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In an interesting investigation by Khoury-Hanold et al. (1), genital infection of mice

with herpes simplex virus 1 (HSV1) were reported to cause multiple pelvic organ

involvement and obstruction. A small subset of mice succumbed after the first

week of HSV1 infection. The authors inferred that the mice died due to toxic

megacolon. In a severe form of mechanical and/or functional obstruction involving

gross dilation of the colon and profound toxemia, the presentation is called “toxic

megacolon.” The representative observations by Khoury-Hanold likely do not resemble

toxic megacolon. The colon was only slightly dilated and benign appearing. Importantly,

HSV1 infection affected the postjunctional mechanisms of smooth muscle relaxation

like the sildenafil-response proteins, which may have been responsible for defective

nitrergic neurotransmission and the delayed transit. Orally administered polyethylene

glycol reversed the gastrointestinal “obstruction,” suggesting a mild functional type of

slowed luminal transit, resembling constipation, rather than toxic megacolon, which

cannot be reversed by an osmotic laxative without perforating the gut. The authors

suggest that the mice did not develop HSV1 encephalitis, the commonly known

cause of mortality. The premature death of some of the mice could be related

to the bladder outlet obstruction, whose backflow effects may alter renal function,

electrolyte abnormalities and death. Muscle strip recordings of mechanical relaxation

after electrical field stimulation of gastrointestinal, urinary bladder or cavernosal tissues

shall help obtain objective quantitative evidence of whether HSV infection indeed cause

pelvic multi-organ dysfunction and impairment of autonomic neurotransmission and

postjunctional electromechanical relaxation mechanisms of these organs.
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In a recent study, Khoury-Hanold et al. (1) investigates a topic
of significant current epidemiological significance viz., genital
infection of HSV1, usually an oro-labiotropic virus in mice
(1). The authors demonstrate that HSV1 genital infection cause
multiorgan autonomic dysfunction, involving the pelvic organs
including the urinary bladder and the terminal intestinal tract.
The findings are of significant interest, as the study suggests
that HSV1 likely affects post-junctional mechanisms of nitrergic
downstream signaling that mediate intestinal smooth muscle
relaxation.

The authors suggest that transvaginal deliver of HSV1 causes
toxic megacolon (1). However, the gastrointestinal phenotype
that developed a few days after the infection does not resemble
the presentations of “toxic megacolon.” Toxic megacolon is a
rare but fatal condition that develops unpredictably and rapidly
in certain cases of fulminant colitis. This colitis may result from
inflammatory or infectious causes. Rarely, toxic megacolon may
develop in hereditary conditions, for example as demonstrated in
piebald mice, a model of Hirschsprung disease (2). Megacecum
andmegacolon often develop slowly in animals including models
for Hirschsprung disease (3, 4). Pre-existing inflammation may
alter luminal environment and facilitate viral entry, for example
like cytomegalovirus in ulcerative colitis (5). Toxic megacolon
may develop in colitis developing in concomitant Clostridium
difficile infection or in subjects with ulcerative colitis (6).
This has been examined in animal models of infection and
inflammation involving mice, Syrian hamsters and piglets (7).
Importantly, systemic toxicity and clinical signs of sepsis are
observed, along with massive dilation of colon. In order for
reliable pathognomonic diagnosis of toxic megacolon in mice,
it is pertinent that two levels of evidence should be presented.
First, dilation of small intestinal or colonic dilation must be
demonstrated unambiguously, as has been shown in previous
studies (Figures 1, 2) (8). Second, evidence of toxicity needs to be
presented (Figures 1, 2) (7). Megacolon developing slowly may
still show massive dilation of intestines as in Chagas’ disease, but
does not show local or systemic signs of toxicity (Figure 3) (19).
Local signs of toxicity importantly involve ischemia, necrosis or
hemorrhage in the wall of the intestine, resulting in unhealthy,
angry looking intestinal or colonic loops and obviously, dilation
(Figure 1) (7). It may be noted that normal intestinal loops
may contain semisolid slurry, not always discrete fecal pellets,
or chyme in transit, which may slightly dilate the intestines
(Figure 1). This may not be interpreted as megacolon.

