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An increasing number of patients require precise intraoperative hemodynamic monitoring

due to aging and comorbidities. To prevent undesirable outcomes from intraoperative

hypotension or hypoperfusion, appropriate threshold settings are required. These setting

can vary widely from patient to patient. Goal-directed therapy techniques allow for flow

monitoring as the standard for perioperative fluid management. Based on the concept

of personalized medicine, individual assessment and treatment are more advantageous

than conventional or uniform interventions. The recent development of minimally and

noninvasive monitoring devices make it possible to apply detailed control, tracking,

and observation of broad patient populations, all while reducing adverse complications.

In this manuscript, we review the monitoring features of each device, together with

possible advantages and disadvantages of their use in optimizing patient hemodynamic

management.

Keywords: hemodynamic monitoring, non-invasive, perioperative complications, outcomes, hemodynamic, blood

pressure, perioperative outcomes, monitor

INTRODUCTION

While medicine is moving toward standardized care, the 2015 Precision Medicine Initiative aimed
to understand how a person’s genetics, environment, and lifestyle can help determine the best
approach to prevent or treat disease. It is now possible to improve patient outcomes by setting
individualized hemodynamic parameters according to specific and customized comorbidities
or current pathologies. Enhanced Recovery After Surgery (ERAS) protocols recommend
individualized intraoperative fluid optimization through integrated hemodynamic monitoring (1).

For patients and healthcare providers, blood pressure (BP) is one of the most important
vital signs monitored. The recent development of monitoring technologies allows clinicians to
obtain both minimally invasive and continuously non-invasive BP. Hemodynamics describes
a patients’ BP, cardiac output (CO), and systemic vascular resistance (SVR). Appropriate and
precise evaluations of these parameters make it possible to evaluate tissue perfusion. Although
the optimal hemodynamic parameters for each patient are undefined, patient outcomes can
potentially be improved by applying therapeutic strategies based on hemodynamic information
(2). Poor perioperative hemodynamic management of surgical patients can extend beyond
cardiovascular complications. Appropriate management can potentially lead to a decrease in
neurologic complications, kidney injury, and even mortality.
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The goal of this review is to describe the existing scientific
scholarship on perioperative hemodynamic monitoring
techniques and patient outcomes. We will describe different
monitoring techniques as well as the advantages and
disadvantages of each device. By using tailored monitoring
tools, it is possible to adjust therapeutic decisions for each patient
individually and for specific situations.

HEMODYNAMIC PHYSIOLOGY

Blood circulation supplies the necessary nutrients and oxygen
to each tissue and collects unnecessary or toxic substances.
The proper maintenance of pressure is necessary to distribute
enough blood so that the organism can adapt to vigorous activity.
Normally, organisms maintain their circulation homeostasis
adequately, but surgery, anesthesia, and/or critical illness may
disturb this homeostasis. Accurate hemodynamic monitoring is
mandatory in these situations, most particularly with vulnerable
patients who might not be able to adequately adapt to these
unique conditions. Accurate monitoring provides necessary and
invaluable information to launch appropriate interventions.

Circulatory systems are often compared to electric circuits
and are explained by Ohm’s law. Ohm’s law relates pressure,
flow, and resistance by a simple mathematical expression
that can be applied to the human circulatory system. In the
human body, the amount of electrical current is translated
to CO. Electrical resistance correlates to vascular resistance
(Figures 1A,B). Consider the following three simple examples
as treatment interventions for hypotension after induction of
anesthesia: (1) administration of phenylephrine increases SVR,
with an increase of BP; (2) administration of dobutamine
increases CO, leading to an increase of BP; (3) fluid loading
increases CO, with increase of BP. While we recognize BP as
an important vital sign, we do not have the tools to directly
manipulate BP. It is also not possible to directly measure SVR.
By determining BP, CO, and SVR, it is possible to understand
which intervention needs to be addressed and which drugs to
select and administer. Control of BP is, in essence, hemodynamic
management based on CO measurement.

