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The membrane dopamine transporter (DAT) is involved in a number of brain

disorders and its exploration by positron emission tomography (PET) imaging is

highly relevant for the early and differential diagnosis, follow-up and treatment

assessment of these diseases. A number of carbon-11 and fluor-18 labeled tracers

are to date available for this aim, the majority of them being derived from the

chemical structure of cocaine. The development of such a tracer, from its conception

to its use, is a long process, the expected result being to obtain the best

radiopharmaceutical adapted for clinical protocols. In this context, the cocaine derivative

(E)-N-(4-fluorobut-2-enyl)2β-carbomethoxy-3β-(4
′

-tolyl)nortropane, or LBT-999, has

passed all the required stages of the development that makes it now a highly relevant

imaging tool, particularly in the context of Parkinson’s disease. This review describes the

different steps of the development of LBT-999 which initially came from its non-fluorinated

derivative (E)-N-(3-iodoprop-2-enyl)-2-carbomethoxy-3-(4-methylphenyl) nortropane, or

PE2I, because of its high promising properties. [18F]LBT-999 has been extensively

characterized in rodent and non-human primate models, in which it demonstrated its

capability to explore in vivo the DAT localized at the dopaminergic nerve endings as well

as at the mesencephalic cell bodies, in physiological conditions. In lesion-induced rat

models of Parkinson’s disease, [18F]LBT-999 was able to precisely quantify in vivo the

dopaminergic neuron loss, and to assess the beneficial effects of therapeutic approaches

such as pharmacological treatment and cell transplantation. Finally recent clinical data

demonstrated the efficiency of [18F]LBT-999 in the diagnosis of Parkinson’s disease.
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IN VIVO IMAGING OF THE DAT: A HIGHLY POTENT TOOL FOR
BRAIN DISORDERS

The dopaminergic neurotransmission is strongly involved in the regulation of multiple brain
functions such as locomotion, cognition and reward, and then plays a major role in a great number
of brain disorders such as Parkinson’s disease (PD) (1) but also several neuropsychiatric disorders
(2). In this context, in vivo exploration of this system through molecular imaging methods is a
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real added value for the diagnosis, follow-up, and treatment of
such disorders. Several molecular targets of the dopaminergic
neurotransmission can be explored in vivo, at both the pre-
and post-synaptic level. These explorations require the use of
specific radiotracers able to bind specifically to each target
and then to quantify it as accurately as possible. For this
aim a high number of tracers have been developed, either
labeled with γ emitters such as 123I or 99mTc for single
photon emission tomography (SPECT), or with β+ emitters
such as 11C or 18F for positron emission tomography (PET).
Several tracers are yet available for the different types of post-
synaptic dopaminergic receptors (3). Regarding pre-synaptic
dopaminergic neurons, SPECT and/or PET exploration of three
main molecular targets are to date available. The 6-[18F]-fluoro-
L-dopa or [18F]DOPA uptake, which reflects both the conversion
of Dopa into dopamine (DA) and the storage of DA into synaptic
vesicles, has been the first gold standard tool (4). Besides, the
vesicular monoamine transporter 2 (VMAT2) and the membrane
dopamine transporter (DAT) can also be explored. The respective
advantages and drawbacks related to imaging these different
pre-synaptic molecular targets have mainly been compared in
the context of PD, and prominent conclusions are summarized
in Table 1.

TABLE 1 | Presynaptic molecular PET imaging targets of the dopaminergic neurotransmission.

Molecular target Examples of tracer Advantages Drawbacks References

DOPA decarboxylase [18F]F-DOPA – Distinguishes patients with advanced PD

from patients with de novo PD

– Reflects both the conversion of Dopa into DA

and pre-synaptic storage of DA

– Possible under-estimation of DA neurons

loss in de novo PD patients due to an

up-regulation of DA synthesis

(5–7)

Vesicular monoamine

transporter 2 (VMAT2)

[11C]DTBZ

[18F]AV-133

– Detects early PD vs. healthy controls

– Improves diagnostic accuracy in clinically

uncertain parkinsonian syndrome

– Present on all monoaminergic neurons (8–10)

Membrane dopamine

transporter (DAT)

[18F]FP-CIT

[11C]PE2I

[18F]FE-PE2I

– Distinguishes patients with advanced PD

from patients with de novo PD

– Greater sensitivity than F-DOPA for detecting

motor severity in PD

– Identification of patients at risks for

developing PSP or FTD

– Possible over-estimation of DA neurons loss

due to a down-regulation of the DAT

(5, 11, 12)

AV-133, fluoropropyldihydrotetrabenazine; DA, dopamine; F-DOPA, 6-fluoro-dopa; DTBZ, dihydrotetrabenazine, FDT, frontotemporal dementia; PSP, progressive supranuclear palsy.