Khoury-Hanold et al. (1) present incomplete evidence, which
does not provide unequivocal demonstration of eithermegacolon
or sepsis. Only a segment of the large intestine with the terminal
anus has been shown (1). The upper part of the segment remains
filled with colonic slurry. It is possible that the unfilled segment
shows the potentially ganglion-depleted segment, which might
have arose from the invasion of the myenteric ganglia by HSV1 in
that segment. However, the segment containing the colonic slurry
is only slightly gorged; this happens normally when chyle from
the cecum enters the colon. This type of mild distention is also
seen when chyme/chyle transitions through the small intestines
during normal intestinal transit. Lack of demonstration of the
entire segment of the colon along with the cecum (1) makes

the interpretation of megacolon difficult and unconvincing. It
is not mentioned whether the colon was dissected open and
cleared of feces prior to estimating its weight and normalizing
to total body mass. How the study identified the pre-moribund
mice is also not clear while estimating the colonic mass. Some
of the mice infected with the neuroattenuated strain 168H
showed decreased survival. In earlier studies of mice models of
megacolon, there has been clear demonstration of the aganglionic
colon, the transition zone and the proximal segment, which by
overwork, massively dilates (Figure 2) (9, 12–14).

In toxic megacolon, the segment of the colon proximal to
the obstruction remains massively dilated (mostly with gas, but
also with feces), which can be detected easily through radiologic
imaging like X-ray abdomen or CT scan (15, 22, 23) (Figure 3).
In humans, toxic megacolon involves dilation greater than 6 cm
of colon (24). The authors arbitrarily assume a two-fold increase
in mass of the colon as their marker for megacolon (1), but it
should be remembered that the colon has the intrinsic capacity to
dilate to accommodate the contents from the cecum (Figure 1).
Demonstration of colonic compliance by demonstrating high
volumes at low filling pressures or low colonic tone would be
more objective ways to demonstrate true megacolon (25). What
is rather important observation is the colonic slurry, rather than
formed fecal pellets (1). This may potentially indicate a reduction
of colonic mucosal absorptive function, which is possible due
to the viral mucositis. Alternatively, this observation could also
be normal, as the consistency of the colonic contents show
diurnal variation, with scybala (formed pellets) forming only later
during the day. Several lines of evidence, if provided like previous
studies, would have supported the inferences of “toxicity” and
“megacolon”: (i) abdominal distention before laparotomy (ii)
angry looking colonic segments (due to massive inflammation)
that would have occupied the peritoneal cavity and popped out
soon after laparotomy (iii) massively dilated cecum and colon
(iv) retained contents in the small intestine (Figures 1, 2). The
gastrointestinal transit experiments with FD70 show retention
at the level of the small intestine (1). This suggests that the
viral spread likely occurred to the small intestine (somewhat
supported by the tissue-specific viral titers). If the myenteric
ganglia damage was indeed very severe, leading to adynamism,
this should have precluded contents from the cecum to enter
the colon, as the entire colon would be affected and non-
functioning. The only short terminal segment of an unfilled colon
(1) suggest a mild functional constipation-like phenotype rather
than “toxic megacolon.” Future electrophysiologic studies and
smooth muscle mechanical recordings shall help to objectively
delineate and quantify the defects in intestinal motility after
HSV1 genital infection.

In clinical situations, if the obstruction occurs at the level
of ileum in suspected toxic megacolon, it is an ominous
situation and emergency (26). For example, if surgical
interventions (exploratory laparotomy) are being performed
and if dilation or stasis is seen in terminal ileum, it would
imply significant obstruction distally, impending colonic
perforation and occurrence of subsequent peritonitis and
potentially death. The fact that the mice had their obstruction
reversed by administration of Miralax (polyethylene glycol)
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FIGURE 1 | Evidence of toxic megacolon from different mouse models Inference of toxic megacolon requires unambiguous demonstration of septicemia and colonic

dilation. (I) Appearance of normal mouse intestine Note that intestinal contents may occupy the lumen in both the small and large intestines and slightly inflate the

colon, which should not be erroneously inferred as dilation. (II) Toxic megacolon in induced chemical colitis in mice by 0.02% BAC The left panel shows dilation at end

of 7 days. The middle panel shows frank hemorrhage on intestinal wall after 28 days, in contrast to normal colon in vehicle treated mice seen in the right (III)

