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Suitable animal models and in vivo biomarkers are essential for development

and evaluation of new therapeutic strategies in Alzheimer’s disease (AD).
18F-Fluorodeoxyglucose (18F-FDG)-positron-emission tomography (PET) is an imaging

biomarker that allows the assessment of cerebral glucose metabolism in vivo. While
18F-FDG-PET/CT is an established tool in the evaluation of AD patients, its role in

preclinical studies with AD mouse models remains unclear. Here, we want to review

available studies on 18F-FDG-PET/CT in AD mouse models in order to evaluate the

method and its impact in preclinical AD research. Only a limited number of studies

using 18F-FDG-PET in AD mice were carried out so far showing contradictory findings

in cerebral FDG uptake. Methodological differences as well as underlying pathological

features of used mouse models seem to be accountable for those varying results.

However, 18F-FDG-PET can be a valuable tool in longitudinal in vivo therapy monitoring

with a lot of potential for future studies.
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INTRODUCTION

Assessment of neuronal dysfunction with the glucose analog 18F-Fluorodeoxyglucose (18F-FDG)
is a well-established imaging method in the differential diagnosis of neurodegenerative diseases.
18F-FDG-PET displays the rate of cerebral glucose metabolism which is mainly determined by
synaptic activity (1, 2). Impairment of synaptic function and neuron loss are major pathological
hallmarks of AD and other dementias. 18F-FDG-PET can be used to identify specific patterns of
neuronal dysfunction characteristic for AD with high sensitivity and specificity due to reduced
glucose metabolism in certain cerebral areas. Patterns of decreased glucose metabolism mainly
include parietal, temporal and frontal cortical areas (3).

Using small animal PET scanners, the same molecular processes can be measured in animal
models. In order to develop and evaluate new therapeutic strategies longitudinal assessment
of a tested animal is essential. Non-invasive imaging with PET displays a useful tool for
therapy monitoring. However, different mouse models for AD show contradictory findings
in 18F-FDG-PET.

In this study we review previous use of 18F-FDG-PET in different ADmouse models in order to
evaluate the impact of PET imaging in preclinical AD research (Tables 1, 2).

APP-Based Mouse Models of AD
The discovery of mutations in the amyloid precursor protein (APP) and presenilin (PSEN) genes in
patients with familiar AD led to the generation of a variety of ADmousemodels. However, available
data on 18F-FDG-PET in AD mouse models is scarce.
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TABLE 1 | Characteristics of AD mouse models used in 18F-FDG-PET studies.

Mouse line Genetics Key features (months) References

APP-BASED MOUSE MODELS OF AD

Tg2576 APP mutation: Swedish • Intraneuronal Abeta (1.5m)

• Inflammation (2m)

• Memory deficits (4m)

• Synaptic dysfunction (4m)

• Plaques (11m)

(4–6)

APP AND PSEN DOUBLE TRANSGENIC MICE

TASTPM • APP mutation: Swedish

• PSEN1 mutation: M146V

• Plaques (6m)

• Inflammation (6m)

• Memory deficits (6m)

(7, 8)

APP/PS1 • APP mutation: Swedish

• PSEN1 mutation: deltaE9

• Plaques (6m)

• Inflammation (3m)

• Synaptic dysfunction (4m)

• Memory deficits (12m)

• Neuron loss (8m)

(9–11)

APPPS1-21 • APP mutation: Swedish

• PSEN1 mutation: L166P

• Plaques (1.5m)

• Phosphorylated tau, no mature tangles

• Neuron loss (17m)

• Inflammation (1.5m)

(12)

APP/PS2 • APP mutation: Swedish

• PSEN2 mutation: N141I

• Plaques (6m)

• Inflammation (6m)

• Synaptic dysfunction (10m)

• Memory deficits (8m)

(13–15)

5XFAD • APP mutation: Swedish,

Florida, London

• PSEN1 mutation:

PSEN1, L286V

• Plaques (1.5m)

• Synaptic dysfunction (4m)

• Neuron loss (9m)

• Inflammation (2m)

• Memory deficits (4m)

• Intraneuronal Abeta (1.5m)

(16, 17)

APP. PSEN AND TAU TRANSGENIC MICE

3xTg • APP mutation: Swedish

• PSEN1 mutation: M146V

• Tau mutation:

MAPT P301L

• Plaques (6m)

• Tau pathology (12m)

• Intraneuronal Abeta (3m)

• Synaptic dysfunction (6m)

• Memory deficits (4m)

• Inflammation (7m)

(18, 19)

PLB1 Triple • APP mutation: Swedish,

London

• PSEN1 mutation: A246E

• Tau mutation: MAPT

P301L, R406W

• Plaques (21m)

• Hyperphosphorylated tau (6m)

• Intraneuronal Abeta (12m)

• Synaptic dysfunction (12m)

• Memory deficits (12m)

• Inflammation (12m)

(20–22)

NON-APP-BASED MODEL

Tg4-42 Overexpressing Aβ4-42 (no

mutation)

• Neuron loss (5m)

• Synaptic dysfunction (2m)

• Memory deficits (5m)

• Inflammation (2m)

• Intraneuronal Abeta (2m)

(23–25)

18F-FDG-PET in APP Single Transgenic
Mice
Tg2576
The Tg2576 model is one of the first transgenic mouse model
based on mutant APP overexpressing human APP with the
double Swedish mutation (K670N/M671L) under the control of
the hamster prion promoter (40). Tg2576 mice show a distinct
Aβ plaque pathology with increased inflammation by 12 months

of age. Dendritic spine loss was detected starting at 4.5 months.
However, neuron loss is very limited. Noticeably, these mice
develop cognitive impairments prior to a significant plaque
pathology (41, 42).

Studies with 18F-FDG-PET show varying results. The first
study using 18F-FDG-PET in Tg2576 mice could not show any
significant differences of cerebral glucose metabolism compared
to WT (26). Animals were scanned on a microPET Focus220
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TABLE 2 | Results of 18F-FDG-PET studies in AD mouse models.

Mouse line Age (months) Sex Whole brain

FDG-Uptake

Regional

FDG-Uptake

Glucose

corrected

Normalization References

APP-BASED MOUSE MODELS OF AD

Tg2576 13–15m ♂♀ ns ns No Ratio target region/whole brain (26)

1) 7 m

2) 19 m

♀

♀

1) ↑

2) ns

1) ↑

2) ns

No No (27)

18m ♂♀ ns ↓ Yes No (28)

APP AND PSEN DOUBLE TRANSGENIC MICE

TASTPM 14m ♂ NIA ↓ Yes No (29)

1) 3 m

2) 6 m

3) 9 m

4) 12 m

5) 15 m

♂ NIA 1) ns

2) ns

3) ↓

4) ns

5) ns

Yes No (30)

APP/PS1 1) 2 m

2) 3.5 m

3) 5 m

4) 8 m

♀ NIA 1) ↑

2) ↑

3) ↑

4) ↑

No Ratio target region/cerebellum (31)

1) 3 m

2) 6 m

3) 12 m

♀ NIA 1) ↓

2) ↑

3) ↑

Yes Ratio target region/cerebellum (32)

APPPS1-21 12m ♀ NIA ↓ Yes No (33)

12m ↓ ↓ NIA No (34)

APP/PS2 1) 5 m

2) 16 m

NIA NIA 1) ↑

2) ↑

No Ratio target region/cerebellum (35)

5XFAD 11m NIA ↑ NIA No Ratio target region/cerebellum (36)

1) 2 m

2) 5 m

3) 13 m

♂ 1) ns

2) ns

3) ↓

1) ns; ↑

2) ns; ↓

3) ↓; ↓

No No; Target region to various regions

ratios

(37)

