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Tedizolid (TZD) is an oxazolidinone derivative which demonstrates bacteriostatic activity

through inhibition of protein synthesis. We compared the efficacies of TZD and an

earlier-generation oxazolidinone, linezolid (LZD), in an experimental murine model of

bacteremia caused by two VRE strains (one each E. faecium and E. faecalis). LZD

exhibited significantly better efficacy in terms of reduced VRE blood and target tissue

densities than TZD in this model.
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TEXT

Infections caused by enterococci (especially VRE strains) are major problems worldwide (1–4).
VRE strains, particularly in immunocompromised patients, are a major and steadily increasing
cause of bacteremia (5). VRE bloodstream infections (VRE-BSI) rank as one of the top four major
infections among hospitalized patients (5). Commonly used antimicrobial agents used to treat
VRE-BSI infections, such as daptomycin, oritavancin, dalbavancin, quinupristin-dalfopristin, and
tigecycline, each have a number of important side effects, both acutely and more long-term (2).
Currently, optimal treatment for VRE-BSI remains problematic and undefined. Thus, plausible
alternative approaches for the treatment of such infections are urgently required.

We have recently employed a discriminative murine model of acute VRE-BSI to measure the
host’s ability to control infection and the impact of selected therapeutic interventions (1, 2). TZD is
an oxazolidinone-class antibiotic, approved by the FDA in 2014, for the treatment of acute bacterial
skin and skin structure infections (ABSSSI) caused by certain bacteria, including MRSA,VRE
and various Streptococcus species (3). Recently Sahm et al. evaluated TZD’s overall activity and
emergence of resistance in gram-positive bacteria (3). In addition, the comparative efficacy of LZD
and daptomycin in the same experimental murine model of VRE bacteremia were reported before
(1, 2). However, to our knowledge, there have been no studies that have examined a head-to-head
comparative efficacy analysis of TZD vs. LZD in this experimental VRE-BSI model.

In parallel to in vivo studies, we also tested TZD vs. LZD to assess their comparative capacities to
exert in vitro bactericidal impacts on both VRE study strains. The LZD and TZDMICs (minimum
inhibitory concentration; lowest concentration of antibiotics which kills or prevents the minimum
growth of the bacteria) of the 613 and 447 VRE strains were carried out by microbroth dilution
assay (6). We then employed a range of LZD and TDZ concentrations in time-kill curves, ranging
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TABLE 1 | VRE-BSI using 447 E. faecium and 613 E. faecalis comparing LZD and TZD in terms of tissue burden (CFUcount) [log CFU/g ±SD] at EOT on day 4.

Strains Antibiotics Kidney Spleen Lung Blood

447S (no. of mice) Treatment (7) TZD 6.06 ± 0.64 2.58 ± 0.60 2.93 ± 0.66 0

LZD 5.43 ± 0.25* 2.97 ± 0.25 3.13 ± 0.47 0

Relapse (7) TZD 7.07 ± 1.11 3.05 ± 0.99 3.73 ± 0.95 1.28 ± 1.19

LZD 5.28 ± 0.46* 3.15 ± 0.84 3.44 ± 0.64 0.94 ± 0.69

613S (no. of mice) Treatment (7) TZD 7.82 ± 0.38 4.72 ± 0.81 5.39 ± 0.36 2.11 ± 0.92

LZD 5.97 ± 1.05* 4.00 ± 0.38* 3.80 ± 0.31* 0.56 ± 0.72*

Relapse (7) TZD 7.49 ± 0.56 4.33 ± 1.23 4.43 ± 1.14 2.17 ± 0.84

LZD 7.56 ± 0.90 4.29 ± 0.86 4.29 ± 0.73 2.26 ± 0.93

*P < 0.05 TZD vs. LZD.

from sub-MIC to 5 × MIC, utilizing an initial inoculum of
∼1 × 105 CFU/mL (7). We selected the following incubation
time-points, for analyses (0, 2, 4, 6, 24 h of incubation at
37◦C). Thus, an aliquot of all reaction tubes was quantitatively
cultured at each time-point (7). Summary data were expressed
as mean log10 CFU/mL (±SD) of surviving counts. A minimum
of two experimental runs were performed on separate days.
A “bactericidal effect” was defined as at least a 3 log10
CFU/mL reduction in counts as compared to the initial
inoculum (7).