Phenotypic appearance of toxic megacolon The right is a surgical specimen of toxic megacolon that developed in mice after introduction of TGFbeta. Note the

massive dilation, but more importantly, the angry-looking intestinal wall, which are matted at places. This results from the ongoing pathophysiology, which may cause

inflammation, hemorrhage and necrosis in the wall, and may also cause progressive ischemia, thus causing the intestinal wall to lose its luster. Note that toxic

megacolon develops rapidly in a matter of hours or a few days. Note the normal appearing mouse colon on the left panel. It is distended two-folds at places with

luminal feces, which should not be interpreted as dilation or retention of feces. (IV) Toxic megacolon in pig due to Clostridium difficile infection (V) An example of slowly

developing megacolon Note the dilated, but benign appearing cecum on the right in guanylyl cyclase knockout. The motility disturbances in HSV1 infected mice may

have potentially arose from postjunctional defects of guanylyl cyclase signaling. (VI) Unambiguous demonstration of colonic dilation Unlike in the single knockouts of

models of colonic inflammation, the double knockout mice shows clearly dilated intestines, as evident from the increased perimeter of the laid-open colonic segment.

This is a superior way of demonstration of colonic dilation, instead of showing an en face view of the whole intestinal loop (unless there is significant dilation).

Reproduced with permission from Koenigsknecht et al. (6), Schmidt et al. (7), Kang et al. (8), Vallance et al. (9), Friebe et al. (10), Khalil et al. (11).

(1), a commonly used osmotic laxative, shows that the delayed
transit in the mice after HSV infection was of a functional
mild gastrointestinal motility issue of reduced transit, rather
than complete obstruction as seen in toxic megacolon or
adynamism encountered in intestinal pseudo-obstruction. If
toxic megacolon is suspected in the clinical setting, Miralax must
not be administered, as it carries the sinister risk of perforating
the intestines! Toxic megacolon is a highly critical and dreaded
surgical condition and the patients are very sick with high
mortality rates (27). Due to irreversible colonic spastic segments,
toxic megacolon may rarely be managed medically and often
involve extensive surgical resections of the affected intestines
(28).

The authors could not precisely delineate the aganglionic
or transitional segments (1). It is possible that the ascending
kind of HSV infection was stochastic, so different non-
contiguous gut segments may be affected. In previous studies
of models of megacolon, distinct aganglionic segments
have been demonstrated (15). The present study shows
representative images of myenteric ganglion in whole mounts

that suggests qualitative reduction, but not complete absence
(1). Hematoxylin-eosin (H&E) sections showed persistence
of myenteric ganglia after HSV infection and development of
colonic distention (1). The colonic walls are not thinned out, but
rather comparable in thickness between wild type and infected
mice. Also, the mucosa do not show any fulminant nature
of colitis but intact crypt architecture and only mild mucosal
infiltrate, though transmural inflammatory cell infiltrate is
visualized in the colon in HSV1 infected mice which had delayed
gastrointestinal transit. This type of gastrointestinal mucosal
sparing with viral homing to the enteric nervous system has been
reported earlier (29).

Profiling the inflammatory immune cells is the strength of
this investigative group (1). These tools may be implemented
in future studies examining neuroimmune interactions in the
enteric nervous system. For example, an important feature in
ulcerative colitis (UC) is phenotype reversal, i.e. change of the
initial diarrhea-predominant symptoms to constipation (30). In
fact, these UC patients are at risk of developing toxic megacolon
(22). Thus, endoscopy or endoscopic insufflation is performed
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FIGURE 2 | (I) Dorsal and ventral appearances of mice with megacolon Note the bulging flank and the abdominal swelling. Also note the comparative enlargement of

the cecum and the proximal colon in the mouse GI tract with megacolon. The terminal ileum engorgement could have resulted from the non-functioning cecum, which

is way more dilated in megacolon in comparison to the control mouse. The mouse models are Ret-Ednrb mice of megacolon. Ret−/Ret+; Ednrbs/Ednrbs (Upper,

model of megacolon) and Ret+/Ret+;Ednrbs/Ednrbs (Lower, control). co, colon, ce, cecum, si, small intestine, s, stomach, fp, fecal pellets, r, rectum. (II) Megacolon

seen easily after laparotomy Note that in the right panel, another model of megacolon (Aebp2+/b-Geo mice), the loops of dilated colon are easily seen. (III)

Comparative demonstration of clusters of neurons in myenteric ganglia from the megacolon, transitional and aganglionic zone The megacolon model is of

Hirschsprung’s disease. Wide areas of the whole mounts are shown for effective comparison. (IV) Massive dilation of intestines in an infectious model of megacolon