APP. PSEN AND TAU TRANSGENIC MICE

3xTg 1) 6 m

2) 12 m

NIA 1) ↓ 2) ↓ NIA Yes No (38)

PLB1 Triple 1) 5m ♂♀ 1) ns 1) ↓ No Ratio target region/whole brain (20)

2) 17m 2) ns 2) ↓

NON-APP-BASED MODEL

Tg4-42 1) 3–4 m

2) 7–8 m

♀ 1) ns

2) ↓

1) ↓

2) ↓

Yes No (39)

(Siemens Medical Solutions, Knoxville, TN, USA) after injection
of 18F-FDG to anesthetized mice. Quantification was performed
using manual volumes of interest (VOIs) with the help of a 3D
digital mouse phantom.

Another study by Luo et al. (27) detected an increase of
FDG uptake in 7 months old Tg2576 mice while older mice (19
months) did not show differences compared to WT. In this study
18F-FDG was injected to anesthetized mice. Mice were fasted
for at least 6 h prior to the study. For dynamic measuring of
FDG uptake, images were acquired immediately after injection
and continued for 60min on an Inveon microPET/CT (Siemens
Medical Solutions, Knoxville, TN, USA). Quantification was
done using whole brain VOIs as well as 7 anatomic regions
(cortex, cerebellum, thalamus, hippocampus, striatum, perirhinal
cortex and entorhinal cortex) according to a mouse brain
atlas. PET results were also compared to cerebral blood

volume measured by functional MRI but Tg2576 mice did not
show hemodynamic differences compared to age-matched WT
mice (27).

In contrast, a more recent study by Coleman et al. (28)
detected reduced FDG uptake in 18 months old Tg2576 mice
when blood glucose levels were taken into consideration. In this
study mice were fasted for 24 h, sampled for blood glucose levels
and FDG was injected intraperitoneally while awake. Images
were acquired on an Inveon microPET/CT (Siemens Medical
Solutions, Knoxville, TN, USA). Results were also confirmed by
autoradiography studies of selected animals that were used for
ex vivo analyses after PET scanning (28). The authors emphasize
the importance of blood glucose corrections of SUV as blood
glucose levels can affect brain FDG uptake and transgenic mice
are known for a significantly greater decline of blood glucose
levels after fasting compared to WT (29).
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18F-FDG-PET in APP/PSEN Double
Transgenic Mice
In order to create amore prominent AD pathologymousemodels
with APP and PSEN or a combination of multiple mutations
were generated. Generally speaking, double transgenic mice
expressing mutated PSEN and APP develop an earlier and more
aggressive pathology with severe plaque pathology, behavior
impairments and increased inflammation (41, 43, 44).

APPPS1-21
APPPS1-21 mice co-express the human Swedish mutation
KM670/671NL and PSEN1 L166P under the control of the
neuron-specific Thy-1 promoter (44). Mice show age-dependent
Aβ plaque depositions in the hippocampus starting as early
as 6 weeks of age accompanied by increased astrogliosis
and microgliosis. Dendritic spine loss occurs around plaques
beginning 4 weeks after plaque formation, continuing for several
months. Modest neuron loss could be detected in the dentate
gyrus in 17 months old mice. Cognitive impairment is reported
at 7 months (45).

