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The contact activation system (CAS) or contact pathway is central to the crosstalk 
between coagulation and inflammation and contributes to diverse disorders affecting 
the cardiovascular system. CAS initiation contributes to thrombosis but is not required 
for hemostasis and can trigger plasma coagulation via the intrinsic pathway [through 
factor XI (FXI)] and inflammation via bradykinin release. Activation of factor XII (FXII) is the 
principal starting point for the cascade of proteolytic cleavages involving FXI, prekallikrein 
(PK), and cofactor high molecular weight kininogen (HK) but the precise location and cell 
receptor interactions controlling these reactions remains unclear. FXII, PK, FXI, and HK 
utilize key protein domains to mediate binding interactions to cognate cell receptors and 
diverse ligands, which regulates protease activation. The assembly of contact factors 
has been demonstrated on the cell membranes of a variety of cell types and microorgan-
isms. The cooperation between the contact factors and endothelial cells, platelets, and 
leukocytes contributes to pathways driving thrombosis yet the basis of these interactions 
and the relationship with activation of the contact factors remains undefined. This review 
focuses on cell receptor interactions of contact proteins and FXI to develop a cell-based 
model for the regulation of contact activation.

Keywords: contact activation system, factor Xii, factor Xi, plasma kallikrein, high molecular weight kininogen, 
endothelial cell, Platelet, Leukocyte

iNTRODUCTiON

The contact activation system (CAS) includes serine proteases factor XII (FXII), plasma prekal-
likrein (PK), coagulation factor XI (FXI), and high molecular weight kininogen (HK) which is 
the non-enzymatic cofactor of FXI and PK (1, 2). The CAS is thought to be central to crosstalk 
between coagulation and inflammation and the underlying cause for various disorders affecting the 
cardiovascular system (1, 3). Two branches of the CAS have been identified as (i) the inflammatory 
branch activates contact factors FXII and PK on the surface of endothelial cells resulting in release 
of the peptide bradykinin (BK) and (ii) plasma coagulation branch activates FXII and FXI on the 
surface of platelets (Figure  1) (4–6). Contact of FXII with diverse negatively charged activators 
leads to a change in the conformation of FXII that subsequently generates activated FXII (FXIIa) 
in trivial amounts (7–10). FXIIa then activates PK to form active kallikrein (PKa) (11). Reciprocal 
activation of FXII by PKa and PK by FXIIa occurs and subsequently PKa proteolytically liberates BK 

Abbreviations: CAS, contact activation system; PK, prekallikrein; HK, high molecular weight kininogen; FXII, factor XII; BK, 
bradykinin; uPAR, urokinase receptor; GPIb-IX, platelet glycoprotein Ib.
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FiGURe 1 | Schematic overview of receptor and cofactor interactions of the contact factors for thrombotic (top) and inflammatory (bottom) pathways. Assembly of 
the contact system via gC1q-R (with elevated Zn2+) generates PKa, FXIIa, and BK is produced on the surface of endothelial cells (bottom). Also shown is the FXII 
and HK interactions with the uPAR receptor and CK1. FXIIa activates plasma coagulation cascades via FXI on the surface of platelets (top). The platelet GP1b-IX 
receptor GP1bα chain interaction with FXI–HK and PKa binding to the activated platelet integrin αIIbβ3 is also depicted. Neutrophils are also depicted releasing NETs 
known to associate with contact proteins. Abbreviations: FXII, factor XII; FXIIa, activated FXII; PK, prekallikrein; PKa, activated PK; FXI, factor XI; FXIa, activated FXI; 
HK, high molecular-weight kininogen; BK, bradykinin; uPAR, urokinase receptor; GPIbα, platelet glycoprotein Ib; CK1, cytokeratin 1; gC1q-R, receptor for 
complement protein C1q; Mac-1, macrophage-1 antigen receptor; PolyP, polyphosphate; RBC, red blood cells; NETs, neutrophil extracellular traps.
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via cleavage of its precursor HK. Binding of BK to its receptor on 
endothelial cells results in activation of several pro-inflammatory 
signaling pathways leading to vasodilation, pain, and neutrophil 
chemotaxis (12, 13). CAS factors also participate in fibrinolytic 
and angiogenic pathways (14, 15).