Note the diseased intestines in the right, in comparison to the control in the left. The MRI images in gray scale are color overlaid to demonstrate the intestines. These

kind of supporting evidence rigorously conform to inferences of megacolon. Reproduced with permission from Jellicks, (12), Kim et al. (13), McCallion et al. (14), and

Obermayr et al. (15) respectively.

with great care in these patients who present with constipation,
as the procedure might perforate the colon. There are a few
additional points to consider here. The authors hypothesize that
neutrophils may be responsible for death of myenteric neurons
(1). First, quantitative demonstration of the percent reduction
of myenteric neurons has not been provided (1). Neutrophils
are seen in the vicinity of the myenteric ganglia (1). However,
it may be noted that mobile cells are normally present across
the wall of the intestines, though their function is only scantily
known (31, 32). It is obvious that some of the HSV1 infected
intestinal segments had increased inflammatory cells (1). It is
not clear how sick mice were identified during the experiments.
For example, how were mice with potentially delayed GI transit
identified and randomized to a group that received IgG or the
neutrophil blocking antibody αLy6G (1). Interestingly, one of
the infected mouse with prolonged luminal transit time survived
7 weeks post-infection, again indicating the mild nature of the
pathophysiology involving the enteric nervous system.

The authors suggest that the HSV1 viral particles do not play
a direct role in the damage of the myenteric neurons (1), but no
direct evidence is provided to this critical assertion. The Circos
diagram shows the expression of different viral gene transcripts
(1). One of them is the ∼140 kB pUS9, whose protein translate

functions to interact with kinesin and egress viral particles out of
neuronal cells (33). This may be the reason why the viral particles
are seen in the extra-junctional place outside the myenteric
musculomotor nerve terminal, in addition to within the neuronal
cells and processes (1) (Figure 4). Force generating proteins and
cytoskeleton are key to regulation of enteric neurotransmission
(34–36). So, it is possible that HSV viral particles hijack these
cell machineries like other viral particles like rabies and varicella
zoster and cause myenteric neuropathy. Whether HSV particles
interact with kinesin and dynein for anterograde/retrograde
transport through the axons remains to be tested.

The authors report the interesting fact that the “sildenafil
response proteins” are decreased in the smooth muscles and
demonstrate viral particles within the smooth muscles of the
muscularis externa (1). These “sildenafil response” proteins
prevent degradation of the nitric oxide generated cyclic GMP
(cGMP) and enhance activity of its downstream effectors,
the key response elements to enteric nitrergic neuromuscular
neurotransmission (37–39). It is increasingly identified that
inhibitory nitrergic neurotransmission is the final common
pathway mediating gastrointestinal motility (35–40). Thus, it is
no surprise that the constipation like phenotype due to HSV1
infection may arise due to impairment in the myenteric nitrergic
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FIGURE 3 | (I) Intraoperative view of massive dilation of colon in a subject affected with Chagas’ disease Note the benign appearance of the colonic wall despite the

massively dilated colon, often seen when the megacolon develops slowly over a period of time. (II) Lateral “through-view” imaging of abdomen performed after double

contrast barium enema in a patient with toxic megacolon Note that the patient is positioned in knee-elbow position (inset), which is maneuvered to pass out gas. Note

the enormously swollen large intestines. The particular position helps the fluid accumulate in the bottom loops of the intestines, whereas the rectum straightens out

and slight stimulation, like cough etc., allows the gas to pass out and contribute to decompression of the massively enlarged colon. (III) Intra-operative view of toxic

megacolon Note the lack-luster appearance of the massively dilated colon and the prominent blood vessels. The colonic swelling may impair the perfusion, and this

may have additional effects on extravasation of inflammatory cells. These aspects should be factored in during examination of the inflammatory cells in the muscularis.

The “toxicity” criteria in the clinical setting of megacolon is defined as per Jalan et al. (16). Additionally, functional studies like mechanical recordings and evoked

potentials may help define the accurate nature of the effects of infection and inflammation on neurotransmission (17). Inflammatory bowel disease and fulminant colitis

resulting from infections like Clostridium difficile are the common causes of this morbid condition. There are only scant reports of bowel or bladder obstruction from

HSV infection (18), though with the changing epidemiology, the correlation needs to be remembered. HSV infection in particular can cause pelvic autonomic

neuropathy including constipation and urinary retention as a spectrum of immune reconstitution inflammatory syndrome (IRIS) during management of HIV infection.