Two studies used 18F-FDG-PET in APPPS1-21 mice so
far (33, 34). Twelve months old APPPS1-21 mice showed
significantly reduced FDG uptake in the thalamus and striatum.
Anesthetized animals were scanned after a conscious uptake
period of 45min on a microPET/CT (SiemensMedical Solutions,
Knoxville, TN, USA). Animals were fasted overnight for 8–12 h
and blood glucose was monitored. Quantification was performed
in predefined VOIs with the help of a mouse brain MRI template
and glucose-corrected uptake values were calculated. Ex vivo
autoradiography was performed confirming in vivo findings.
Furthermore, FDG uptake was compared to amyloid burden but
did not show a correlation (33). The second study of Takkinen
et al. (34) confirmed those findings. Twelve months old APPPS1-
21 mice showed significantly decreased FDG uptake in the whole
brain and in several regions including cortex, hippocampus,
striatum, thalamus and cerebellum. Mice were fasted for 90min
and anesthetized 30min prior tracer injection. Dynamic images
were acquired on an Inveon PET/CT scanner (Siemens Medical
Solutions, Knoxville, TN, USA) for 60min. VOIs were defined
with the help of an MRI mouse brain template and SUVs
were calculated. Furthermore, FDG uptake was compared to
imaging of neuroinflammation using the tracer 18F-DPA-714.
FDG uptake correlated positively with 18F-DPA-714 in the cortex
and hippocampus of 6 months old mice (34).

APP/PS1
The APP/PS1 model co-expresses the Swedish mutation
KM670/671NL and PSEN1 delta E9. Mice show age-dependent
extracellular Aβ deposition starting at 6 months of age. Mice
show age-dependent cognitive impairment starting at 12 months.

First signs of astrocytosis can be detected at 3 months of age.
However, severe gliosis starts around 6months, especially in close
proximity to plaques (9–11, 46).

So far two studies scanned APP/PS1 mice with 18F-FDG-
PET showing an age-dependent increase of glucose metabolism.
Poisnel et al. (32) detected a significantly higher FDG uptake
in the cortex and hippocampus of 12 months old animals

compared to WT scanning 3, 6, and 12 months old APP/PS1
mice. Mice were scanned on a microPET Focus 220 (Siemens
Medical Solutions, Knoxville, TN, USA). FDG was injected
to anesthetized mice followed by a 60min uptake period
maintaining anesthesia. Blood glucose was measured and levels
were in normal range. Four VOIs were defined (cortex,
hippocampus, striatum and cerebellum) with the help of
representative MRI scans and SUV values were calculated in each
VOI. SUVs were normalized by cerebellum uptake. Furthermore,
functional MRI showed cortical hypoperfusion in 12 months old
APP/PS1 mice (32).

Another study by Li et al. (31) showed increased FDG uptake
in several brain regions in 2, 3.5, 5, and 8 months old APP/PS1
mice. Mice were scanned on an Inveon microPET/CT (Siemens
Medical Solutions, Knoxville, TN, USA). Mice were fasted at least
6 h prior to scanning. During injection and the uptake period,
mice were awake. VOIs were defined manually on MRI slices of
each animal and SUV values were calculated in each VOI and
were normalized by cerebellum uptake (31).

PS2APP
The PS2APP model co-expresses human presenilin 2 (N141I
mutation) and human APP (K670N/M671L mutation). PS2APP
mice display age-dependent Aβ plaque pathology accompanied
by gliosis starting at 6 months of age. Cognitive impairment was
detected starting at 8 months (13–15).

A triple tracer study using 18F-FDG, the amyloid tracer
18F-Florbetaben and the neuroinflammation tracer 18F-GE180
showed increased FDG uptake in 5 and 16 months old
PS2APPmice. Images were acquired on an InveonmicroPET/CT
(Siemens Medical Solutions, Knoxville, TN, USA). VOIs were
defined using an MRI mouse brain atlas and SUV ratios
using the cerebellum for reference were calculated. SUVr
(forebrain/cerebellum) was higher in PS2APP mice compared
to WT. Furthermore, SUVr correlated with microgliosis and
amyloid load while microgliosis and amyloid load strongly
correlated (35).

TASTPM
The double transgenic model TASTPM carries the Swedish
mutation in APP and the M146V mutation in PSEN1. While
sporadic Aβ deposits can be detected in 3 months old TASTPM
mice, extracellular Aβ plaque depositions are not evident before
6 months of age. Astrogliosis and microgliosis around amyloid
plaques could be detected by 6 months of age. Age-dependent
cognitive impairment is described starting at 6 months (7, 8).

