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Late-term complications of hematopoietic cell transplantation (HCT) are numerous and 
include incomplete engraftment. One possible mechanism of incomplete engraftment 
after HCT is cytokine-mediated suppression or dysfunction of the bone marrow micro-
environment. Mesenchymal stromal cells (MSCs) elaborate cytokines that nurture or 
stimulate the marrow microenvironment by several mechanisms. We hypothesize that 
the administration of exogenous MSCs may modulate the bone marrow milieu and 
improve peripheral blood count recovery in the setting of incomplete engraftment. In 
the current study, we demonstrated that posttransplant intramuscular administration of 
human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded 
(PLX)-R18] harvested from a three-dimensional in  vitro culture system improved 
posttransplant engraftment of human immune compartment in an immune-deficient 
murine transplantation model. As measured by the percentage of CD45+ cell recovery, 
we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, 
p < 0.001) and 8 (7.3 vs. 13.1%, p < 0.05) and in the bone marrow at week 8 (28 vs. 
40.0%, p < 0.01) in the PLX-R18 cohort. As measured by percentage of CD19+ cell 
recovery, there was improvement at weeks 6 (12.6 vs. 3.8%) and 8 (10.1 vs. 4.1%). 
These results suggest that PLX-R18 may have a therapeutic role in improving incomplete 
engraftment after HCT.

Keywords: cord blood stem cell transplantation, mesenchymal stromal cells, hematopoietic stem cell 
transplantation, engraftment, posttransplant complications

Abbreviations: MSCs, human mesenchymal stromal cells; HSC, Hematopoietic stem cells; UCB, Umbilical cord blood; IV, 
Intravenous; IM, Intramuscular; NSG, non-obese diabetic severe combined immunodeficiency- IL2Rgammanull; HCT, 
Hematopoietic cell transplant; mAbs, Monoclonal antibodies; PBS, Phosphate Buffered Saline; HSA, Human Serum Albumin; 
IACUC, Institutional Animal Care and Use Committee.
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inTrODUcTiOn

The late-term complications of hematopoietic cell transplantation 
(HCT) are numerous and include, but are not limited to, chronic 
graft-vs.-host disease (cGVHD), immunodeficiency, oppor unistic 
infections, liver, pulmonary, and endocrine dysfunction, gonadal 
failure, and secondary malignancy (1, 2). Slow recovery of blood 
counts is also a well-recognized complication of transplantation, 
as well as incomplete engraftment, especially after umbilical cord 
blood (UCB) grafts and T-cell depleted or in vitro manipulated 
grafts (3). The incidence of long-term thrombocytopenia var-
ies from 5 to 20% of HCT patients (4–10). Cytopenia may be 
related to transplant specific complications, such as cGVHD, 
inadequate cell dose of the graft, marrow dysfunction, immu-
nosuppressive medications, and late chemotherapeutic effects 
(11, 12). Cytopenia after transplant is a predictor of non-relapse 
mortality (13–15). Possible mechanisms of cytopenia after HCT 
include cytokine-mediated suppression of megakaryopoiesis, 
erythropoiesis, or lymphopoiesis, and dysfunction of the bone 
marrow microenvironment (16, 17). Bone marrow stromal cells 
such as mesenchymal stromal cells (MSCs) elaborate cytokines 
that nurture or stimulate the marrow microenvironment by 
several mechanisms (18–20). MSCs can act as pericytes, wrap-
ping around the endothelial cells of capillaries and venules and 
secrete bioactive products that contribute to tissue regeneration 
(21, 22). MSCs could also be selectively immune-suppressive 
and could affect the production of inhibitory cytokines (23, 24). 
Hence, it is possible that administration of MSCs in the setting 
of incomplete or delayed engraftment can modulate the milieu 
of the bone marrow microenvironment, through both direct 
interaction with hematopoietic stem cells (HSCs) and through 
secretion of cytokines, to improve blood counts posttransplant  
(25–27).