Reproduced with permission from Munoz-Saravia (19), Panos et al. (20), and Alterman et al. (21).

FIGURE 4 | (I) Zoomed-out electron micrograph of a mouse with delayed gastrointestinal transit after genital HSV1 infection Note the intact nerve terminal and axon

segment in the top (12 o’ clock) of the panel. This varicosity shows vesicles docked at the terminal membrane (readily releasable pool, RRP), as well as recycling

circulating pool (CP) and storage pool (SP). This likely indicates a normal nerve terminal. This may explain why the HSV1 infection of the enteric nervous system

resulted only in a mild phenotype. Also note the HSV1 viral particles in the extracellular space exterior to the terminal. These viral particles probably transgress through

the junctional space and enter the post-junctional smooth muscles and may cause defects in the post-junctional proteins like guanylyl cyclase that responds to

evoked nitric oxide from the nerve terminals. (II) A cartoon depicting the possible pathways that HSV particles may affect and cause smooth muscle myopathy HSV1

affects the sildenafil response proteins, which affect cGMP concentrations. NO released de novo from prejunctional terminals mediate smooth muscle relaxation via

upregulation of cGMP by soluble guanylyl cyclase. These pathways may be affected by viral integration in the smooth muscle genome, thus impairing smooth muscle

relaxation. Colonic, urinary bladder and cavernosal smooth muscles may all be affected, resulting in impaired function of these important pelvic organs. Reproduced

with permission from Khoury-Hanold et al. (1). The egress of the viral particles may be facilitated by viral proteins interacting with the neuronal cytoskeleton. NO, nitric

oxide; sGC, soluble guanylyl cyclase; cGMP, cyclic guanosine monophosphate; PDE5, cGMP-specific phosphodiesterase inhibitor (sensitive to sildenafil); PKG,

protein kinase G.
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neurotransmission pathways by affecting both prejunctional and
post-junctional mechanisms. Vesicularly released ATP mediates
the gastrointestinal smooth muscle relaxation along with de novo
synthesized nitric oxide (38). HSV has been reported to affect
ATP mediated neurotransmission by upregulating CD73 (41),
an ectonucleotidase that degrades extracellular junctional ATP.
The transcellular spread of the viral particles from the enteric
neurons to the colonic smooth muscles through the extracellular
space may also explain why HSV particles may affect intra-
abdominal solid organs like the pancreas and cause pancreatitis
(42). The transcellular travel may also facilitate spread across the
pelvic space, bypassing the paravertebral or dorsal root ganglia
(43).

The authors have made significant endeavor to understand
the spread of the HSV1 in the pelvis and beyond (1). Because
of intestinal pseudo-obstruction as well as urinary bladder outlet
obstruction (1), it seems that there is retrograde transport of
the virus through sensory neurons to the region of the sacral
plexi, where the viral particles likely cross over and spread
to multiple pelvic organs through the sacral parasympathetic
outflow neurons. Understanding the mechanisms of these
transneuronal pathways is an important step ahead. It remains
unclear why the dorsal root ganglion remained relatively
unaffected. The present study shows that the axon-pathfinding
molecules are downregulated in the gastrointestinal muscularis.
A component of axonal pathfinding molecule, netrin, is the
main receptor for HSV1 viral entry into vaginal mucosa, and
causative for encephalitis (44). The downregulation of netrin
in the present study (1) could be an adaptive reaction to the
ongoing infection. These discrepancies need to be sorted in future
studies. It also remains unclear why only a small subset of mice
develops intestinal stasis, and also how many of them developed
bladder outlet obstruction. Food and water intake, as well as
urine/fecal output of the mice during the advanced stages of
illness has not been reported in the present study. It has earlier
been reported that HSV can enter the spinal cord through all
kinds of peripheral nerves and spread via trans-synaptic spread,
cause an ascending disto-proximal demyelinating disease and
ascend proximally to the brain, causing encephalitis (45, 46).
The dynamics and extent of this spread may be multifold: the
strength of the viral inoculum, the spread mechanisms, the
local immune defense and the neuroviral interactions preventing
lytic cycle or favoring reactivation. In the clinical setting, if
there is a presentation with bladder obstruction, obstipation
and signs like the vesicles of genital herpes, lumbar puncture
is always indicated, as these patients are at high risk of HSV
encephalitis (45, 47, 48). There has been no earlier report that
these patients had mortality from toxic megacolon related to
the HSV infection. Thus, epidemiologically, the gastrointestinal
(GI) side effects reported in the current in vitro studies (1)
may be rare in the actual clinical scenario. Urinary retention
due to HSV infection is also rare, though has been reported
(47, 49). The bladder outlet obstruction, due to backflow, may
have impaired renal infection, caused dyselectrolytemia and
death in these mice, rather than sepsis (1). No postmortem
appearance of the entire gastrointestinal tract has been shown
for the subset of mice who were dead after about 2 weeks