Three studies using 18F-FDG-PET in TASTPM mice
performed by the same group showed significant regional
decreased FDG uptake in 9 and 14 months old animals
compared to WT. 18F-FDG-PET/CT was performed on an
Inveon microPET/CT (Siemens Medical Solutions, Knoxville,
TN, USA). Mice were fastened for 8–12 h before PET. 18F-FDG
was injected to awake mice and images were acquired after a
conscious uptake period of 45min. Blood glucose levels were
measured and used for glucose normalization of SUV. Uptake
values were measured in predefined VOIs using a mouse MRI
atlas. Furthermore, these studies emphasized the blood glucose
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normalization in order to compensate effects on FDG uptake
and differences in fasting durations. However, decrease of FDG
uptake did not progress over age and did not correlate with Aβ

plaque pathology (29, 30, 47).

5XFAD
The widely used 5XFAD model co-expresses five mutations of
familial AD overexpressing human APP and PSEN-1. 5XFAD
mice develop plaque pathology accompanied by astrocytosis and
microgliosis starting at 2 months of age with massive increase
over age. Starting at 9 months of age, 5XFAD mice exhibit
significant synaptic loss. Neuron loss is detectable in cortical layer
5 and subiculum. Mice show cognitive impairment starting at 4
months (16, 17).

Studies with 18F-FDG-PET show varying results. Rojas et al.
(36) detected an increased uptake of 18F-FDG in 11 months
old 5XFAD mice compared to WT. In this study 18F-FDG
was injected while mice were anesthetized with isoflurane and
images were acquired after an awake uptake period of 50min on
a Concorde Microsystems microPET (Concorde Microsystems,
TN, USA). Mice were not fasted in advance to PET. Manually
defined VOIs were used to calculate whole brain to cerebellum
uptake ratios. The authors assumed that those findings might
be explained by reactive changes of microglia and astrocytes
according to inflammatory processes in the brain due to excessive
brain amyloidosis (36).

Another study by Macdonald et al. (37) reported a significant
decrease of 18F-FDG uptake in 13 months old 5XFAD mice.
Younger mice tested at 2 and 5 months did not show
significant differences in whole brain SUV compared to
WT. In this study 18F-FDG was injected to conscious mice.
During the uptake period mice interacted with a mechanical
mouse. Images were acquired after an uptake period of
30min on a LabPET4 preclinical PET/CT scanner (Trifoil
Imaging, CA, USA). SUV values were measured in 8 predefined
VOIs (amygdala, basal forebrain, basal ganglia, cerebellum,
hippocampus, hypothalamus, neocortex, and thalamus) with
the help of an MRI mouse brain atlas and standard uptake
values (SUVs) were calculated. Thirteen months old 5XFAD
mice showed significantly lower SUV in all brain regions.
Furthermore, relative metabolic activity was calculated by using
ratios between different brain regions. Young 5XFAD mice
showed differences to WT in the basal forebrain, hippocampus,
hypothalamus and thalamus relative to the neocortex as a
possible early indicator of regional changes (37). Unpublished
data of our own group also show significant decreases of 18F-FDG
uptake in 12 months old 5XFAD mice.

18F-FDG-PET in Other Mouse Models of AD
(APP + PSEN + tau)
While APP and PSEN mouse models mirror a wide spectrum of
the pathological features seen in AD patients they lack a robust
neurofibrillary tangle (NFT) pathology. In order to overcome
this absence familial ADmutations have been combined with tau
mutations from frontotemporal dementia.

3xTg
The 3xTg model is an example for such a triple transgenic
mouse model as these mice show NFT pathology together with
plaque depositions. 3xTg mice express three genes associated
with familial AD namely human APP with the Swedish mutation,
PSEN1 M146V together with mutated Tau P301L (18).

