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Diabetic kidney disease (DKD) is one of the major causes of morbidity and mortality in 
diabetic patients and also the leading single cause of end-stage renal disease in the 
United States. A large proportion of diabetic patients develop DKD and others don’t, 
even with comparable blood glucose levels, indicating a significant genetic component 
of disease susceptibility. The glomerulus is the primary site of diabetic injury in the kidney, 
glomerular hypertrophy and podocyte depletion are glomerular hallmarks of progres-
sive DKD, and the degree of podocyte loss correlates with severity of the disease. We 
know that chronic hyperglycemia contributes to both microvascular and macrovascular 
complications, as well as podocyte injury. We are beginning to understand the role of 
glomerular endothelial injury, as well as the involvement of reactive oxygen species and 
mitochondrial stress, which play a direct role in DKD and in other diabetic complications. 
There is, however, a gap in our knowledge that links genetic susceptibility to early molec-
ular mechanisms and proteinuria in DKD. Emerging research that explores glomerular 
cell’s specific responses to diabetes and cell cross-talk will provide mechanistic clues 
that underlie DKD and provide novel avenues for therapeutic intervention.
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inTRODUCTiOn

Diabetic kidney disease (DKD) is one of the major causes of morbidity and mortality in diabetic 
patients and also the leading single cause of end-stage renal disease (ESRD) in the United States (1) 
and now a global epidemic (2–4). There has been little progress in treating DKD since angiotensin-
converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) were shown to 
delay progression of nephropathy over 20 years ago (5, 6). The current treatments for DKD are lim-
ited to hyperglycemic control, blood pressure control, ACE inhibitors, or renin–angiotensin system 
(RAS) blockade, which can delay the progression to ESRD; however, the absolute risk of renal and 
cardiovascular morbidity and mortality remains overwhelmingly high (7). Recent renal outcome 
trails with agents such as thiazolidinediones, DPP-4 inhibitors, bardoxolone, and sulodexide have 
been unsuccessful; however, exciting new data from trials with GLP1R agonists and SGLT2 inhibi-
tors show beneficial renal effects in patients with type 2 diabetes mellitus (T2DM) (8, 9). Although 
these new therapies seem promising, they may not reduce occurrence of ESRD (9). Hence, there is 
urgency from the community for new effective therapies to halt or reverse disease progression.

The prevalence of ESRD is up to 10 times higher in people with diabetes and with much higher 
health expenditures compared with those without diabetes (7, 10). The complex pathogenesis of 

https://www.frontiersin.org/Medicine
https://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2018.00076&domain=pdf&date_stamp=2018-03-23
https://www.frontiersin.org/Medicine/archive
https://www.frontiersin.org/Medicine/editorialboard
https://www.frontiersin.org/Medicine/editorialboard
https://doi.org/10.3389/fmed.2018.00076
https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ilse.daehn@mssm.edu
https://doi.org/10.3389/fmed.2018.00076
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00076/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00076/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00076/full
https://loop.frontiersin.org/people/458078


2

Daehn Molecular Mechanisms of DKD

Frontiers in Medicine | www.frontiersin.org March 2018 | Volume 5 | Article 76

DKD is influenced by genetics and by the environment (11–14). 
The majority of patients with diabetes do not develop DKD 
despite similar levels of hyperglycemia (15), and this is also the 
case with experimental mouse models (16, 17). Initially, patients 
present with microalbuminuria [urinary albumin excretion 
rate (UAER) 30–300 mg/24 h], which can progress to macroal-
buminuria (UAER ≥  300  mg/24  h) and eventually ESRD (18). 
However, there is a large proportion of diabetic patients that have 
decreased renal function in absence of substantial proteinuria 
(19), suggesting that other mechanisms contribute to kidney 
damage adding to the complexity of DKD, as well as highlighting 
the need for better biomarker predictors of progressive kidney 
failure in this population. It is thought that this will come from a 
better understanding of the pathogenesis of DKD.

This review aims to highlight the emerging evidence of 
intra-glomerular cell cross-talk in DKD, with particular focus on 
endothelial–podocyte communications, redox, cellular targets, 
and potential opportunities for discovery of new targets for the 
prevention and treatment of progressive DKD.

