treatment effects. Nevertheless, the early 
observation that recombinant SP-D prevented endotoxin shock 
in preterm lambs paved the way for the formation of a spin-out 
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company from Cincinnati Children’s Hospital Medical Center, 
“Airway Therapeutics”2 in 2011, with the goal of producing full-
length recombinant SP-D as a replacement protein therapy for 
the prevention of BPD in premature infants, and this product 
has received orphan designation status for BPD in the US and 
European Union. According to the website, weare.techohio.ohio.
gov, AT-100 is currently in an advanced preclinical development 
stage. The GMP-production process is in development and inves-
tigational new drug-enabling preclinical experiments are being 
conducted.

Although airway therapeutics has focused on producing full-
length SP-D and may be close to conducting trials, an alternative 
approach would be to produce rfhSP-D, which can be synthe-
sized by Escherichia coli, and an rfhSP-D-based treatment has 
secured funding for continued development (Professor Howard 
Clark, University of Southampton and Honorary Consultant in 
Pediatrics at the Southampton University Hospitals Trust, per-
sonal communication).

In addition to the intellectual property rights for production 
of full-length SP-D or rfhSP-D for treatment and prophylaxis of 
respiratory disease (493, 494), more patents have been obtained 
to facilitate the commercial development of SP-D-based moni-
toring of respiratory disease or pharmaceutical treatments based 
on recombinant SP-D, or fragments thereof. A non-exhaustive 

2 http://www.airwaytherapeutics.com/about-us/.

list of patents and patent applications cover SP-D as marker 
for dyspnea (495), as a marker of steroid response in asthma 
and COPD (496), glycyrrhetinic acid for reduction of SP-D 
expression (497), SP-D modulation of eosinophil activity 
(498), combined administration with lysozyme and SP-D in 
respiratory prophylaxis (499), and recombinant chimeric SP-D-
antibody-fragment proteins for enhanced neutrophilic uptake 
of pathogens (500).

The critical step for the future development of SP-D-based 
therapy will be the outcomes of well-performed clinical trials 
confirming the hypothesis that exogenous SP-D will improve 
neonatal RDS or BPD. The results of such trials have the potential 
to facilitate further development or testing of SP-D treatment in 
additional diverse settings, including fibrosis of the lung, allergic 
asthma, and COPD.
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