One study used 18F-FDG-PET in 3xTg mice. Sancheti et al.
(38) detected significantly decreased FDG uptake in 6 months
old 3xTg mice compared to WT. Mice were fasted overnight and
anesthetized before PET. Images were acquired on a microPET
R4 PET scanner SiemensMedical Solutions, Knoxville, TN, USA)
and additional CT scans were performed. VOIs were drawn
manually in co-registered PET and CT images and SUVs were
calculated. In addition, the effect of lipoic acid administration on
glucose uptake was evaluated and showed an increase of FDG
uptake in lipoic acid fed 3xTg mice (38).

PLB1
The PLB1Triple line is also a triple transgenic AD mouse line
carrying human mutated APP with the London and Swedish
mutation, mutated tau (P301L/R406W) as well as mutant PSEN1.
PLB1Triple mice demonstrate a slow but progressive AD-like
pathology. While intraneuronal Aβ can be detected in 12 months
old mice Aβ plaques are not visible before 21 months of age. First
memory deficits have been observed in 12 months old PLB1Triple
mice (20).

Platt et al. (20) detected decreased bilateral FDG uptake in the
occipital and parietal cortex of 5 and 17 months old PLB1 mice
extending to the prefrontal cortex and cerebellum at 17 months.
Mice were fasted overnight prior scanning.18F-FDG was injected
intraperitoneally to conscious mice. Scans were performed on
a Suinsa ARGUS dual-ring scanner (Suinsa Medical Systems,
Madrid, Spain). Voxel-based analysis was performed using a
digital mouse brain atlas with normalization to whole brain
uptake. Regions of statistical significance were mapped on CT
images (20).

18F-FDG-PET in Non-APP-Based Models
of AD
Familial AD accounts only for a small fraction of all AD cases,
however all of the above described ADmouse models rely on one
or more FAD mutations. Most AD patients suffer from the late-
onset sporadic form of the disease (LOAD) that is not linked to
mutations. Therefore, development of animal models that reflect
LOAD are becoming into focus.

Tg4-42
The transgenicmousemodel Tg4–42 is unique as it overexpresses
Aβ4-42 without harboring mutations in the Aβ sequence. Tg4-42
mice express human Aβ4-42 fused to the murine thyrotropin-
releasing hormone signal peptide, ensuring secretion through
the secretory pathway, under the control of the neuronal Thy-
1 promoter. Tg4-42 mice show intracellular soluble neurotoxic
aggregates of Aβ4-42, without the formation of extracellular
amyloid plaques. Homozygous mice show significant age-
dependent neuron loss in the hippocampus starting at 5 months
with associated astrogliosis and microgliosis at 2 months.
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Mice show age-dependent cognitive impairment starting at 5
months (23, 24).

A recent study of our group detected age-dependent
reduction of 18F-FDG uptake in Tg4-42 mice. Mice were
scanned as described above. Early changes in FDG uptake
were detected in the hippocampus, forebrain, hypothalamus,
amygdala and midbrain at 3 months of age progressing
to all brain areas at 8 months. Old Tg4-42 mice showed
differences in SUVGlcin all tested brain regions and whole
brain compared to WT (39). Mice were scanned on a small
animal PET/MRI scanner (1 Tesla nanoScan PET/MRI; Mediso,
Hungary). Mice were fasted overnight and blood glucose
levels were measured prior to tracer injection. 18F-FDG was
injected while mice were anesthetized with isoflurane and images
were acquired after an awake uptake period of 45min. A
mouse brain atlas template was used to analyze 11 different
predefined brain regions (amygdala, brain stem, cerebellum,
cortex, hippocampus, hypothalamus, midbrain, olfactory Bulb,
septum/Basal Forebrain, striatum, and thalamus). SUV was
calculated and values were corrected for blood glucose levels in
order to stabilize uptake values compensating for inequalities in
glucose levels and fasting durations (Figure 1).