HYPeRGLYCeMiA AnD GLOMeRULAR 
inJURY—FiRST HiT

Hyperglycemia is the driving force for diabetic complications, 
and the glomerulus is the primary site of diabetic injury in the 
kidney. The early stage of DKD is characterized by glomerular 
hyperfiltration, hypertrophy, mesangial expansion with altered 
matrix composition, and thickening of the glomerular base-
ment membrane (BM). Podocyte injury resulting in podocyte 
foot process effacement (20–22) and depletion is a hallmark of 
progressive DKD (23–25). Podocytes contribute to glomerular 
permeability with their exceptionally complex morphology that 
is the key to their physiological function. The development of 
proteinuria is associated with marked morphological changes in 
these cells, and this relationship has been described in patients 
with diabetes both with microalbuminuria and macroalbuminu-
ria (26, 27). There is a correlation between diabetes effects on 
podocyte morphology and their pathophysiology, all principal 
features that clinically manifests as proteinuria. Podocytes are 
terminally differentiated visceral epithelial cells with a limited 
capacity to regenerate (21), thus the “podocyte depletion para-
digm” correlates closely with the development of proteinuria and 
progressive glomerulosclerosis, and therefore podocytes have 
been studied extensively as key targets in the evolution of seg-
mental sclerosis lesions.

Many research groups are actively investigating the patho-
mechanisms of podocyte injury and depletion in DKD and other 
glomerular diseases. In DKD, the glomeruli are exposed to vari-
ous noxious stimuli such as high glucose, uric acid, fatty acids, 
growth factors, cytokines, and hormones, and all these have been 
associated with podocyte loss in experimental models of DKD. A 
handful of potential mechanisms for podocyte depletion in DKD 
have been suggested and discussed, including the induction epi-
thelial-to-mesenchymal transition (EMT). During EMT, cell–cell 
and cell–extracellular matrix interactions are altered to release 
epithelial cells from the host tissue (28). This process involves 

reorganization of the cytoskeleton to enable migration, and an 
altered transcriptional program is induced to maintain these 
cells in a mesenchymal phenotype while losing their hallmark 
epithelial characteristics (28–30). Diabetes-induced podocyte 
EMT may be mediated through several molecular mechanisms 
such as TGF-β/Smad classic pathway, Wnt/β-catenin signaling 
pathway (31), integrins/integrin-linked kinase signaling pathway 
(32), mitogen-activated protein kinases (MAPKs) signaling path-
way, Jagged/Notch signaling pathway (33), and NF-κB signaling 
pathway (34). Although it is still debatable, podocyte depletion 
may result from decreased podocyte adhesion in DKD, which is 
a potential consequence of EMT. Podocyte transition to a more 
mesenchymal nature could result in their detachment facilitated 
by mechanical forces and shear stress derived from filtrate flow 
through the filtration slits acting on the foot-processes chal-
lenging the attachment of podocytes to the GBM (35–37) and 
consequent impairment of renal filtration.

In DKD podocyte loss through cell death was first demon-
strated by Susztak et al. (38), podocytes exposed to high glucose 
had increased reactive oxygen species (ROS) via NADPH oxidase 
resulting in apoptosis by activation of MAPK and the caspase-3 
cascade in  vitro. An increase in transferase-mediated dUTP 
nick-end labeling positive podocyte nuclei coincided with onset 
of hyperglycemia and with onset of albuminuria in both T1DM 
and T2DM models. Although apoptosis has been described as 
the major mechanism by which podocytes die in diabetes and 
progressive glomerular disease by our group and others (39–42), 
the topic of podocyte cell death, detachment, and loss in glo-
merular diseases has been discussed extensively elsewhere (43) 
and remains controversial. Whether the diabetic milieu effects 
on podocytes could promote podocyte detachment, i.e., preceded 
by any kind of podocyte cell death, such as apoptosis, necrosis, 
necroptosis, ferroptosis, podoptosis, and mitotic catastrophe 
(44–48), still remains under debate and not the focus of this review. 
The maintenance of the glomerular ultrafiltration barrier requires 
the interaction of all three glomerular cell types (49, 50) including 
a multidirectional cross-talk between podocytes, mesangial cells 
and endothelial cells (51–53), as well as parietal epithelial cells 
(54, 55). Understanding the key interactions between all the cells 
in the glomerulus during the development of DKD may provide 
us with an opportunity for identifying novel interventions that 
can either stop or reverse its progression.

