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Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human

tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles

may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored

the occurrence of these particles in the cervical (neck) skin of 10 patients with Parkinson’s

disease and 10 healthy controls. Magnetometry and transmission electron microscopy

analyses revealed magnetite/maghemite nanoparticles in the skin samples of every

study participant. Regarding magnetite/maghemite concentrations of the single-domain

particles, no significant between-group difference was emerged. In low-temperature

magnetic measurement, a magnetic anomaly at ∼50K was evident mainly in the dermal

samples of the Parkinson group. This anomaly was larger than the effect related to the

magnetic ordering of molecular oxygen. The temperature range of the anomaly, and the

size-range of magnetite/maghemite, both refute the idea of magnetic ordering of any iron

phase other than magnetite. We propose that the explanation for the finding is interaction

between clusters of superparamagnetic and single-domain-sized nanoparticles. The

source and significance of these particles remains speculative.

Keywords: magnetite, nanoparticles, human tissue, skin, Parkinson’s disease, superparamagnetic, gut

INTRODUCTION

Magnetic analyses of human tissues have revealed the presence of nanosized ferrimagnetic
magnetite/maghemite particles (MNPs) in the brain, meninges, heart, liver, and spleen (1–7). The
two distinct types of magnetic crystals identified in human brain are euhedral crystals possibly of
biogenic origin (1, 5, 8, 9) and rounded crystals of combustion-derived origin (5). Many organisms
are able to biochemically precipitate magnetite (10), and one theory is that biogenic magnetic
nanoparticles in human tissues crystallize in situ, with the possible precursor being ferritin (11, 12).

The magnetic properties of magnetite depend on magnetic relaxation time (13), determined by
particle size, morphology, the microscopic coercive force of the particle, saturation magnetization
of the material, and thermal energy (14–17). Particles with ultrashort relaxation times are referred
to as superparamagnetic (SPM). For magnetite, particles under 30 nm are considered SPM, whereas
those of 30–80 nm are single-domain (SD) particles (14, 17, 18). At room temperature, SD particles
are able to carry magnetic remanence, while SPM are not (18). Generally, static magnetic fields
can reduce mitochondrial membrane potentials, generate oxidative stress, and induce apoptotic
processes (19, 20). Magnetic nanoparticles can translate possible effects to tissues. In human cells,
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magnetic nanoparticles have induced loss of mitochondrial
membrane potential as an early sign of apoptosis (21). The
magnetic iron oxide, magnetite (Fe2+Fe3+2 O4), and its oxidized

equivalent maghemite (γ-Fe3+2 O3), may each possibly play
a role in the pathogenesis of neurodegenerative diseases
(3, 22). Iron and MNPs, by also containing ferric iron (Fe3+),
can promote alpha-synuclein protein (α-Syn) aggregation
(23, 24). Importantly, the α-Syn aggregates in the central
and peripheral nerves are hallmarks of Parkinson’s disease
(PD) (25). Phosphorylated α-Syn aggregates have been
detectable in cervical skin samples of PD patients but not
in control samples (26). Exploring the occurrence of MNPs
in skin tissue may thus reveal important information on
PD pathogenesis.

The primary aim of the present study was to examine the
presence and potential role of MNPs in the cervical (neck)
skin of subjects with and without PD. This site was targeted
because it has most consistently harbored alpha-synuclein
protein pathology in PD skin samples (26). We studied the
mineralogy, morphology, and composition of MNPs in human
cervical skin samples by magnetometry, transmission electron
microscopy (TEM), and the associated spectroscopic techniques,
electron energy loss spectroscopy (EELS) and energy-dispersive
X-ray spectroscopy (EDS).

MATERIALS AND METHODS

Research Subjects and Ethical Issues
The study participants formed two groups: 10 PD patients and
a control group of 10 spouses of PD patients (Table 1). The
patients had an idiopathic PD meeting the UK Parkinson’s
Disease Society Brain Bank clinical diagnostic criteria (27). None
of the controls had PD nor any signs of parkinsonism. Exclusion
criteria for both groups were cognitive decline (Mini-Mental
State Examination points<25), bleeding disorders, anticoagulant
treatment, diabetes, dermatological abnormalities in the cervical
area, and allergy to local anesthetics. This prospective study was
approved by the Ethics Committee of Helsinki and the Uusimaa
Health District Area of Finland, and all procedures were in
accordance with relevant guidelines and regulations. Each study
subject provided a written informed consent.