DISCUSSION

Animal models of AD are essential in order to understand
underlying pathologies of the disease and develop new
therapeutic strategies. In order to study new therapies,

longitudinal assessment of their effects in vivo is important
and depends on disease-specific biomarkers. 18F-FDG-PET is
an established imaging biomarker for neuronal dysfunction in
the diagnostic workup of AD-patients. 18F-FDG-PET displays
cerebral glucose metabolism which is mainly determined by
synaptic activity. Changes in glucose metabolism can be detected
in early stages of the disease as neuronal dysfunction precedes
neuron loss. Successful translation of preclinical findings into
clinical use requires animal models that display key features of
the disease and allow the use of common biomarkers.

Multiple studies using 18F-FDG-PET in animal models of AD
have been carried out so far and results of those studies are
very inconsistent questioning whether 18F-FDG-PET is a suitable
method in ADmousemodels. Here we want to summarize earlier
findings and discuss possible explanations of those results and
their discrepancies.

In contrast to typical findings in AD patients, several studies
described increased FDGuptake in transgenic ADmice including
the 5XFAD, Tg2576, APPS1-21, and APP/PS1 models (27, 32, 35,
36). One study detected unaltered glucose metabolism in Tg2576
mice (26) while other studies showed decreased cerebral FDG
uptake in 5XFAD, Tg2576, APPS1-21, TASTPM, Tg4-42, PLB1,
and 3xTg mice (28, 30, 33, 34, 37–39).

The mainly used explanation of increased FDG uptake
is the presence of inflammatory cells around amyloid
plaques. High astrogliosis and microgliosis might lead to
an increased glucose metabolism. However, contradicting

FIGURE 1 | 18F-FDG-PET in Tg4-42 mice. Mice were fasted overnight and
18F-FDG (mean 16.2 MBq) was administered intravenously. Scans were

performed after an awake uptake period of 45min. Mice were anesthetized

with isoflurane for the injection and during the scans. PET images were

acquired on a small animal 1 Tesla nano scan PET/MRI (Mediso, Hungary) for

20min. A 136 × 131 × 315 matrix with a voxel size of 0.23 × 0.3 × 0.3 mm3

was used. MRI images were used for attenuation correction (matrix 144 × 144

× 163 with a voxel size of 0.5 × 0.5 × 0.6 mm3, TR: 15ms, TE 2.032ms and

a flip angle of 25◦). Fused PET/MRI images are shown in coronal view. (A)
18F-FDG-PET/MRI of a wildtype mouse with homogenous FDG-distribution in

all brain areas. (B) 18F-FDG-PET/MRI of an aged Tg4-42 mouse with distinct

lower uptake compared to wildtype mice. A, amygdala; C, cortex; H,

hypothalamus; Hc, hippocampus; T, thalamus.

results in the same animal models (data available for
5XFAD and Tg2576 mice) as well as in other models
with known increased gliosis (APPS1-21, TASTPM, and
Tg4-42 mice) showed significant cerebral hypometabolism
relativizing this theory. Furthermore, AD patients also
display distinct decreased brain glucose metabolism despite
highly increased gliosis (48–50). Therefore, astrogliosis
and microgliosis alone do not seem to be responsible for
cerebral hypermetabolism.

Other explanations for high FDG uptake in the brain include
vascular alterations and changes of the blood brain barrier. Next
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to FDG-PET, Poisnel et al. (32) used functional MRI to measure
cerebral perfusion in APP/PS1 mice that showed increased
FDG uptake. However, they detected an even reduced cortical
perfusion showing that perfusion changes are not accountable
for lower FDG uptake in this model (32). Changes in the blood
brain barrier as described in histology for Tg2576 mice might
lead to increased leakage of FDG into the brain (51). However,
two studies on Tg2576 mice did not show a relevant effect
of FDG leakage as FDG uptake was decreased or comparable
to WT.