Contact activation is best known as the coagulation 
mechanism that is activated by artificial surfaces and is the 
basis of the widely used aPTT hemostatic assay (2). Negatively 
charged polymers including nucleic acids (DNA and RNA) and 
polyphosphate (PolyP) are activators of the contact pathway via 
FXII auto-activation (16–19). Platelet-derived PolyP is mainly 
secreted as short chain polymers following platelet activation 
and has been linked to FXII activation and thrombus formation 
(20). Activated platelets also retain PolyP on their cell surface 
(membrane-associated) assembled into nanoparticles that can 
potently activate FXII (20). Purified DNA and RNA have been 
shown to bind and activate contact factors and enhance thrombin 
generation and clot formation in plasma based studies (21, 22). 
Genetic knockout studies in murine models of cardiovascular 
disease and genetic linkage studies in humans have implicated the 
contact factors in contributing to diverse cardiovascular disease 

processes, including thrombosis (23–29), hypertension (30), 
atherosclerosis (31, 32), and stroke (33, 34).

CAS factors are not considered vital for normal hemostasis 
in vivo as evidenced by patients with FXII deficiency exhibiting 
no bleeding tendencies (35, 36). However, some cases of FXI-
deficiency in humans manifest with a strong bleeding phenotype 
(37). The first clinical trial revealed prevention of venous throm-
bosis by targeting FXI without compromising normal hemostasis 
(38, 39). In humans identification of a gain-of-function mutation 
in the F12 gene (encodes FXII) was shown to be linked to aggres-
sive attacks of tissue swelling in hereditary angioedema, a rare 
life threatening inherited edema disorder in which excessive 
formation of BK leads to recurrent episodes of acute swelling 
and increased vascular permeability (40, 41). In this context the 
presence of a hyperactive FXII mutant does not seem to cause 
thrombosis in these patients which is consistent with previous 
observations that the FXII–PK–HK branch and BK production 
can operate separately from FXI activation and plasma coagula-
tion (40). What leads to this mechanistic uncoupling of FXIIa 
driven thrombosis and inflammation is unknown raising the 
question as to how the proteases are regulated and highlights the 
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importance of understanding the precise cell receptors utilized 
for CAS regulation.

The contact factors each have individual properties including 
recognizing foreign substances and interacting with different 
cell types (29, 32, 42, 43) and bacteria (44–46). CAS has been 
implicated in viral pathogenesis (47) and as a component of the 
innate immune response (48). The assembly of contact factors has 
been demonstrated on the membranes of a variety of cell types 
and in this review we summarize the known cell receptor and 
cofactor interactions of contact factors and FXI.

CONTACT FACTOR DOMAiN STRUCTURe

It is well established that the vitamin K-dependant coagulation 
factors, such as pro-thrombin, factor X, and factor IX (FIX), uti-
lize Gla domains and calcium ions (Ca2+) to recognize the phos-
phatidylserine exposed on activated cell membranes and these 
interactions control efficient proteolytic cleavage and activation 
of these factors on a specific surface (49, 50). Contact factors 
FXII, PK, and FXI do not have Gla domains but instead utilize 
key protein modules of apple and fibronectin-like domains to 
mediate binding interactions to cognate cell receptors and diverse 
ligands, which appropriately regulate their substrate recognition 
and enzyme activation. Another key difference is that zinc (Zn2+) 
ions are implicated as critical to the function of the contact fac-
tors as opposed to Ca2+ ions, which are required for Gla domain 
structure and binding to cell membranes.