enDOTHeLiAL DYSFUnCTiOn in DKD

Chronic hyperglycemia contributes to both diabetic microvas-
cular and macrovascular complications of diabetes resulting in 
thrombotic microaneurysms, which are typical manifestations of 
endothelial dysfunction in the glomerulus. Glomerular endothe-
lial cells are highly specialized cells with fenestrae and a charged 
luminal glycocalyx layer (56, 57), which contribute to the filtra-
tion barrier (58). Studies have shown that the severity of DKD is 
correlated with endothelial dysfunction in T1DM and T2DM (59, 
60). DKD progression may be tied to increased plasma levels of 
endothelial cells derived von Willebrand factor, soluble vascular 
cell adhesion molecule-1, and soluble intercellular cell adhesion 
molecule-1 in patients (61, 62) and reduction of the endothelial 
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glycocalyx (63, 64). However, the role of endothelial injury in the 
pathogenesis of DKD remains relatively unexplored.

In DKD-susceptible mouse strains, we have reported changes 
in the morphology and potential dysfunction of glomerular 
endocapillaries upon early onset of hyperglycemia by examin-
ing the overall glomerular 3D structure with scanning electron 
microscopy (42). Compared to control non-diabetic glomerular 
capillary vessels, 3-week diabetic mice showed distinct mor-
phological changes including a significant decrease in number 
of fenestrae, there were cytoplasmic protrusions, and increased 
in number of non-fenestrated ridges. Interestingly, podocyte 
foot-processes widening or effacement were not evident at this 
time point, suggesting to us that endothelial cell injury precedes 
podocyte foot-processes effacement and this was an important 
feature of early DKD with potential consequences in the progres-
sion of disease in genetically susceptible mice and potentially in 
humans.

Endothelial dysfunction could result from hyperglycemia 
increased ROS, uric acid, and endothelial nitric oxide synthase 
(eNOS) inactivation, which reduces nitric oxide (NO) levels (65). 
Endothelial NO plays a critical role in maintaining renal blood 
flow, regulating glomerular filtration rate, as well as salt and fluid 
homeostasis; hence, the inactivation of NO particularly through 
increased oxidative stress has been linked to altered kidney and 
vascular function [for review, see Ref. (66)]. A vital role for eNOS-
derived NO in the pathogenesis of DKD was illustrated in studies 
comparing diabetic control wild-type and diabetic eNOS knock-
out (KO) on the C57BL6 DKD resistant background (67). eNOS 
KO developed overt albuminuria, hypertension, and glomerular 
mesangiolysis, injured endothelial morphology, thickened glo-
merular BM, and focal foot process effacement, whereas control 
mice did not. By correcting changes in eNOS dimerization and 
phosphorylation, Cheng et al. were able to reduced albuminuria, 
GBM thickness, and urinary excretion of oxidative stress markers; 
moreover, it did not affect hyperfiltration or mesangial expansion 
(68). Along with this observation, diabetic mice with endothelial 
dysfunction induced by genetic deficiency of eNOS get podocyte 
injury with heavy albuminuria (69) and maintenance of endothe-
lial levels of the essential eNOS cofactor tetrahydrobiopterin 
was shown to ameliorate DKD in these mice (70). Finally, the 
levels of asymmetric dimethylarginin, an endogenous inhibitor 
of endothelial eNOS, contribute to increased risk of progressive 
DKD in patients with T1DM (71–73) and eNOS polymorphisms 
that result in reduced enzyme function have been associated 
with more advanced diabetic nephropathy (74, 75). Altogether, 
these reports support the role of endothelial dysfunction in the 
pathogenesis and progression of DKD.