Methodological differences should also be taken into
consideration. The most striking methodological differences
between the studies are found in normalization methods of
PET results. Normalization to the cerebellum is a common
method as disease pathologies are expected to mainly influence
cortical regions. Cerebellar glucose metabolism is relatively
preserved in AD patients and normalization with the cerebellum
could be shown to improve differential diagnosis of dementia
(52–54). However, in mice several studies also describe lower
FDG uptake in the cerebellum and therefore it seems to be
somehow affected by the pathologies as well (29, 30, 39). Deleye
et al. (29) described that normalization to the cerebellum yielded
in higher SUVs in transgenic mice. Therefore, the cerebellum
seems not appropriate as a reference region for FDG-PET
results. Interestingly, all studies that normalized SUVs with the
cerebellum did show increased FDG uptake compared to WT
independent of the used mouse model. Unfortunately, data of
non-normalized SUVs were not shown.

Another common method of normalization includes blood
glucose levels. FDG uptake in the brain is highly influenced by
blood glucose levels showing an inverse relationship with FDG-
uptake (55). Several factors as fasting and fasting duration, stress,
body temperature and anesthesia with isoflurane or ketamine
influence blood glucose levels. Next to providing stable pre-
imaging conditions, normalization of FDG uptake for blood
glucose levels should be taken into consideration as some factors
cannot always be perfectly stabilized in each individual animal.
Furthermore, transgenic mice show lower blood glucose after
fasting compared to WT mice (28, 29). This effect might mimic
higher FDG uptake in the brain compared to WT.

Further methodological differences between studies
include animal preparation and handling (e.g., fasting
times), conditions during the uptake period and anesthesia.
These differences can influence FDG uptake due to changes
in blood glucose levels as mentioned above and some
studies used glucose normalization to exactly overcome
these issues. Furthermore, synaptic activity might differ
between studies due to the use of anesthesia or stimulation
(e.g., room conditions, mechanical companion mouse).
However, these conditions should not affect results as
conditions have to be stable within a study for both, WT
and transgenic mice.

Furthermore, technical aspects also differ between studies
including PET scanners, acquisition times and image analysis.
Spatial resolution displays a major challenge for small animal

imaging, especially in the brain. While autoradiography can
provide a spatial resolution around 100µm and below common
modern PET scanners and reconstruction engines reach a spatial
resolution of around 1.5mm up to 700µm in the newest systems
(56). While regional differences between autoradiography and
small animal PET studies can be explained by the inferiority of
PET scanners in terms of spatial resolution, differences between
PET scanners in the reviewed studies are not that critical and
therefore varying results cannot be majorly explained by the use
of different systems.

Pathological features of different mouse models might also
influence FDG-PET results. Lacking cerebral hypometabolism
may also be due to a limited amount of neuron loss. While
atrophy and neuron loss as major hallmarks of AD mainly
influence FDG uptake in humans, some transgenic APP-based
animal models lack this key feature. However, FDG uptake is
not only determined by neuron loss. Synaptic dysfunction also
leads to lower glucose consumption in the brain. Studies on
mouse models that only show minimal or even lack neuron
loss as Tg2576, APPPS1-21, or TASTPM do show cerebral
hypometabolism indicating that neuron loss is not the only factor
driving FDG uptake.

To date, the impact of 18F-FDG-PET in preclinical studies is
subordinate. However, in future studies small animal imaging
with 18F-FDG-PET should become an important biomarker for
therapy monitoring. In studies on new therapeutic approaches
a suitable mouse model that can be monitored by 18F-
FDG-PET can be beneficial, especially for monitoring early
therapeutic success.

CONCLUSION

18F-FDG-PET can be a valuable tool for longitudinal in
vivo monitoring of AD mice considering its strengths and
limitations. Suitability of a certain animal model regarding its
pathological features as well as normalization techniques should
be carefully considered. Normalization with blood glucose in
order to compensate for fasting and preparation inequalities
that highly influence blood glucose levels in transgenic mice
seems helpful whereas normalization with the cerebellum
seems inappropriate.
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