Mesenchymal stromal cells given at the time of HCT have 
been shown to improve engraftment, as well as have immu-
nomodulatory effects in murine stem cell transplantation models 
(28, 29). MSCs can be found within multiple site, including 
adipose tissue and bone marrow (30, 31). The placenta is also 
an easily available source of cells from mesenchymal origin (32). 
PLacental eXpanded (PLX)-R18 (Pluristem Ltd., Haifa, Israel) is 
a human placental derived mesenchymal-like adherent stromal 
cells grown in  vitro in a three-dimensional system. These cells 
secrete cytokines which contribute to hematopoietic reconstitu-
tion and differentiation, including IL-6, MCP-3, HGF, IL-8, 
FGF-7, GM-CSF, IL-10, and bFGF (33). Previous studies have 
demonstrated that intramuscular (IM) injections of PLX-R18 
can mitigate mortality from acute radiation syndrome in murine 
models (33). PLX-R18 is being developed under the FDA’s animal 
rule for hematopoietic rescue from radiation syndrome. The 
effects of IM PLX-R18 appear to be related to transient secretion 
of pro-differentiation and pro-growth cytokines (33, 34).

Because there is no mouse model of delayed or incomplete 
engraftment, we proposed to administer PLX-R18 post-
transplant in a well-established murine model of transplant 
utilizing sub-optimal doses of human CD34-selected UCB after 
radiation conditioning. Our hypothesis is that posttransplant IM 
administration of PLX-R18 will improve human hematopoietic 

engraftment, as measured by a quantitative improvement in 
human hematopoietic (CD45), B-cell (CD19), T-cell (CD3), 
megakaryocytic (CD41), and granulocyte (CD13, CD14) lineages 
in the peripheral blood and bone marrow.

MaTerials anD MeThODs

Mice
Non-obese Diabetic–Severe Combined Immunodeficiency–
IL2Rgammanull (NSG) mice were obtained from breeding pairs 
originally purchased from Jackson Laboratories (Bar Harbor, 
ME, USA). NSG mice were bred in a pathogen-free unit and 
maintained in sterile cages. Mice were handled and cared with 
strict adherence to guidelines as established by the Animal 
Resource Center and following study protocols as approved 
by the Institutional Animal Care and Use Committee at Case 
Western Reserve University School of Medicine (IACUC proto-
col 2015-0118).

PlX-18
PLacental eXpanded-R18 cells were produced and supplied by 
Pluristem Therapeutics, Inc. (Haifa, Israel). The PLX-R18 cells are 
mesenchymal-like adherent stromal cells derived from full-term 
placentas following Cesarean section. The PLX-R18 production 
process is composed of two major steps of isolation and culturing 
of the adherent stromal cells. In the first stage, adherent stromal 
cells are isolated from the placenta and passaged under two-
dimensional cell growth conditions. Cells are then concentrated 
and cryopreserved. This intermediate cell stock is later thawed, 
passaged, and subsequently seeded for further expansion in 
three-dimensional growth in a bioreactor on non-woven fiber-
made carriers, from which cells are subsequently harvested and 
cryopreserved.

PLacental eXpanded-R18 cells have a spindle-like morpho-
logy and are characterized by a high expression of typical MSC 
markers, such as CD105, CD73 and CD29, and lack surface 
expression of CD45, CD34, CD14, CD19, and HLA-DR. In addi-
tion, PLX-R18 does not express CD31 (an endothelial marker) 
and GlyA (an erythrocyte cell marker) on their surface. PLX-R18 
cells exhibit limited capacity to differentiate in vitro into osteo-
cytes and adipocytes compared to bone marrow-derived MSCs.

The cells are harvested and cryopreserved in liquid nitrogen 
as an “off the shelf ” allogeneic adult cell source product. Prior to 
their administration the cells were thawed washed and suspended 
in Plasmalyte A solution (Baxter, Deerfield, IL, USA).