Factor Xii
Factor XII is a 80 kDa glycosylated protein consisting of a single 
polypeptide chain and circulates in plasma as a zymogen with a 
concentration of 40 μg/ml (375 nM). Upon contact with anionic 
surfaces, in the presence of Zn2+ ions, FXII undergoes a confor-
mational rearrangement leading to auto-activation or cleavage in 
trans by kallikrein to generate FXIIa. FXIIa consists of two chains; 
an N-terminal 52-kDa heavy chain and a C-terminal 28-kDa 
serine protease domain (51), linked together by a disulfide bond. 
The domain structure of the FXII heavy chain is composed of 
an N-terminal fibronectin type-II domain (FnII), an epidermal 
growth factor like domain (EGFI), a fibronectin type-I domain 
(FnI), a second EGF-like domain (EGFII), a kringle domain, and 
a distinctive proline-rich domain (52). The FXII heavy chain 
mediates binding to Zn2+ ions and negatively charged surfaces 
(53–55). FXII has been shown to bind to the urokinase receptor 
(uPAR) and platelet glycoprotein Ib (GPIb-IX) receptor (56, 57).

Prekallikrein
Prekallikrein is a glycoprotein of molecular weight 88  kDa 
consisting of a single polypeptide chain that circulates in plasma 
as a zymogen at a concentration of 50  μg/ml (490  nM), with 
an estimated 75% bound non covalently to HK (58). FXIIa or 
β-FXIIa (the isolated protease domain fragment) cleaves PK 
resulting in a two-chain enzyme kallikrein (PKa), consisting of a 
52-kDa heavy chain and 33–36 kDa light chain corresponding to 
the serine protease domain and both chains are linked together 
by a disulfide bond. PK shares 58% amino acid sequence identity 
with FXI and both proteins have the characteristic feature of four 

apple domains (A1–A4) (59, 60). The HK binding region on PK 
is localized in the central portion of the A2 domain with possible 
binding sites in other apple domains (61). PK binds to endothelial 
cells, platelets, and granulocytes in a Zn2+-dependent interaction 
via the PK–HK complex (2).

High Molecular weight Kininogen
High molecular weight kininogen is a 120 kDa non-enzymatic 
glycoprotein with a plasma concentration of 80 μg/ml (670 nM). 
Granulocytes, platelets, and endothelial cells contain HK, but 
plasma HK is most likely synthesized in the liver. HK is made up 
of six domains (D1–D6) and cleavage of HK by kallikrein PKa 
results in HKa, a two-chain protein consisting of a heavy chain 
(D1–D3; 64 kDa) and a light chain (D5–D6; 56 kDa) releasing the 
short BK peptide (D4) (62). The D6 domain has binding sites for 
PK and FXI (63). HK binds to cell surfaces in a Zn2+-dependent 
manner (64, 65). Both D5 and D3 domain mediate cell receptor 
binding of HK to endothelial cells, platelets, and neutrophils 
(62, 64, 66, 67). HK is constitutively bound to cell surfaces and 
mediates not only recruitment of PK and FXI to cell membranes 
but also functions to enhance interactions between different cell 
types (68, 69).

Factor Xi
Factor XI is a dimer of 80 kDa subunits that circulates in plasma 
at a concentration of 5 μg/ml (30 nM) tightly bound in a non-
covalent complex with HK (70). Activation of FXI by thrombin 
or α-FXIIa yields FXIa that consists of a heavy chain of four apple 
domains (A1-A4) and a light chain of the catalytic serine protease 
domain covalently linked together via a disulfide bond. Apple 
domains A1 and A2 contain a binding site for thrombin and HK, 
respectively (50, 59). A3 has a FIX, heparin, and GPIb-IX binding 
site and A4 contains a cysteine residue that forms the disulfide 
bond needed for FXI dimer formation (42). FXI–HK complex 
binding to platelets has been reported to occur via the GPIb-IX 
receptor (71).