MONITORING TECHNOLOGY

Non-invasive Continuous Monitoring
Blood Pressure

Volume clamp
The most popular, noninvasive continuous BP monitor uses
finger cuff. Small cuff(s) with photoplethysmogram (PPG) are
applied to the fingers. The cuff inflates to cancel out changes in
the PPG. The balanced pressure represents the patients’ blood
pressure at the cuff site. The equipment reconstructs brachial
arterial pressure from the finger BP waveform’s transformation.
It calculates arterial BP using estimated arterial resistance based
on the patients’ physical characteristics. When a patients’ vessel
characteristics differ greatly from the installed software, the
obtained value may differ greatly from the actual and real value.
This technique is still subject to some controversy: while some
studies report it as a reliable, others conclude it to be inaccurate.

FIGURE 1 | (A) Ohm’s low and hemodynamic equation. (B) E (voltage) = I

(current) × R (resistance) (MAP-CVP) = CO × SVR. MAP, mean arterial

pressure; CVP, central venous pressure; CO, cardiac output; SVR, systemic

vascular resistance. (C) The basic 2-element Windkessel model. Elastic artery

has specific compliance and behaves as a capacitor. The relation given as:

I (t) = P(t)
R + C dP(t)

dt
The 3- and 4-element models as a succeeding model are used in recent

devices with more accuracy.

Table 1 summarizes recent studies investigating accuracy of this
technique. According to the Association for the Advancement
of Medical Instrumentation (AAMI), product standard uses the
mean difference in BP measurements between these devices
and “gold standard” measurements should be <5 mmHg, with
a standard deviation <8 mmHg (3). Alfano et al. compared
finger-cuff with a conventional oscillometric method in 40
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TABLE 1 | Accuracy study of noninvasive continuous blood pressure.

Study Device Setting No. of

subjects

Comparison No. of

measured

values

SBP MAP DBP

Ilies et al. (4) Finger cuff

(CNAP®)

ICU 104 Invasive line (same

side radial artery)

11,222 4.3 ± 11.6, 22.8% −6.1 ± 7.6, 18.4% −9.4 ± 8.0, 25.6%

Gayat et al. (5) Finger cuff

(CNAP®)

OR (including

cardiac surgery)

52 Invasive line (same

side radial artery)

5,174 −2 ± 22, 37% −8 ± 12, 32% −11 ± 14, 37%

Hahn et al. (6) Finger cuff

(CNAP®)

OR (non-cardiac

surgery)

50 Invasive line 237,562 0.9 ± 13.2, NA −3.1 ± 9.45, NA −2.8 ± 8.6, NA

Ameloot et al. (7) Finger cuff

(Nexfin®)

ICU 45 Invasive line

(femoral artery)

225 8.3 ± 13.8, 22% −1.8 ± 5.1, 12% −9.4 ± 6.9, 23%

Vos et al. (8) Finger cuff

(Nexfin®)

OR (non-cardiac

surgery)

110 Invasive line (radial

artery)

758 NA 2 ± 9, 22% NA

Hofhuizen et al. (9) Finger cuff

(Nexfin®)

ICU (post cardiac

surgery)

20 Invasive line (radial

artery)

66 2.7 ± 11.3, NA 4.2 ± 7.0, NA 4.9 ± 6.9, NA

Langwieser et al.

(10)

Tonometory

(T−lineTM)

Cardiac ICU 30 Invasive line (radial

artery)

7,304 −6 ± 11, 20% 2 ± 6, 17% 4 ± 7, 23%

Meidert et al. (11) Tonometory

(T−lineTM)

ICU 24 Invasive line (radial

artery)

2,993 −3 ± 15, 23% 2 ± 6, 15% 5 ± 7, 22%

Saugel et al. (12) Tonometory

(T−lineTM)

ICU (medical

patient)

22 Invasive line 330 −8 ± 13, NA 0 ± 6, NA 4 ± 6, NA

Findlay et al. (13) Tonometory

(VasotracTM )

OR (liver

transplant)

14 Invasive line (radial

artery)