cD34+ Umbilical cord cell isolation
Umbilical cord blood units were received from the Cleveland 
Cord Blood Center (Cleveland, OH, USA). Each unit was diluted 
1:3 with phosphate buffered saline (PBS) + 0.5% Human Serum 
Albumin (HSA) and layered onto Ficoll Paque PLUS to isolate 
the mononuclear cells by density gradient. After a cell count and 
washes, the mononuclear cells were labeled per protocol using the 
Miltenyi Biotec (Cologne, Germany) CD34 Microbead Kit. The 
CD34 cells were then isolated using a positive selection column 
in a magnet and washed three times with MACS buffer. The 
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FigUre 1 | Study design: NSG mice received 300 cGy total body irradiation prior to receiving 5 × 105 CD34+ selected cells from human umbilical cord blood  
(UCB). Following non-lethal irradiation (300 cGy), two groups of NSG mice were studied: (1) intravenous (IV) 5 × 105 UCB CD34+ cells and (2) IV 5 × 105 UBC CD34+ 
cells and 1 × 106 intramuscular (IM) PLacental eXpanded (PLX)-R18 on D2 and D7. Peripheral blood from transplant recipient mice were analyzed on weeks 2, 4, 6, 
and 8. Bone marrow from transplant recipient mice was analyzed on week 8.
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CD34 cells from both UCB units were combined, counted, and 
re-suspended in PBS for injection into mice.

Murine Transplantation
NSG mice aged 8–12 weeks were used in all transplant experi-
ments. Prior to transplantation with UCB, recipient mice were 
ear punched for individual identification. NSG mice received 
300 cGy total body irradiation prior to receiving 5 × 105 CD34+ 
selected cells from human UCB, which has been shown to lead 
to incomplete human hematopoietic recovery (35). Following 
non-lethal irradiation (300 cGy), two groups of NSG mice were 
studied: (1) intravenous (IV) 5 × 105 UCB CD34+ cells (N = 10) 
and (2) IV 5 × 105 UBC CD34+ cells and 1 × 106 IM PLX-R18 
on day 2 (D2) and day 7 (D7) (N = 14) (Figure 1). Initially, IV 
and IM injection of PLX-R18 were attempted; however, mice 
immediately developed fatal acute pulmonary toxicity after IV 
infusion (even with slow infusion) and thus the IM route obvi-
ously was preferred.

injections
Umbilical cord blood cells were administered via tail vein injec-
tion suspended in a total volume of 200 µL. IM injections: PLX-18 
cells were administered via IM right thigh injections suspended 
in a total volume of 100 µL.

Tissue harvest and Preparation
The liver, ileum, ascending colon, and right tibia were harvested 
and were fixed in 10% buffered formalin, embedded in paraffin, 
cut into 5-μm thick sections and stained with hematoxylin and 
eosin for histologic examination. Slides were coded without refer-
ence to transplant group or treatment and reviewed in blinded 
fashion by an independent pathologist (HM).

Flow cytometry
Peripheral blood samples from transplant recipient mice were 
analyzed on weeks 2, 4, 6, and 8. Bone marrow from transplant 
recipient mice was analyzed on week 8. Peripheral blood and bone 

marrow were stained for T cell markers (CD3), myeloid markers 
(CD45, CD13, CD14, CD41) along with B-cell markers (CD19). 
All monoclonal antibodies (mAbs) are human specific and were 
purchased from BD Biosciences Pharmingen (San Diego, CA, 
USA) or eBioscience (San Diego, CA, USA). At least 1 × 105 events 
were analyzed per conjugated MAb stain condition. Data were 
analyzed using CFlow software (Accuri, Ann Arbor, MI, USA). 
Human engraftment was expressed as percentage of CD45+ cells 
within the gated population of bone marrow or peripheral blood 
cells. Engraftment of CD45+ cell subsets (CD3, CD13, CD14, 
CD19) was expressed as a percentage within the gated population 
of bone marrow or peripheral blood cells. Platelet engraftment 
was expressed as a percentage of CD41+ events compared to total 
peripheral blood or bone marrow cells.

histology
An independent hematopathologist, blinded to cohort char-
acteristics, evaluated all tibial sections. The analysis included 
sections from each mouse in every cohort and was evaluated 
for myeloid-to-erythroid ratio, cellularity, and megakaryocyte 
percentages.

statistics
All values are expressed as the mean ± SEM. Statistical compari-
sons between groups were completed using Mann and Whitney 
test (nonparametric data).