CeLL iNTeRACTiONS OF CONTACT 
FACTORS

The interaction of contact factors with different cell types has 
been shown to cooperatively contribute to thrombotic pathways 
in animal models (29). Despite decades of research investigating 
in vitro characterization of CAS activation by polymers (15, 52), 
a detailed understanding of the receptors and cofactors that regu-
late CAS protease activation on cellular surfaces remains elusive. 
Figure 1 summarizes the key cell interactions of contact factors 
and below we consider each cell specific interaction in turn.

endothelial Cells
The binding of the contact factors to endothelial cells is important 
to localize the production of the vasoactive peptide BK to the 
correct surface where its receptors are located. HK is bound 
tightly to PK and FXI but there is evidence that PK and FXI can 
also bind endothelial cells in the absence of HK (72, 73). One of 
the major endothelial cell receptors that binds HK and FXII is 
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gC1q-R (receptor for the complement protein C1q) (74–76), also 
known as p32 or hyaluronic acid binding protein 1. Most human 
cell types, including lymphocytes, endothelial cells, and dendritic 
cells express gC1q-R. gC1q-R is a multi-compartmental, multi-
ligand binding cellular protein localized predominantly in the 
mitochondria as well as the plasma membrane, cytosol, Golgi, 
endoplasmic reticulum, and the nucleus (77–79). gC1q-R is 
present in the mitochondrial matrix where it binds and inhibits 
cellular splicing factors (80) and is also observed to inhibit splic-
ing in HIV transcripts (81). In Drosophila embryos a fly ortholog 
of gC1q-R was identified as a histone chaperone that exchanges 
protamines for histones (82). Human gC1q-R binds with high 
affinity to all subclasses of histones (H1, H2A, H2B, H3.1, and 
H4) and blocks the pathophysiological activities of histones in a 
murine model for histone-induced shock (83). gC1q-R also binds 
host-defense peptides (84). In endothelial cells, inflammatory 
mediators and lipopolysaccharides (LPS) upregulate expression 
of gC1q-R in a time and concentration-dependent manner (85). 
gC1q-R was first discovered as binding the globular heads of 
the complement protein C1q (74) and is implicated in diverse 
biological pathways, including adipogenesis and insulin signaling 
(86), regulation of RNA splicing (80), the proliferation of tumor 
cells (87) and atherosclerosis (88).

The interaction of gC1q-R (89) with both PK–HK and FXII on 
the surface of endothelial cells promotes the production of PKa 
and FXIIa as gC1q-R is an endogenous activator of CAS (90). 
Biochemically, the properties of gC1q-R are consistent with this 
as it is a highly anionic multimeric protein capable of binding to 
both FXII and HK (78, 91) in a Zn2+-dependent manner (74, 76). 
Binding studies calculated a KD of 0.7–0.8 nM for the interaction 
of HK with gC1q-R, and no difference in binding affinity was 
observed between HK and HKa (92). Previous studies suggest 
that FXII and HK compete with one another for binding to gC1q-
R and for the same site on endothelial cells (43, 93, 94).

CAS can be regulated by gC1q-R as in the resting state gC1q-R 
is predominantly found in the cytoplasm and mitochondria and 
is only released to the cell surface upon activation of endothelial 
cells (95, 96). However, gC1q-R alone is not sufficient for full CAS 
activation as elevated Zn2+ ions are required for FXII recruitment 
to the complex. The origin of the Zn2+ has been shown to come 
from endothelial cells or activated platelets (43). Additional 
endothelial cell receptors for the contact factors are uPAR and 
cytokeratin 1 (CK1) (43, 69). These two proteins have been 
reported to form a multiprotein complex with gC1q-R on the 
surface of endothelial cells (Figure  2A), which is able to bind 
FXII (97). Additionally, the complex of uPAR with CK1 was 
shown to bind HK resulting in PK activation at the endothelial 
cell surface (98).