THe ROS PARADOX in DKD

Oxidative stress represents overproduction of ROS relative to 
antioxidant defenses (76). An imbalance in the oxidation–reduc-
tion state has been identified as a major culprit for diabetic 
complications (77, 78), including DKD (79–81). Increased ROS 
production triggers renal fibrosis and inflammation and causes 
significant tissue damage by promoting lipid peroxidation, 
protein and DNA damage, and mitochondrial dysfunction. In 

the kidney, ROS are generated by xanthine oxidase, cytochrome 
P450 systems, uncoupled NO synthase, mitochondrial respira-
tory chain, and NOXs. Among NOX isoforms, NOX1 has been 
shown to modulate the p38/p27(Kip1) signaling pathway via 
PKC activation and promotes premature senescence in early stage 
DKD (82). NOX4- and NOX5-derived ROS are important in glo-
merular and podocyte injury; however, their regulation and func-
tion relative to DKD remains unclear (83). Studies by Babelova 
et al. (84) demonstrated an increase in albuminuria in diabetic 
mice with genetic deletion of NOX4, although they reported 
prominent expression of NOX4 to be in tubular cells. Nox4 was 
also shown to have anti-apoptotic properties protecting kidneys 
after ischemia reperfusion injury (85). On the other hand, a study 
using podocyte-specific inducible NOX4 transgenic mice showed 
glomerular injury characteristic of DKD (86); hence, the context 
of NOX4 may be important. You et al. and others (87–89) have 
shown that NOX1/NOX4 inhibition has renoprotective effects in 
experimental DKD. More research is needed to understand the 
roles of NOXs in DKD.

The mitochondria are the main cellular source of energy 
and of ROS production within cells in response to metabolic 
demands and/or cellular stress signals (90) and are (among other 
roles) the central regulators of the intrinsic apoptosis pathway. 
In fact, abnormalities of glomerular podocyte function linked to 
mitochondrial disorders are involved in the etiology of glomeru-
lar pathology with nephrotic syndrome (91–93). An excessive 
production of mtROS can damage macromolecules within mito-
chondria, including lipids, proteins, and mitochondrial DNA 
(mtDNA) (94), this in turn impairs the synthesis of components 
of the ETC, as well as reduce the capacity to generate ATP, and 
potentiate further ROS production (vicious cycle: oxidative stress) 
resulting in mitochondrial dysfunction (95, 96). mtDNA is a vul-
nerable oxidation target with a higher mutation rate than nuclear 
DNA due to vicinity to ETC, a higher rate of replication, lack of 
protection from histones, and DNA repair mechanisms (96–98). 
An assessment of metabolites from stage 3 to 4 CKD patients 
versus controls demonstrated that urinary excretion of citric acid 
cycle metabolites and of genes regulating these metabolites were 
reduced in patients with CKD, supporting the emerging view of 
CKD as a state of mitochondrial dysfunction (99).

Increased mtROS and mitochondrial dysfunction could play 
a critical role in the pathogenesis of DKD (78). Mitochondrial 
stress in DKD has been demonstrated to be linked to induction 
Rho-associated coiled-coil-containing protein kinase1 expres-
sion and thus resulting in mitochondria fission by promoting 
phosphorylation and translocation of dynamin-related protein-1 
into the mitochondria (100). This study suggests a critical role 
for hyperglycemia induced mtROS production, mitochondrial 
fission, and consequent mitochondrial dysfunction in podocytes 
and endothelial cells (100). By contrast, superoxide production 
has been shown to be reduced in the kidneys of a STZ-induced 
T1DM, and using multiple in  vivo and ex vivo approaches the 
authors did not observe evidence for enhanced mitochondrial 
superoxide production in diabetic kidneys. The authors showed 
evidence of mitochondrial dysfunction, reduced overall mito-
chondrial content, decreased biogenesis, and increased total 
urinary ROS (101, 102). This contrasting view to the widely held 
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unifying theory that suggests high glucose drives overproduc-
tion of superoxide from mitochondria in diabetic complications, 
encompasses “mitochondrial hormesis,” supported by the reduc-
tion of AMPK, sirtuins, and PGC1α pathways and increased 
mTOR, reduced mitochondrial ROS, reduced biogenesis, and 
disease progression (103). This brings up an important consid-
eration, as ROS moieties are essential for specific intracellular 
signaling pathways that regulate physiological processes and 
represent normal mitochondrial function. Increased ROS act 
as second messengers essential in vascular homeostasis (104) 
and significantly contribute to the immune response (105, 106). 
Therefore, scavenging all ROS by antioxidants may be dangerous, 
as we have learned from failures of several large clinical trials using 
antioxidant therapies on DKD patients (107, 108). With these 
considerations, Galvan and colleagues developed a two-photon 
imaging method using a genetically encoded redox biosensor to 
monitor the dynamic mitochondrial redox state of mice kidneys 
in real-time. Using this approach, the authors confirmed an 
increased production of mtROS in the kidneys of diabetic mice 
(109). As we evolve our understanding of ROS chemistry and cell 
biology, it becomes clearer that different ROS and their location 
can have distinct and important roles in the kidney.