In this investigation, we studied the comparative efficacy of
TZD vs. LZD in an acute murine VRE-BSI model, using two
well-characterized VRE strains (E. faecalis 613 and E. faecium
447) (4, 6); For inducing this experimental infection, a tail
vein challenge of BALB/c mice with our two VRE study strains
above was done. The final inoculum utilized for each strain (1
× 109 CFU/mL) was determined by a number of pilot studies
that showed significant infection levels in the blood and three
target organs (lung, kidney, spleen) in each animal, without
excessive mortality (see below). The mice were purchased from
Jackson Lab Laboratory, Bar Harbor ME. All studies were
approved by the Los Angeles Biomedical Research Institute
IACUC Committee.

In brief, our initial pilot studies were focused on determining
the inoculum of the two VRE strains that resulted in a at
least a 95% infectious dose (ID95) for this murine model.
The ID95 for this study represented the optimal inoculum
resulting in a non-lethal, reliable and durable infection for
95% of animals. For these inoculum-ranging studies, infection
was given by tail vein challenge of BALB/c mice at a 106,
107, 108, or 109 CFU/mL inocula. These inocula represent
a standard inoculum range for this murine model of VRE-
BSI. At 24 h post-challenge, animals were sacrificed, and blood,
kidney spleen and lung were sterilely removed and quantitatively
cultured in BHI media (1, 2). Individual target organ summary
data were expressed as either log10 CFU/mL blood or log10
CFU/g tissue.

On the basis of the ID95 data, (see Supplementary Table 1),
BALB/c mice were given a tail vein challenge of the 1 × 109

CFU/mL inoculum, then randomized at 24 h post-infection to
receive either: (i) no therapy (controls); (ii) LZD for 3 d; or (iii)
TZD for 3 d. The dose-regimen of LZD and TZD were: 120
mg/kg SC bid, or 10 mg/kg/day ip, respectively. These doses were

selected for the in vivo studies based on their simulated targeted
human PK-PD profiles (8, 9). At least 24 h after the last TZD or
LZD dose (day 4), one-half of surviving mice were euthanized
for an end-of-therapy evaluation (EOT), with blood, kidney,
spleen and lung removed and quantitatively cultured as above.
For the remaining one-half of surviving animals, an evaluation
of “relapse” was carried out on day 8 (i.e., after 4 antibiotic
treatment-free days); at sacrifice, the blood and target tissues were
again removed and quantitatively cultured as above (1, 2).

The two-tailed Student t-test was used for statistical analyses
of quantitative data. P ≤ 0.05 were considered significant.

The mean TZD and LZD MICs were (0.25 and
0.5µg/mL) and (1.0 and 2.0µg/mL) for 447 and
613 VRE strains, respectively. As shown in Figure 1,
(Supplementary Table 2), neither LZD nor TZD was
bactericidal for either VRE strain. Thus, both agents
were essentially bacteriostatic against the VRE study
strains in vitro.

In the VR-E. faecium 447 strain, in comparing the treatment
and relapse outcomes of LZD vs. TZD, LZD resulted in
a significantly lower kidney bacterial burden (P < 0.05);
this same difference was not found in other target tissues
(Table 1). Similarly, LZD significantly prevented the relapse
of infection with this strain in the kidney. Further, the
treatment outcome of LZD vs. TZD in VR-E. faecalis 613
strain, LZD treatment yielded significantly lower CFU counts
in all target organs (P < 0.05) (Table 1). However, the relapse
group microbiologic outcomes comparing LZD vs. TZD for
this strain were similar, and the data were not statistically
significant (Table 1).

In our study, neither LZD nor TZD was highly efficacious
in this murine VRE-BSI model, although, overall, LZD seemed
to yield better treatment outcomes than TZD. Paradoxically,
neither drug was able to exert a bactericidal effect in vitro
against either VRE strain. This suggested that the modestly
enhanced in vivo impact of LZD in this model may relate
to an in vivo “synergy” between this agent and innate host
defense cells (e.g., PMNs) and/or molecules (e.g., host defense
peptides; antibody, complement, etc.) (10, 11). In contrast
to our data, there have been several studies carried out by
various groups, including us, regarding the comparative activity
of TZD vs. LZD in Staphylococcus aureus, enterococci and
Streptococcus pneumonia, employing distinct in vitro and in vivo
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FIGURE 1 | Comparative analysis of TZD and LZD activity by in vitro time-kill curve assay.

scenarios, suggesting that TZD had significantly better activity
than LZD (12–16).

We recognize that our current study have methodologic
challenges which somewhat limit interpretation. For example,
we studied only one E.faecium and E. faecalis strain in
single in vivo model. Thus, further studies (including murine
BSI model) in the distinct in vivo infection model such as
endovascular and skin and soft tissue infection model etc.,
comparing TZD and LZD, and utilizing additional strains of
VR-E. faecium and VR-E. faecalis, will be required to adjudicate
our observations.
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