6,468 7.6 ± 13, NA 5.4 ± 10, NA 3.3 ± 8, NA

SBP, systolic blood pressure; MAP, mean arterial pressure; DBP, diastolic blood pressure. Values of SBP, MAP and DBP are represented as mean difference ± standard deviation in

mmHg and percentage error.

hemodynamically stable hemodialysis patients (14) and found
that the measured values were significantly different between the
two methods. This study included an elderly population (65% of
whom were over 65 years of age), where vascular calcifications
are recognized in up to 88% of the patients. This study looked
into patients with diabetes, neuropathy, and increased systolic
BP, accounting for its low accuracy measurement. Also, dialysis
patients have altered blood vessel characteristics, consistent with
concerns derived from the calculation principle. These issues
largely overlap with geriatric patient populations. Thus, careful
judgment is required regarding the reliability of finger cuff
method on elderly patients, especially those with complications
as described above and in the cited study. As continuous counter
pressure on finger may interfere peripheral blood circulation,
these devices set the time limit for continuous use or use two
fingers alternately for secured safety.

Tonometry
Applanation tonometory, on the radial artery, continuously
measures the tone calibrated with a conventional arm cuff.
Although the first machine was invented in 1963, a major
disadvantage of this monitor has been the difficulty in sensor
fitting (15). Frequent positioning adjustment and calibration
could possibly compensate for errors. When sensor fitting is
adequate, a fine arterial pressure waveform is obtained and the
system can output both continuous blood pressure andCO values
using waveform analysis. Short measurements are widely used for
arterial compliance studies. However, long time measurement is
currently not common and not commercially distributed.

Pulse wave transit time (emerging)
Pulse wave transit time (PWTT) is recognized as a parameter
related to hemodynamics, especially SV, BP, and vascular
resistance. The device is comprised of a common basic
sensor, such as an electrocardiogram and a pulse wave
detector on finger (often a pulse oximeter), possibly adding a
phonocardiograph. The use of a phonocardiograph can help
to provide more precise measurements. In recent years, time
resolution, analytical algorithm, and its speed were improved
by computer performance and cuff-less BP measurements
(16). PWTT is still in development and its accuracy remains
poor. Further improvements are needed for its performance,
particularly when there is a sudden change in vascular resistance.

Cardiac Output

Bioimpedance and reactance
This method measures the impedance or reactance between a
pair of electrodes on the chest wall or on the tracheal tube while
applying an imperceptible alternating current that estimates
changes in blood volume present in the thorax, particularly
in the aorta. Changes in impedance or reactance during one
cardiac cycle is considered to reflect stroke volume. This method
estimates the stroke volume based on an internal database
according to the patients’ physical characteristics. Deviation from
the database may enhance measurement errors (17). While it
is non-invasive, easy to apply and no reported complication
associated with an electromagnetic application, it does not detect
pure CO. It is also considered to be inaccurate in patients with
pulmonary and cardiac pathology. Measurement values will be
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affected in patients with chronic lung disease, heart, or valvular
disease.

Ultrasound

(echocardiography/transesophageal/transthoracic doppler)
There are roughly two methods to measure flow rate using
an ultrasound device: one obtains the SV as the difference
of the left ventricular end diastolic volume and the end
systolic volume, while the other calculates the SV from the
product of a certain cross-sectional area and velocity time
integral. Minimally invasive and noninvasive CO monitors
are designed with the latter method, which is simple and
can reduce operator-dependent discrepancies (18). A variety
of dedicated probes are developed for various sites, such as
aortic valve, carotid artery, descending aorta, or pulmonary
artery. Software can often estimate both the cross-sectional area
and proportion of blood flow against SV based on the age
and physical characteristics of the patient. This method can
be operator dependent and patients’ anatomy can sometimes
interfere with accurate measurement. The dedicated esophageal
probe for CO measurement has a small diameter and low heat
emission. Probe insertion and manipulation is rarely associated
with oropharyngeal, esophageal, or gastric trauma, but requires
appropriate sedation.