Our recently published data is in accordance with mitochon-
drial-dependent glomerular pathomechanisms in DKD suscepti-
bility (42). We were guided initially by unbiased transcriptomic 
profiling of glomeruli after onset of diabetes in DKD-susceptible 
DBA/2J and -resistant C57BL/6J inbred mouse strains. Among 
differentially expressed transcripts in diabetic DBA/2J mice, genes 
with well-established functional roles in “oxidative phospho-
rylation” and “mitochondrial function” were most significantly 
enriched and antioxidants were downregulated in diabetic DBA/2J 
susceptible mice, suggesting a redox imbalance in glomeruli. The 
increase in mitochondria oxidative stress resulted in mtDNA 
instability and damage, and we discovered that the damage accu-
mulated exclusively in the glomerular endothelial cells, resulting 
in decreased NO and overall endothelial dysfunction (42), this 
occurred despite the fact that ROS and metabolic changes may be 
increased in podocytes (22) as well as other glomerular cells upon 
chronic exposure to a diabetic milieu. Moreover, prevention of 
mtROS with a mitochondrial-specific scavenger prevented podo-
cyte loss, albuminuria, and glomerulosclerosis (42). Another study 
evaluated the mRNA profile of glomeruli and isolated podocytes 
from diabetic mice kidneys (110). The authors demonstrated 
distinct upregulated pathways involving mitochondrial function 
and oxidative stress in the endothelium compartment, in isolated 
glomeruli. By contrast, isolated podocytes showed changes in the 
regulation of actin cytoskeleton-related genes as major pathways 
affected in diabetic mice (110). We showed that increased oxida-
tive damage in glomerular endothelial cells was also detected in 
human subjects diagnosed with DKD, and oxidized DNA lesion 
excretion in the urine (8-OHdG) was significantly increased only 
in patients with progressive DKD (42). In accordance with our 
data, higher plasma concentrations of 8-OHdG were found to 
be independently associated with increased risk of progression 
of kidney disease in T1DM (111). Altogether, there are convinc-
ing data showing that oxidative damage is context dependent in 
DKD and that the glomerular endothelium could be the weakest 

link under chronic stress, and suggests that podocyte depletion 
in DKD-susceptible mice could be contingent on endothelial cell 
mitochondrial dysfunction.

SeCOnD HiT HYPOTHeSiS LeADinG TO 
PROTeinURiA iS COnTeXT DePenDenT

In studying the highly complex nature of diabetes-mediated 
glomerular cell injury, conflicting results from in  vivo and/or 
in vitro studies driven hypothesis have led some researchers to 
propose a “second hit hypothesis” to explain podocyte loss in 
experimental models of DKD and other glomerular diseases (47, 
112, 113). Glomerular cells are tightly intertwined interdepend-
ently for proper function, with signal processings that must 
interpret the environment under normal and stress conditions. 
Podocytes control endothelial cell growth and survival via 
cross-talk of essential paracrine vascular endothelial growth 
factor alpha (VEGFA and VEGF-R) (114, 115). Cross-talk also 
exists between endothelial and mesangial cells (PDGF-B and 
PDGFR-β) and between podocytes and mesangial cells (CCL21 
and CCR7) (116, 117). This bidirectional signal cross-talk enables 
cells to function effectively. However, in response to changes in 
the microenvironment (e.g., diabetes), a communication network 
could provide feedback that may enable cells to tune their signal-
ing activity to organize cytoskeletal dynamics, metabolic output, 
etc. The molecular mechanisms for glomerular cell cross-talk and 
feedback regulation in proteinuric glomerular diseases remain 
poorly understood.