resUlTs

Posttransplant iM administration of 
PlX-r18 improves Overall human 
hematopoietic cell engraftment (cD45) 
and B-cell engraftment (cD19) in the 
Peripheral Blood
To create a mouse model of incomplete engraftment, we injected 
sub-optimal dose (1 × 105 cells/mouse) of human UCB-derived 
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FigUre 2 | Posttransplant PLacental eXpanded (PLX)-R18 IM injection improves human leukocyte (CD45) and B-cell (CD45/19) engraftment in the peripheral 
blood. Flow cytometry results of CD45 (a), CD45/CD3 (B), CD45/CD13 (c), CD45/CD14 (D), CD45/CD19 (e), and CD41 (F) in the peripheral blood at weeks  
2, 4, 6, and 8 weeks are shown. IV UCB, n = 9; IV UCB/IM PLX, n = 14; IV, intravenous; UCB, umbilical cord blood; IM, intramuscular; *p < 0.05; **p < 0.01; 
***p < 0.001.
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CD34+ cells into NSG mice following 300 cGy whole-body irra-
diation. IM of 1 × 106 PLX-R18 were administered on days 2 and 
7 following hUCB transplantation (Figure  1). Hematopoietic 
reconstitution analyses were performed every 2  weeks start-
ing 2  weeks following hUCB transplantation. Bi-weekly flow 
cytometry analysis of the peripheral blood revealed the highest 
level of human CD45+ cells and B-cell engraftment in the IM 
PLX-R18 cohort at weeks 6 and 8, but not at weeks 2 and 4 
(Figure 2). Specifically, there was a gradual increase in human 
CD45 percentage in the IV UCB cohort from week to week, 
the percentage of human CD45 engraftment in the peripheral 
blood spiked at week 6 in the IM PLX-R18 cohort, which was 
statistically significant (8.4 vs. 24.1%, p  <  0.001; Figure  2A; 
Table 1). While a relative decrease in the percentage of human 

CD45 cells occurred in the peripheral blood of those mice 
treated with PLX-R18 at week 8 when compared to week 6, 
it was still superior when compared to the IV hUCB cohort 
(7.3 vs. 13.1%, p < 0.05, Figure 2A; Table 1). In contrast, mice 
treated with PLX-R18 demonstrated sustained B-cell engraft-
ment superior to the control cohort at weeks 6 (3.8 vs. 12.6%, 
p  <  0.01, Figure  2B; Table  1) and 8 posttransplant (4.1 vs. 
10.1%, p < 0.01; Figure 2E; Table 1). Similar rises in the per-
centage of human T-cell, granulocyte, and platelet engraftment 
occurred in the peripheral blood of the PLX-R18 cohort, but 
these measurements were not statistically different from the IV 
hUCB cohort (Figures 2B–D,F; Table 1). Representative flow 
cytometry plots of peripheral blood analysis at 8 weeks post-
transplant are shown in Figure 3.
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TaBle 1 | Summary of the percent CD45, CD45/3, CD45/13, CD45/14, CD45/19, and CD41 in the peripheral blood at 2, 4, 6, and 8 weeks post umbilical cord blood 
(UCB) infusion.

Week 2 (%) Week 4 (%) Week 6 (%) Week 8 (%)

CD45 intravenous (IV) UCB 3.2 5.4 8.4 7.4
CD45 IV UCB + intramuscular (IM) PLacental eXpanded (PLX) 8.7 (p > 0.05) 10.4 (p > 0.05) 24.1 (p < 0.001) 13.1 (p < 0.05)
CD45/3 IV UCB 1.1 0.6 0.1 0.8
CD45/3 IV UCB + IM PLX 0.4 (p > 0.05) 0.3 (p > 0.05) 0.5 (p > 0.05) 0.8 (p > 0.05)
CD45/13 IV UCB 4.4 1.8 1.3 1.5
CD45/13 IV UCB + IM PLX 6.7 (p > 0.05) 1.2 (p > 0.05) 7.4 (p > 0.05) 3.6 (p > 0.05)
CD45/14 IV UCB 2.2 1.8 1.0 1.0
CD45/14 IV UCB + IM PLX 3.1 (p > 0.05) 0.8 (p > 0.05) 1.4 (p > 0.05) 1.6 (p > 0.05)
CD45/19 IV UCB 1.4 1 3.8 4.1
CD45/19 IV UCB + IM PLX 0.4 (p > 0.05) 1.7 (p > 0.05) 12.6 (p < 0.01) 10.1 (p < 0.01)
CD41 IV UCB 0.2 0.4 0.1 0
CD41 IV UCB + IM PLX 0.7 (p > 0.05) 0.3 (p > 0.05) 0.7 (p > 0.05) 0.4 (p > 0.05)

p-Values as compared to the intravenous UCB group.