Pulse transit time
Emerging BP and CO monitoring devices using the relation
of SV with PWTT are commercially available and tested
(19). Although Pulse Transit Time still needs improvements
to increase accuracy, CO can be measured with conventional
electrocardiograms and pulse oximeters, and does not require
any special sensors or operating techniques. It is considered to
be an easy monitor to set up with the added advantage of being
noninvasive.

Minimally Invasive Continuous CO
Monitoring
Pulse Contour Analysis
Pulse contour analysis has been investigated and modified since
it was first developed. Improved algorithms have been adopted by
various commercial devices. Pulse contour analytic CO monitors
calculate SV from arterial pressure waveform based on the
Windkessel model (Figure 1C) and/or wave reflex phenomenon
principle. Pressure waveforms are obtained noninvasively (finger
cuff) or minimally invasively (peripheral arterial catheter). In the
equation allowing for CO calculation, a constant (κ) reflecting
vascular compliance is determined from a preset database that
is based on the patients’ data (gender, age, height, weight).
The databases were developed from a general population, so
for patients with complex comorbidities (such as different
vascular characteristics, arrhythmia, or valvular heart disease),
measurement errors will increase.

Additionally, counter analysis has developed some secondary
parameters such as Pulse Pressure Variation (PPV) and Stroke
Volume Variation (SVV). These dynamic parameters are used
as an index for fluid responsiveness, allowing for appropriate
fluid management. The risk of arterial catheter-related infection

was reported 1.3% and comparable with 2.7% of central venous
catheters (20).

Transpulmonary Thermodilution
Blood temperature changes are detected by a special arterial
cannula which has a thermistor on its tip. Cold fluid boluses are
injected through a central venous catheter, which is then sensed
in the thermistor tip. CO is calculated from the thermodilution
curve according to the Stewart–Hamilton equation. Following
this intermittent manual measurement, it continuously calibrates
the pulse contour analysis and displays CO. Since calibration
is carried out every time the thermodilution is performed, the
value is fairly accurate (21). Unlike with pulmonary arterial
catheter (PAC), the detected temperature curve is achieved after
passing through the pulmonary circulation. The assumption
that intra-thoracic blood volume has 1.25 times of global end-
diastolic volume allows the system to estimate extravascular lung
water without double dilution indicator technique as in the past.
Some conditions such as post lung resection or cardiac shunt
deteriorate the premise and calculation. The catheter is relatively
long and thicker than a regular arterial catheter needing careful
insertion to avoid injury.

Partial CO2 Rebreathing
The Fick principle calculates CO with oxygen consumption
and arterial and venous oxygen tension. The same principle
can be applied to calculate CO2 production and blood CO2

tension, the indirect Fick method. A dedicated rebreathing loop
is connected to the patients’ breathing circuit and the system
measures CO by calculating carbon dioxide metabolism with
partial rebreathing technology. This technology is not affected
by vessel anatomical abnormalities or peripheral circulatory
insufficiency, as it only needs information from exchange gases.
Several validation studies have been published, mainly in the ICU
setting (22). This method can only be applied to intubated and
mechanically ventilated patients.

Severe lung disease can affect the measurement accuracy
due to increased deadspace/tidal volume ratio changing the
relationship between PaCO2 and PetCO2. Acute respiratory
distress syndrome is a severe and most common limitation of
partial CO2-rebreathing. Also, hemoglobin concentration can
change the balance between bicarbonate ion and carbon dioxide
affecting measurement. It is also not a good method to use in
patients with pulmonary hypertension or increased intracranial
pressure since they will probably not tolerate CO2 retention.

Indicator Dilution
The Stewart Hamilton equation is behind the basic physics
of the indicator dilution method. CO can be measured by
an appropriate indicator dye and corresponding detector.
Available detectors that do not require blood withdrawal are
arterial catheters with a lithium sensor (minimally invasive)
and fingertip photometric sensors, which detect indocyanine
green (non-invasive). The advantage of products using arterial
catheters is that they continuously measure the pulse contour
analysis. Repeated measurements with frequent indicator can
lead to dye accumulation, resulting in measurement errors
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and adverse effects. Muscle relaxants (specifically, quaternary
ammonium ion) can disturb the lithium ion sensor and
rare allergic reactions have been reported with indocyanine
green.