of the induced HSV infection. The evidence that the mice
succumbed to sepsis due to toxic colonic dilation has not been
provided in the present report (1). Features such as free air or
fluid in the peritoneum, or hypotension/hypothermia (Figure 1),
would have been more supportive of evolving sepsis from severe
obstruction and potential perforation of gastrointestinal luminal
transit.

The topic of the current investigation is of huge epidemiologic
significance, viz. the pathophysiologic consequences of HSV1
genital infection per se. The general concepts regarding HSV
infection is HSV1 causes oral infection (oral herpes), whereas
HSV2 causes genital herpes. The authors rightly bring out the
increasing significance of the HSV1 causing genital infections
(1, 50). This may be due to changing tropism of the viruses,
as well as prevalent sexual practices like “putting mouth
on the genital area of the sexual partner,” thus causing
exchange of local viruses (40, 51). Importantly, these viral
infections can flare up in conditions of suppressed immunity,
including pre-existing HIV (human immunodeficiency virus)
or other STIs (sexually transmitted infections), pregnancy, use
of corticosteroids or immune suppression due to diabetes,
treatment of cancer, post-transplantation or auto-immune
diseases (52–54). Key areas to explore in future shall include the
extent of HSV1/2 infections on disease pathophysiology under
controlled conditions of immune compromise (54, 55). Studies
have shown that enterocolitis that develops in chronic megacolon
like Hirschsprung’s disease importantly involve changes in
luminal microbiome andmycobiome (56–58). An important area
to consider is whether HSV infection may alter luminal microbes
and fungal composition, and whether that may be causative of
enteric neuronal dysfunction.

All classes of herpesviridae have been reported to infect
myenteric neurons, including varicella zoster, cytomegalovirus
and herpesvirus, including HSV1 and HSV2 (59–62). In
such respect, the present study by Khoury-Hanold et al.
(1) do not really usher a novel aspect. There have been
some recent reports of viral diagnostic methods which can
identify these organisms (63–65). However, the entire field
of direct viral detection is in its infancy and these are not
routinely employed in the care setting. There are reports
of viruses that persist in the myenteric neurons and cause
major gastrointestinal dysmotility, for example bornavirus and
achalasia (66). These associations have also been reported
with HSV (67). However, very little is known regarding the
mechanisms of the latency of the viruses within the neurons,
their genomic integration or their clearance mechanisms by the
immune system and ultimate effect on enteric neurotransmission
(68). In immunocompromised states, the “viruses may show their
true color.”

The gastrointestinal tract has a massive immune surveillance
system due to the challenges of microbes consumed through
ingested food. Increasingly, with sexual preferences like sodomy
practiced during MSM (men sex with men), the outlet of the
gastrointestinal tract is faced with an ever-increasing challenge
of tackling microrganisms including viruses (40, 69). Most often,
the distal immune system will tackle these infectious agents. But
viruses may “walk back” through neurons and thereafter spread
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far and wide, wreaking havoc. When tell-tales of herpes infection
like vesicles are seen, it helps in instituting antiviral prophylaxis
and treatment. However, atypical and subclinical presentations
can occur, and herpes may manifest without vesicles (46, 70).
The present study demonstrates that both HSV 1 and 2 cause
neuropathy in pelvic organs (1). Future studies can systematically
examine the effect of viruses on nerve densities in the wall of
the intestine and any frank morphologic abnormality, or whether
the disease is “functional” in manifestation. Both these strains of
viruses are neurotropic and can track back to the central nervous
system via multiple routes (1, 46), causing life-threatening
infections. The autonomic neuropathy can cause multisystem
involvement and significant impairment of organ function
like delayed gastrointestinal transit and impaired outflow of
urine. In our opinion, this significant report of their elaborate
investigations by Khoury-Hanold et al.(1) brings forth this hugely

important epidemiologic issue into the limelight of systematic
scientific investigation.
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