FigUre 3 | Representative flow cytometry plot of peripheral blood at 8 weeks posttransplant. CD45/CD3 (a) CD45/CD13 (B), CD45/CD14 (c), CD45/CD19 (D), 
and isotype control (e).
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Posttransplant iM administration of 
PlX-r18 improves Overall human cD45 
lineage cell engraftment in the Bone 
Marrow
Within the bone marrow, the IV UCB/IM PLX-R18 cohort 
demonstrated similar increases in CD45+ lineage cells at 8 weeks 

as compared with the IV hUCB cohort control (28 vs. 40.0%, 
p  <  0.01; Figure  4A; Table  2). In contrast with the peripheral 
blood, there was no significant difference in B-cells within the 
bone marrow between cohorts (Figure 4E); however, the major-
ity of the CD45+ cells were also CD19+. The differences between 
megakaryocytes and platelets were not significance (2.6 vs. 10.2%, 
p > 0.05; Figure 4F; Table 2), nor were the differences between 
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FigUre 4 | Posttransplant PLacental eXpanded (PLX)-R18 IM injection improves human leukocyte (CD45) in the bone marrow at 8 weeks. Flow cytometry results 
of the right tibia bone marrow CD45 (a), CD45/CD3 (B), CD45/CD13(c), CD45/CD14 (D), CD45/19 (F), and CD41 (e). IV UCB, n = 10; IV UCB/IM PLX, n = 14.  
IV, intravenous; UCB, umbilical cord blood; IM, intramuscular; *p < 0.05.

TaBle 2 | Summary of the percent CD45, CD45/3, CD45/13, CD45/14, CD45/19, and CD41 in the bilateral tibial and femoral bone marrow at 8 weeks post umbilical 
cord blood (UCB) infusion.

cD45 (%) cD45/3 (%) cD45/13 (%) cD45/14 (%) cD45/19 (%) cD41 (%)

IV UCB 28.0 1.3 3.7 2.1 17.4 2.6
IV UCB + intramuscular PLacental eXpanded 40.0 (p < 0.05) 0 (p > 0.05) 3.4 (p > 0.05) 1.1 (p > 0.05) 26.2 (p > 0.05) 10.2 (p > 0.05)

p-Values as compared to the intravenous (IV) umbilical cord blood group.

6

Metheny et al. IM PLX-R18 Improves Engraftment

Frontiers in Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 37

T-cells, granulocytes, and platelets or megakaryocytes in the 
bone marrow between either cohorts (Figures 4B–D; Table 2). 
Representative flow cytometry plots of bone marrow at 8 weeks 

posttransplant are shown in Figure  5. Concurrent histopatho-
logic evaluation demonstrated no difference in overall cellularity, 
myeloid-to-erythroid ratio, or megakaryocytic percentages 
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FigUre 5 | Representative flow cytometry plots of bone marrow at 8 weeks posttransplant. CD45/CD3 (a) CD45/CD13 (B), CD45/CD14 (c), CD45/CD19 (D), and 
isotype control (e).
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FigUre 6 | Histology of the bone marrow from NSG mice treated with intravenous (IV) 5 × 105 umbilical cord blood CD34+ cells (a–c) and NSG mice treated with 
IV 5 × 105 UBC CD34+ cells and 1 × 106 intramuscular PLacental eXpanded-R18 on D2 and D7 (D–F).
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between the bone marrow samples of the cohorts at 8  weeks 
posttransplant (Figure 6).

cOnclUsiOn

Our results support the hypothesis that IM injection of PLX-R18 
improves the rapidity of human UCB engraftment in NSG mice 
when given in the posttransplant setting. It is likely that PLX-R18 
exert their effect through secretion of pro-differentiation and pro-
liferative cytokines that subsequently exert systemic effects, given 
that the PLX-R18 cells were injected intramuscularly and not 
intravenously or intra-osseously (36). As such, the PLX-R18 cells 
are unlikely to track into the bone marrow microenvironment. 
Additional bio-distribution studies of IM PLX-R18 demonstrate 
that the cells remain local, but few survive beyond 13 weeks past 
administration (in press).