FIGURE 1 | Chemical structures of β-CIT, PE2I, and LBT-999.

For a long time, the DAT has been identified as a target
of choice because its localization makes it a marker of neuron
integrity and density, and also because it is a key-actor in the
regulation of synaptic dopamine levels (13). A high number of
SPECT and PET tracers have been developed for DAT imaging. In
all cases, they were derived from known ligands of the DAT, and
most of them from the tropane structure characteristic of cocaine
(14). The first of these tracers which demonstrated its potency in
the field of PD using SPECT imaging was the 2β-carbomethoxy-
3β-(4-iodophenyl)tropane (β-CIT) (15), which bound to the
DAT with a high affinity (around 3 nM) and accumulated
significantly in dopaminergic brain areas when labeled with
iodine-123. Although β-CIT demonstrated its usefulness for the
detection of DAT loss in PD, it had several drawbacks such as a
similar affinity for the dopamine and serotonin transporters (16),
a poor signal/noise ratio and an in vivo kinetics requiring as long
as 24 h to reach equilibrium state allowing theDAT quantification
in the striatum (17).

A number of new β-CIT derivatives were then proposed to
overcome these weaknesses. Among them, the N-(3-iodopro-2E-
enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I)
is structurally characterized by the presence of a methyl group on
the phenyl ring of the β-CIT structure instead of an iodine, and
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a 3-iodopro-2E-enyl group at the tropane nitrogen instead of a
methyl carried by β-CIT (18). These chemical modifications have
led to a significant improvement in the pharmacological profile of
this ligand (19, 20), showing a high selectivity for the DAT toward
the serotonin transporter (SERT). The high affinity and selectivity
made PE2I a highly potent tracer to image the DAT in vivo either
by SPECT when labeled with 123I and by PET when labeled with
11C. In this context, [123I]PE2I demonstrated its usefulness for
the differential diagnosis between patients suffering from PD
and atypical parkinsonian syndromes without degeneration of
striatal dopaminergic nerve endings (21). The PET imaging with
[11C]PE2I has also been successfully used in this same disease
(11, 22) but also in schizophrenia (23, 24), attention deficit /
hyperactivity disorders (25) and more recently in the exploration
of the reward dopaminergic pathway (26).

DEVELOPMENT OF LBT-999

Regarding the high potency of binding of PE2I for the DAT
and because PET imaging enables in vivo exploration at high
resolution and high sensitivity, we developed the fluorinated
derivative of PE2I, i.e., 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-
aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester (LBT-
999) (Figure 1).

The in vitro pharmacological evaluation of LBT-999
demonstrated that its properties was close to that of PE2I, with a
good affinity for the DAT (9 nM) and a Ki > 1µM for different
ligands of the serotonin and norepinephrine transporters (27).
Firstly, LBT-999 was labeled with carbon-11 (28) by methylation
of the acid precursor that can be obtained in an easier way
compared to a precursor useable for fluorine labeling. The
[11C]LBT-999 shown to have a high in vivo accumulation in
brain areas containing high levels of DAT both in rats and

FIGURE 2 | Coronal (upper side) and axial (lower side) PET static images

(30–50min post-injection) obtained with [18F]LBT-999 in a normal rat (left) and

in a rat lesioned with 6-OHDA in the right striatum. The quantitative analysis

revealed a decreased of 70% in the tracer accumulation in the lesioned vs.

intact striatum.