In most diseases causing glomerulosclerosis, transform-
ing growth factor β (Tgfb) expression in podocytes is a stress 
response signal associated with segmental sclerosis and podocyte 
loss (118–120). In a model of FSGS, podocyte injury initiated by 
activating Tgfb signaling specifically in podocytes, we showed an 
increase in the release of endothelin-1 by podocytes, which acted 
on increased endothelin receptor type A (Ednra) on adjacent 
glomerular endothelial cells resulted in endothelial cell mito-
chondrial oxidative stress and endothelial cell dysfunction (121). 
Surprisingly, glomerular endothelial mitochondrial oxidative 
stress and dysfunction was absolutely essential for subsequent 
podocyte loss, illustrating a podocyte-to-endothelial-to-podo-
cyte cross-talk (121). A similar stressed endothelial-to-podocyte 
cross-talk via mitochondrial oxidative stress in endothelial cells 
downstream from Edn-1/Ednra could also underlie segmental 
lesions in DKD and highlight a potential mechanism for the 
proven renoprotective activities of EDNRA inhibitors (42). Work 
from our laboratory and others have shown that Tgfb signaling 
in podocytes increases mitochondrial activity (respiration rate) 
(122, 123). Although Abe et  al. (122) reported a concomitant 
increase in ROS production and mitochondrial membrane poten-
tial via and activation of mTOR, we did not detect ROS damage in 
podocytes (123). Podocytes are quite resilient with effective high 
level of constitutive autophagy (124–126) that could efficiently 
remove damaged organelles. Perhaps Tgfb signaling activation 
increases podocytes susceptibility to cross-talk messaging factors 
from neighboring endothelial cells with sustained injury that 
might represent a “second hit” for podocytes, leading to depletion 
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and proteinuria in vivo. Recently, a study showed that secreted 
exosomes derived from high glucose-treated endothelial cells 
could mediate EMT and dysfunction of podocytes in a paracrine 
manner and activating canonical Wnt/β-catenin signaling (127). 
Interestingly, podocyte injury in a DKD resistant mice strain 
was detected when KLF2 expression was decreased specifically 
in endothelial cells of these mice (128). Figure  1 illustrates 
hypothetical cross-talk between glomerular endothelial cells and 
podocytes, ROS, ROS damage, mitochondrial dysfunction in 
DKD.

A neeD FOR DiSRUPTiOn in OUR 
APPROACH TO TReATinG DKD

The need for renal replacement, the mortality risk, and the finan-
cial burden are tremendously high among diabetics with kidney 
disease. Hence, halting or reversing disease progression will 
significantly impact patients living with this debilitating disease.

New treatments that aim to restore endothelial function could 
be an effective strategy for treating DKD as shown in a study that 
targeted cGMP; a key messenger for NO signaling. The study 

showed reduced progression of renal damage in the ZSF1 rat with 
diabetic nephropathy in the absence of significant hemodynamic 
effects (129). This approach is currently been examined clinically. 
Renoprotection in T2DM has been reported by preservation 
of mitochondrial function with CoQ10, which acts as both 
an acceptor of electrons and a ROS scavenger (130). Also, the 
mitochondria-targeted analog mitoubiquinone (131) has been 
shown to protect kidneys from diabetic injury by prevention of 
nuclear accumulation of pro- phospho- Smad2/3 and β-catenin 
or by Nrf2/PINK1-mediated mitophagy in tubules (132, 133). 
Preclinical studies with mitochondrial-targeted scavanger Szeto-
Schiller peptide (Bendavia™) have demonstrated benefits in 
rodent models of DKD by improving mitochondrial bioenergetics 
(134), alleviating proteinuria, urinary 8-OHdG levels, glomerular 
hypertrophy, and accumulation of renal fibronectin and collagen 
IV (135). Clinical trials are underway to evaluate the cardiac 
and renal benefits using this targeted antioxidant mechanism 
in patients. Although mitochondria are a promising therapeutic 
target, the question of whether mitochondrial stabilization and 
mtROS inhibition can improve patient endpoints in large, rand-
omized DKD clinical trials still remains.
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We are at an exciting time, where as a community we 
understand that this multi-dimensional, multi-cellular condi-
tion requires interdisciplinary efforts and new technologies, 
that can potentially encompass and integrate the different 
dimensions of the glomerulus and the complexity of the dia-
betic milieu. These efforts will lead us to new insights into the 
pathogenesis of DKD and the discovery of novel therapeutic 
targets.
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