Consistent with previous experiments by Prather et  al., the 
effect of the PLX-R18 appeared to be transient, as the percentage 
of CD45+ cells declined within the peripheral blood after week 6. 
This drop off after week 6 likely is the result of exhaustion, death, 
or clearance of the PLX-R18 cells (34). Interestingly, though the 
effect within the peripheral blood appeared transient, the week 
8 analysis of the bone marrow did show a significant increase in 
human engraftment as expressed by CD45+ cells, suggesting that 
marrow engraftment can be enhanced and may be permanent. 
Cytokine analyses of the serum are ongoing, but in vivo experi-
ments demonstrate that PLX-R18 secretes granulocyte-colony 
stimulating factor, CXCL1, monocyte chemo-attractant pro-
tein-1, and interleukin-6; these concentrations peak in the serum 
at day 9 post-IM injection (in press).

Intravenous instead of IM injection of placental derived MSC 
combined with hUCB seems to result in similar engraftment 
outcomes. In an NOD/SCID mouse model of transplant utiliz-
ing sub-lethal conditioning, placental derived MSCs grown in a 
3D-culture (PLX-I) combined with hUCB resulted in improved 
engraftment rates in the bone marrow at 6 weeks as measured by 
CD45+ human cells (37). Experiments involving IV cotransplant 
of hUCB and MSC has demonstrated improved engraftment  
rates of CD45+ human cells in the peripheral blood and bone 
marrow of NOD/SCID mice at 6–8 weeks posttransplant (20, 38). 
Similar to IM PLX-R18 cohort, the majority of the CD45+ popu-
lation of cells in both the bone marrow and the peripheral blood 
were of the lymphoid lineage when hUCB was co-transplant 
with MSC. This finding is also consistent with other studies and 
suggests that PLX-R18 may also improve immune reconstitution 
following transplant (28, 39).

A detailed histological analysis of the bone marrow did 
not demonstrate any differences in overall cellularity, mega-
karyocytic:erythrocytic (M:E) ratio, or the percentages of mega-
karyocytes among cohorts. In the setting of non-myeloablative 
radiation, autologous recovery of murine bone marrow cells 
along with hUCB engraftment would be expected, and PLX-R18 
cells may have enhanced the rate of this recovery.

The current therapeutic strategy is intriguing in that it may 
improve engraftment in patients who have incomplete engraft-
ment after HCT. There is significant evidence in mice that MSC 

improve hUCB hematopoietic cell engraftment (18, 19). In 
theory, the observed experimental benefit could be extended to 
patients whose marrows have experienced delayed or incomplete 
engraftment. The safety and potential efficacy of IV administra-
tion of MSCs has been demonstrated in humans (25, 26). In 
autologous transplants, autologous MSCs co-infused with HSCs 
leads to rapid recovery of blood counts (26). In allogeneic trans-
plantation, Lazarus et al. published a study in which 46 matched 
related donor transplant patients were infused with matched 
related culture-expanded MSCs prior to the hematopoietic graft. 
There were no toxicities associated with infusion of the MSC, and 
engraftment of neutrophils and platelets occurred at a median 
time of 14 and 20 days, respectively. In contrast with IV admini-
stration of MSC, IM administration of mesenchymal-like PLX 
cells has been documented to improve hematopoietic recovery in 
a three-patient cohort study (40). As such, a translational, a phase 
I international trial is now underway [ClinicalTrials.gov number 
NCT03002519].

eThics sTaTeMenT

Non-obese Diabetic–Severe Combined Immunodeficiency–
IL2Rgammanull (NSG) mice were obtained from breeding pairs 
originally purchased from Jackson Laboratories (Bar Harbor, 
ME, USA). NSG mice were bred in a pathogen-free unit and 
maintained in sterile cages. Mice were handled and cared with 
strict adherence to guidelines as established by the Animal 
Resource Center and following study protocols as approved 
by the Institutional Animal Care and Use Committee at Case 
Western Reserve University School of Medicine (IACUC proto-
col 2015-0118).
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