uPAR is a well characterized protease receptor and regulates 
the amount of active plasmin generated at the cell surface, through 
the interaction with urokinase (uPA) (99, 100), resulting in the 
degradation of fibrin fibers (101). Through this mechanism, uPAR 
has been linked with a number of biological processes, includ-
ing cell migration, angiogenesis (102), tumor metastasis (103), 
and leukocyte migration (104). HK binding with uPAR inhibits 
endothelial cell migration and proliferation, and angiogenesis by 
disrupting the interaction of uPAR with uPA (69, 105, 106). While 

it is well established that HK/HKa binds to uPAR, Betapudi et al., 
(107) showed that the antiangiogenic effects of HK are mediated 
equally well in wild-type and uPAR-deficient mice, concluding 
that uPAR is not essential for inhibition of angiogenesis by HKa 
in  vivo or for HKa-induced endothelial cell apoptosis in  vitro. 
This study also failed to demonstrate an essential role for any of 
the previously known endothelial cell receptors for HK or HKa 
including the uPAR, gC1q-R, and CK1. Also, HKa inhibits angio-
genesis via induction of apoptosis in proliferating endothelial 
cells and these effects were mediated mostly by HKa domain D5. 
A separate study showed an interaction between HKa domain 
D5 and endothelial tropomyosin underlies the antiangiogenic 
activity of HKa (108), indicating there is likely redundancy in the 
mechanisms whereby HK binds to cell surfaces.

A study using surface plasmon resonance has measured the 
binding of HK to these endothelial receptors revealing that HK 
binds with the greatest affinity to gC1q-R (0.8 nM), followed by 
CK1 (15 nM) and then uPAR (2.3 µM), each in a Zn2+-dependent 
manner (92). Both gC1q-R and CK1 showed no significant dif-
ferences in binding affinity for HKa or HK, whereas uPAR bound 
50-fold tighter to active HKa. It was, therefore, proposed that 
gC1q-R and CK1 are involved in the initial binding of HK to the 
cell surface where it is then cleaved by PKa. HKa is then able 
to selectively bind uPAR and mediate cell migration. As gC1q-R 
does not have a membrane anchor, additional interactions are 
likely critical to position the protein in the correct location on 
the endothelial cell surface to bind HK and FXII.

Platelets
GPIb-IX is the receptor on platelets for FXII (57), FXI (109) and 
HK (110, 111). GP1bα is a subunit of the GPIb–IX complex, 
which plays a prominent role in the initial steps of platelet adhe-
sion (112). The GPIbα–FXI interaction has been demonstrated 
biochemically to be mediated by the FXI A3 domain in a Zn2+-
dependent fashion (Kd ~ 52 nM). The Interaction is localized to 
the GPIbα N-terminal leucine-rich repeats at a site distinct to the 
GPIbα anionic region, and FXI binding was shown to compete 
with VWFA1 but not thrombin binding (71, 109, 113). Recent 
studies on the FXI-GPIbα receptor interactions describe a vascu-
lar coagulation and inflammatory circuit that overlaps with arte-
rial hypertension pathways (30). The apolipoprotein E receptor 
2 (ApoER2, LRP8) has also been identified as a platelet receptor 
for FXI (114). ApoER2 is a member of the low-density lipoprotein 
family of receptors and initiates platelet cell signaling through the 
disabled-1 adaptor protein (115). Due to the dimeric nature of 
FXI, it may simultaneously bind both GPIbα and ApoER2.