A summary of noninvasive and minimally invasive
continuous cardiac output monitors available can be found
in Table 2.

POSTOPERATIVE OUTCOMES

The appropriate BP values vary from patient to patient, and the
“correct” BP may differ depending on the surgery requirements
or current situation. A surgical insult may cause the rapid or
abrupt change in hemodynamic parameters, making it imperative
to continuously monitor BP or other hemodynamic parameters.
While controversial, hypotensive anesthesia is practiced with the
goal to reduce intraoperative blood loss. This technique requires
careful monitoring to avoid dramatic and sudden changes.
Patients that have known vascular pathology are also candidates
for continuous BP measurement.

Studies showed that sustained intraoperative hypotension is
associated with adverse patient outcomes, including increased
mortality and organ injury. The duration of hypotension is also
an important contributing factor for poor outcomes. Table 3
summarizes several studies that link low BP and adverse
outcomes. While there is no definite consensus on the specific
degree and duration of hypotension involved, these studies
demonstrate the importance of hemodynamic maintenance with
individualized considerations. The duration of hypotension was
also shown to be an important contributing factor for poor
outcomes. Continuous monitoring of hemodynamic parameters
would likely reduce the duration of less than desirable BP values
and noninvasive, continuous BP monitoring could possibly
become the new standard.

The perioperative hemodynamic management of surgical
patients extends beyond cardiovascular complications. Delayed
recovery of cognition, whether delirium (an acute attentional
deficit which waxes and wanes), or the long-lasting phenotype
termed postoperative cognitive decline (POCD), has been linked
to intraoperative blood pressure fluctuations (23) or maintained
hypotension in the intraoperative period (24). The use of
vasopressors during surgery and/or postoperative hypertension
is associated with new-onset dementia after surgery (25).
With more than 46 million Americans over the age of 65,
postoperative delirium is a major public health issue with an
projected annual cost of over $150 billion. It is estimated
that 30–40% of delirium cases might be preventable (26).
Prevention and optimization is the most effective strategy for
minimizing neurologic injury. Hemodynamic monitoring using
minimally invasive and noninvasive monitors can optimize
the cognitive recovery and perioperative experience of surgical
population. This might lead to improve neurologic outcomes,
decrease hospital length of stay, reduce the amount of
postoperative mechanical ventilation, lessen ICU length of stay,
cut back healthcare costs in general, and patients’ functional
decline.

TABLE 2 | Non-minimal invasive continuous cardiac output monitors.

Basic principle Requirements Advantage Disadvantage

NON-INVASIVE

Bioimpedance

and reactance

Chest wall

electrode

Easy installation

Continuous

measurement

Susceptible to

noise

Dedicated

tracheal tube

Continuous

measurement

Need Intubation

Ultrasound TTE probe Evaluate cardiac

preload and motion

Chest wall access

Operator’s skill

Transthoracic

Doppler probe

Simple and small probe

PA based

measurement available

Unstable probe

direction

Pulse transit time ECG and pulse

oximeter

Calculated from basic

monitoring

Continuous

measurement

Not available in

dysrhythmia

MINIMAL INVASIVE

Ultrasound TEE probe Evaluate cardiac

preload and motion

Esophageal

access

Operator

dependent

Esophageal

Doppler probe

Simple and Small

diameter probe

GDT Evidence

Esophageal

access

Pulse contour

analysis

Arterial line Continuous

measurement

Evaluate SVV/PPV

Arterial

cannulation

(covered by

noninvasive

continuous finger

cuff/tonometoric

BP technology)

Transpulmonary

Thermodilution

Dedicated

arterial catheter

Continuous

measurement

Evaluate preload

information (SVV,

GEDV, etc)

Central arterial

cannulation

Manual calibration

with cold water

injection

Partial CO2

rebreathing

Dedicated

breathing circuit

Vascular disease

independent

Need intubated

and ventilated

CO2 loading

Indicator dilution Dedicated

arterial catheter

or photometric

sensor

Evaluate blood volume Indicator

accumulation/allergy

TTE, transthoracic echocardiography; TEE, transesophageal echocardiography; ECG,

electrocardiogram; GDT, goal directed therapy; SVV, stroke volume variation; PPV, pulse

pressure variation; GEDV, global end-diastolic volume.