monkeys (27, 28). Based on these results, the development
of the radiolabeling with [18F] was then realized, first using a
two-step methodology (29) followed by a one-step approach
(30) required for rapid and reproducible radiofluorination
dedicated to preclinical and clinical studies. As for the [11C]LBT-
999, [18F]LBT-999 rapidly, and highly entered the rat brain
where its distribution was in agreement with the DAT density.
Importantly, 1 h post-injection, the in vivo specific binding
represented by the ratio of accumulation in the striatum to
cerebellum, was 10 times higher for LBT-999 (ratio of 25) (27)
compared to that we obtained previously with PE2I in same
experimental conditions (31). For LBT as for PE2I, the striatal
accumulation at 1 h post-injection was around 70% decreased in
the presence of a saturating dose of the DAT inhibitor GBR12909,
whereas no significant effect was observed with a pre-injection
of paroxetine (SERT ligand) or nisoxetine (NET ligand). In
monkey, LBT-999 was also able to bind specifically to the DAT,
either labeled with [11C] (27) or with [18F] (32). This last study
demonstrated that LBT was also suitable for DAT exploration
in extra-striatal regions, and that the estimated dosimetry was
acceptable for human use.

PRECLINICAL EXPERIMENTS IN ANIMAL
MODELS

As the final aim of the development of a new PET tracer is
its use for human health improvement, it is of high value to
explore the properties of such a candidate tracer in animalmodels
of human diseases. For this purpose, we performed in a first
step in rats, an extensive test-retest study that demonstrated
the ability of [18F]LBT-999 to quantify the DAT with high
reproducibility (variability of 8–14%) and reliability (intra-class
correlation coefficient, ICC, of 0.9) in the striatum, whereas these
parameters were less accurate in the substantia nigra, in relation
with the small size of this brain structure (33). In a rat model of
early PD induced by a moderate unilateral striatal lesion using 6-
hydroxydopamine (6-OHDA), we showed that [18F]LBT-999 was

FIGURE 3 | Fusion axial slices between PET and MRI of the [18F]LBT-999

uptake at the level of the striatum in a control subject (left) and a drug-naïve

patient with early Parkinson disease (right). The radiopharmaceutical uptake is

asymmetrically decreased in Parkinson patient.
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able to accurately quantify in vivo the dopaminergic endings loss
(Figure 2), in full agreement with the results obtained by in vitro
autoradiography with [125I]PE2I on brain sections (34).

It was also important to assess the potency of [18F]LBT-999
to evaluate the efficacy of various therapeutic approaches aiming
at the preservation or replacement of dopaminergic neurons
in vivo in the rat model of 6-OHDA lesions. This property
was demonstrated in the case of a pharmacological therapeutic
approach (35) as well as for the graft of human embryonic
stem cells-derived midbrain dopaminergic neurons (36). These
whole findings provided strong preclinical support for clinical
translation of [18F]LBT-999.

THE USE OF [18F]LBT-999 IN HUMAN

[18F]LBT-999 has recently been evaluated in clinical setting (37,
38). Preliminary results on a small sample of 6 subjects with
early Parkinson’s disease and 8 healthy controls demonstrated
that injection of [18F]LBT-999 is feasible and pharmacologically
safe. [18F]LBT-999 distribution was consistent with DAT
density in human brain and PET images in both caudate
and putamen nuclei indicate that this tracer may successfully
differentiate the two groups of subjects (Figure 3). On the
basis of these initial findings, [18F]LBT-999 might be a suitable
radiopharmaceutical for PET assessment of DAT in future
clinical studies.

CONCLUSIONS

After the identification of a brain molecular target whose PET
exploration would be crucial for improvement of the diagnosis
and/or treatment of a particular disease, it is a long way to make
available an optimal radiotracer. A very high number of tracers
have been developed as potential DAT imaging agents, the most
promising being based on the tropane scaffold derived from
the structure of cocaine. Several SPECT compounds are used in
clinical protocols, such as 99mTc-TRODAT (39) and [123I]FP-
CIT (40). However, they suffer from many disadvantages such
as poor sensitivity, spatial resolution, and slow kinetic uptake,
and PET ligands should be a good alternative. We described in
this paper the development of one of these tracers, [18F]LBT-
999, which has the particularity to be highly specific for its target,
and which is now ready to be used for clinical purpose.
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