GPIbα is also the primary receptor on platelets for thrombin 
and thus plays a well characterized role in platelet activation 
(116). HK binding to platelets is mediated predominantly through 
GPIbα (117) and this binding has been shown to compete with 
the thrombin-binding site, which is localized to the GPIbα ani-
onic region (118). HK has been shown to interact with GPIbα 
through the D3 domain and the D5 domain although the precise 
determinants of the interaction are not clear (117). A monoclonal 
antibody binding to the GPIX subunit also inhibited HK binding 
to platelets, indicating there may be a more extensive interaction 
beyond the GPIbα chain (117).
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where HK may bridge the two cell types. PKa is shown binding to the activated αIIbβ3 platelet integrin.
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FXII binds to GPIbα and in a similar manner to HK and FXII 
has also been shown to inhibit the binding of thrombin (57). As 
both FXII and HK have domains with concentrated regions of 
positive charge, it is possible both recognize the GPIbα N-terminal 
domain anionic region in a similar fashion to the way thrombin 
utilizes its positively charged exosites to bind GPIbα (57, 117, 
118). The platelet membrane is well known as a pro-coagulant 
surface and a component of this response is the feedback loop 
of thrombin to cleave and activate FXI (119). PK binds platelets 
and recently the activated enzyme PKa has been described bind-
ing to platelet integrin αIIbβ3 through its KGD and KGE motifs 

(Figure  2) (120). PKa (but not the zymogen) enhances ADP 
induced platelet activation by PAR-1 hydrolysis (120).

Leukocytes
HK, PK, FXII, and FXI have been shown to bind to the surface of 
neutrophils (121). Thus, release of BK on the neutrophil surface 
could enhance the passage of neutrophils out of the vasculature 
to mediate inflammatory responses (121). HK inhibits calpain 
(122), is involved in neutrophil aggregation (123), chemot-
axis (124), and the release of elastase through degranulation  
(124, 125).
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The major leukocyte cell receptor for HK is the activated 
integrin  macrophage-1 antigen receptor (Mac-1) (66). HK 
binds to Mac-1 via the D3 and D5 domains (66, 126). Mac-1 is 
a multifunctional receptor expressed primarily on monocytes, 
macrophages, neutrophils, and natural killer cells. A variety of 
different ligands bind to this receptor including fibrinogen (66), 
intercellular adhesion molecule-1 (ICAM-1) (127) as well as 
HK (66). Mac-1 also mediates a variety of cell to cell interac-
tions, including the neutrophil-platelet association involving 
interaction with GPIbα (128). HK mediates the adhesion of 
neutrophils to sites of fibrin formation and endothelial cells 
by inhibiting the interaction of Mac-1 with fibrinogen and 
ICAM-1 (129). Surfaces preadsorbed with HK are anti-adhesive 
to neutrophil binding (130).

Platelets and leukocytes interact and coordinate innate 
immune responses (131). The relationship between these two 
cell types and the CAS has been described as being involved in 
a pathway termed immuno-thrombosis that can contribute to 
thrombus formation in animal models of disease (132). Thus, it 
is of interest that HK binds both cell types and has been described 
as a molecular bridge between GPIbα and Mac-1 enhancing the 
interaction between cell types through these receptors (Figure 2B) 
(68). Mac-1 has also been linked to neutrophil extracellular traps 
(NETs) formation (133, 134). This promotes microbe entrapment 
by fibrin clots thus facilitating microbial clearance through the 
engagement of phagocytic cells and leukocytes by stimulating 
inflammation. Thus, HK may be a key coordinating cofactor for 
drawing together the CAS plasma proteins and different cell types 
in an innate immune pathway that overlaps with thrombosis (29).

Contact Factor interactions with Bacteria 
and viruses
Negatively charged LPS or surface associated negatively charged 
teichoic acids (S. aureus) (135, 136) and long chain PolyP (137) 
from various bacteria can induce CAS activation and BK release 
(138). HK binding to LPS from K. pneumoniae, P. aeruginosa,  
S. Minnesota, and E. coli strains converts single-chain HK to two-
chain HKa and releases BK (139). High levels of BK have been 
reported in animal models of sepsis (140).