CARDIAC OUTPUT

In the Operating Room
Numerical, target-oriented volume and inotropic management
based on hemodynamic measurement is crucial for a rapid
recovery. It is increasingly accepted that the traditional fixed
volume therapy should be abandoned and the administration of
fluids to achieve a certain volume (goal-directed fluid therapy)
improves outcomes. In addition to pressure measurement,
hemodynamic parameters such as SV need to be calculated (27)
and minimally invasive devices can be used, for example in high
risk ERAS cases.
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TABLE 3 | Intraoperative hypotension and adverse outcome.

Study Study

design

Type of

surgery

No. of

patients

Evaluation of

hypotension

Outcome

measurement

Result Remarks

Sun et al. (28) Retrospective

cohort

Non-cardiac

surgery

5,127 MAP < 55, 60, 65

mmHg for 5, 10, 20min

AKI MAP < 60 for

>10min

associated with

AKI

Patients needed

invasive BP

monitoring

Mascha et al. (29) Retrospective

cohort

Non-cardiac

surgery

104,401 Time-weighted average

intraoperative MAP

30-day mortality Intraoperative

MAP associated

with mortality

Decrease in MAP

80–50 mmHg

increased mortality

Monk et al. (30) Retrospective

cohort

Non-cardiac

surgery

18,756 Areas under MAP-2SD

Absolute BP

Percent change from

baseline

30-day mortality Low BP deviation

associated with

mortality

Absolute BP and

% change also

associated

Walsh et al. (31) Retrospective

cohort

Non-cardiac

surgery

33,330 MAP < 55∼75 mmHg

for 5, 10, 20min

AKI and

myocardial injury

MAP < 55

associated with

AKI and

myocardial injury

Bijker et al. (32) Case-control Non-cardiac,

non-

neurosurgical

surgery

294 A priori definition in

systolic and mean

pressure (40–100

mmHg), Decrease

10–40% of baseline

Ischemic stroke

within 10 POD

30% decrease in

MAP associated

with stroke

Includes 20 CEA

patients

Yocum et al. (33) Cohort Lumbar spine

surgery

45 Absolute BP value Neuropsychometric

performance after

1 day and 1 month

Low minimum

MAP associated

with low

performance

In hypertensive

patients

Bijker et al. (34) Cohort General and

vascular

surgery

1,705 A priori definition in

SBP and MAP (40–100

mmHg), Decrease

10–40% of baseline

1 year mortality

after surgery

Low BP and aging

associated with

mortality

Monk et al. (35) Prospective

cohort

Non-cardiac

surgery

1,064 SAP < 80 mmHg 1 year mortality SBP < 80 related

to mortality

Wang NY et al. (36) Randomized

controlled trial

Orthopedic

surgery

103 MAP < 80 mmHg Postoperative

delirium at day 2

MAP <80 mmHg

associated to

delirium

Sessler DI et al. (24) Retrospective Non-cardiac

surgery

24,120 MAP < 75 mmHg Length of stay and

30-day mortality

Low MAP indicator

of mortality

BP, blood pressure; MAP, mean arterial pressure; SBP, systolic blood pressure; CEA, carotid endarterectomy; AKI, acute kidney injury; SD, standard deviation.