Contact factors bind to the surface of Gram-negative bacte-
ria as well as Gram-positive bacteria and FXII and HK depend-
ent contact activation on fibrous structures, including curli and 
fimbriae in E. coli and S. typhimurium, respectively, activates 
CAS which is not found in mutant strains lacking either curli or 
fimbriae (141, 142). The streptococcal M1 protein together with 
human fibrinogen, initiates polymorphonuclear neutrophils to 
form NETs, providing a surface for binding and activation of 
the contact system (143).

FXII mediated contact activation (144) and coagulation 
during viral infections has been reported (48). Upon hantavirus 
infection increased FXII binding and auto-activation is observed 
on the surface of infected endothelial cells (47). In Herpes 
Simplex Virus 1 an anionic phospholipid was identified as being 
responsible for activating FXII leading to enhanced coagulation 
through CAS activation (145).

CONCLUSiON

The assembly of contact factors on cell surfaces is mediated via 
a number of structurally unrelated cell receptors (uPAR, GPIbα, 
Mac-1) and cofactors (HK, gC1q-R, CK1). On the surface of 
endothelial cells, gC1q-R is primarily responsible for assembly 
and activation of the FXII/HK/PK. gC1q-R has structural features 
of a cofactor rather than a cell receptor as it lacks a means to inde-
pendently anchor to the plasma membrane and it is also present 
as a soluble factor in plasma (146). It has been shown by several 
groups independently that gC1q-R binds both HK and FXII and 
that it is capable of activating FXII and PK only when the three 
proteins, FXII/HK/PK, and elevated Zn2+ ions are present (90). 
Thus, it is capable of acting in a similar way to polyanions such 
as PolyP (90). As both gC1q-R and HK have been characterized 
as being capable of forming interactions with cell receptors and 
cell surface proteins (97, 147), there may be several redundancies 
in the mechanism whereby the FXII/HK/PK/gC1q-R complex 
locates to the surface of endothelial cells.

A key question is the molecular mechanism and patho-
physiological significance of the Zn2+ dependence for both CAS 
receptor binding and FXII enzyme activation and whether this 
cation is a global regulator of CAS. The plasma concentration of 
Zn2+ ions ranges between 10 and 20 µM (148), most of which is 
bound to serum albumin, resulting in free Zn2+ concentrations 
of approximately 0.5  µM (149). FXII binding to endothelial 
cells increases in the presence of Zn2+ and binding plateaued 
at Zn2+ concentrations of 50 µM (93). This Zn2+ concentration 
is 100-fold more than the free Zn2+ concentration found in the 
plasma, which supports Zn2+ concentration as a potential control 
mechanism for contact activation. Platelets are known to release 
Zn2+ upon activation (43, 150) but the cellular process that 
controls this remains unknown. Different cell types cooperate in 
pathways leading to thrombosis (29, 30, 151) and thus studying 
each cell type in isolation may have limited utility when trying to 
understand contact factor cell localization and contact activation 
in vivo.

On the surface of platelets the assembly of the FXII/HK/FXI 
complex may occur via GPIbα, which can also act as the receptor 
for thrombin, thus coordinating FXI activation via both coagula-
tion pathways (intrinsic and extrinsic). Activation of platelets 
and resulting secretion of PolyP plays a role both as a cofactor 
for thrombin cleavage of FXI (119) and FXII activation (17, 20, 
152–155).

uPAR acts as a receptor for FXII on the surface of neutro-
phils (156) and dendritic cells (157), mediating processes that 
may be independent of contact activation. Contact factors are 
considered to be novel drug targets for thrombotic (36) and 
inflammatory diseases and targeting cell surface and receptor/
cofactor binding domains has the potential of introducing more 
selectivity over targeting the contact factor enzyme active sites. 
Elucidating the structure of cognate cell receptors and cofactors 
regulating CAS activation in inflammation and FXI activation 
in the plasma coagulation pathway will provide a scaffold to 
develop novel antagonists and therapies for diverse vascular 
diseases.
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