In the Intensive Care Unit (ICU)
The International Guidelines for Management of Severe Sepsis
and Septic Shock brought further attention to the need
for hemodynamic assessment in critically ill patients (37).
Management in the ICU is based on a detailed assessment, which
includes infusion loading, diuretics, dialysis, cardiovascular
drugs, ventilator setting, rehabilitation care, and timing. Along
with patient recovery, removing unnecessary invasive monitors,
and their replacement with minimally invasive techniques can
reducemechanical and infectious complications, facilitating early
mobilization and recovery. Many patients have an arterial line for
frequent blood sampling in ICU. Pulse contour analysis monitor
is therefore an option since CO and other parameters can be
obtained without inserting an additional catheter.

DISCUSSION

No single monitor is able to comprehensively identify the
spectrum of pathophysiologic changes for high risk patients,

despite various commercially available devices with a range of
differing measurement principles.

Understanding the measurement principles behind minimally
invasive and noninvasive techniques can facilitate accurate
evaluation of patients’ hemodynamic status, even taking
into consideration a possible measurement mismatch. When
choosing and applying these monitors, it is important to clarify
the purpose for monitoring and how to correctly employ the
obtained parameters. The development of minimally invasive
and noninvasive devices derives from the need to reduce
complications from invasive tools. The application of two
complementary devices, with different background principles,
might even be an alternative to an invasive technology.

In order to improve patient outcomes, monitoring itself

should not be the goal. Monitoring principles need to be
understood to guide therapy and decision making. New
techniques have led to the development of new hemodynamic
parameters. Dynamic parameters such as SVV and PPV are
now widely recognized as important signs that can be used to
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guide fluid management. SVV has been shown to be a valid
measure of fluid responsiveness (38, 39) and many different
technologies are available for measuring SVV at the bedside
(40). An estimate of both SVV and PPV is displayed in real
time by the PiCCO plus system (Pulsion Medical Systems
AG) (38, 41) as well as by the LiDCO system. The pulse
contour method measures SVV through a femoral catheter
(transcardiopulmonary thermodilution) (42, 43). Another device
that measures SVV, the FloTrac/Vigileo system (Edwards
Lifesciences LLC), requires standard arterial access and is
considered minimally invasive and easy to use (44). In an RCT
in patients who had undergone elective cardiac surgery (N = 40),
SVVs assessed using the FloTrac/Vigileo and the PiCCOplus
systems performed similarly in predicting fluid responsiveness
(42). Today many studies have demonstrated the ability of this
algorithm to predict fluid responsiveness in the operating room.
It is also possible to assess surrogates for SVV and PPV non-
invasively. Attached noninvasively to a finger (45), the pulse
oximeter probe can be used to detect changes in blood volume
at the site of measurement (46) and respiratory variations in the
pulse oximeter plethysmographic waveform amplitude (1POP)
have been shown to be related to PPV and SVV (47). This index
is also sensitive to changes in preload (48), and can predict
fluid responsiveness in mechanically ventilated patients (46, 49–
52). The Pleth Variability Index (PVI) is a clinical algorithm
that allows for noninvasive, automated, continuous calculation
of 1POP using a pulse oximeter in mechanically-ventilated
patients during general anesthesia (40, 45, 53). PVI is calculated
as the dynamic changes in perfusion index (PI)—the ratio of
non-pulsatile to pulsatile blood flow through the peripheral
capillary bed—occurring during a complete respiratory cycle
(40, 54). PVI has been shown to predict fluid responsiveness
with good sensitivity and specificity: in mechanically ventilated

patients (45). Today, SVV is also available non-invasively using
Bioreactance (NICOM, Cheetah) and technologies based on non-
invasive blood pressure monitoring (Clearsight, CNAP devices).
It is possible that the future will bring us even better indicators
derived from advanced method and analysis. Although the
comparative examination on the accuracy of the new equipment
will require intensive studies, we can wait in anticipation of these
new technologies.

The assessment of hemodynamics allow for a customized
approach to patient management, one in which treatment
decisions are being guided by more precise, multimodal
and technologically sophisticated monitoring of physiological
variables. Monitoring equipment that can provide precise
hemodynamic information without the complications and
complexity of invasive techniques can facilitate individualized
hemodynamic management and lead to improved outcomes and
many other positive contributions to the field.
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