TABLE 1 | Demographic and clinical characteristics of patients and controls.

Patients (n = 10) Controls (n = 10)

Age in years, median (range) 68.5 (55–74) 70.5 (50–72)

Gender, male (%) 50 50

Years from PD diagnosis, median (range) 8 (1–17) -

Hoehn & Yahr stage, median (range) 2.5 (1.5–4.0) -

Years with PD patient, median (range) 0 43 (1–50)

Body Mass Index, median (kg/m2 ) 26.5 24.9

Current smoking, prevalence (%) 10 20

Hypertension (medicated), prevalence (%) 40 30

Hyposmia by history, prevalence (%) 80 0

Skin Samples
Cervical (neck) skin tissue biopsies took place at the neurological
outpatient clinic of the Helsinki University Central Hospital
(HUCS), Jorvi Hospital. Each skin biopsy was performed by
a plastic surgeon, who cut an approximately 10-mm long
boat-shaped section from the cervical skin area localized
behind the right sternocleidomastoid muscle edge, anatomically
corresponding to C7 spine level. The rims of the samples
were removed with a knife having an aluminum shaft and a
non-magnetic ceramic blade (Fine Science Tools, Heidelberg,
Germany) to exclude possible contamination. Each isolated
sample was packed into a non-magnetic polythene film package,
and then kept in two sealed plastic bags in a freezer (−20 ◦C).
To preclude skin-surface contamination, each skin sample, when
frozen and dry, was macroscopically sectioned by the plastic
surgeon with a ceramic blade into two parts: dermal (D) and
epidermal (E). The D part was considered to contain some
amounts of hypodermal tissue, whereas the epidermal part was
a mixture of E and D tissue. The tissue samples remained in a
polythene film package for room-temperaturemeasurements and
in plastic straw for low-temperature magnetic measurements.
In one PD patient, the skin sample was too atrophic for
proper dissection, excluding this case from the material of the
present study.

Magnetic Methods
Room-temperature magnetic measurements took place at the
Solid Earth Geophysics Laboratory, University of Helsinki,
with 2G (now WSGI) cryogenic superconducting quantum
interference device (SQUID) magnetometry. Each analytical
step was designed and monitored to exclude any possible
magnetic contamination. Instrument background noise level
and level of laboratory contaminants were monitored with blank
5.8-g ice cubes of distilled deionized water in an ultrasonically
cleaned plastic cube kept in the laboratory environment for 4–7
days before freezing. Typical ice-cube background noise levels
were in the range of 6–9 × 10−11 Am2 (intensity: 1–1.6 × 10−8

Am2 kg−1), corresponding with mean background noise level
(6–9 × 10−11 Am2) of the instrument. To identify magnetic
grain sizes and magnetic interactions, anhysteretic remanent
magnetization (ARM)was induced in a decaying (from 100mT to
zero) alternating magnetic field (af), with a small, superimposed
direct current field (0.05 mT), and was subsequently af-
demagnetized. To study the type of magnetic material and
its concentration, and to further study the grain size and
magnetic interaction (28–30), we measured stepwise remanence
acquisition with incremental application of direct current
fields for subsets of samples (four patients, three controls), and
room-temperature isothermal remanent magnetizations (IRMs).
Saturation isothermal remanent magnetization (SIRM) was
imparted with 3T field and subsequently af-demagnetized
using the same af-steps as in ARM demagnetization.
The remanence of the sample holder was subtracted
from the results.

Wohlfarth’s ratio (W) (28, 29) was defined from the
intersection of the IRM acquisition curve and the af-
demagnetization curve of SIRM. For non-interacting SD particles
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with uniaxial anisotropy, Wohlfarth’s ratio is 0.5; lower values are
attributable to particle interactions, or to SPM or multidomain
(MD) influences (28, 29). The Lowrie–Fuller test (30) served
for study of the domain size of magnetic grains. To distinguish
between SD- and MD-sized grains, requires comparison of the
coercivity spectra of the ARM and IRM. In SD grains, ARM
requires larger destructive fields than does IRM to reach the
same normalized remanence level. The Lowrie-Fuller test can be
quantized using the parameter MDF (median destructive field).
MDF is calculated as the demagnetizing field required halving
the magnetization.

Low temperature magnetic measurements of skin samples
were done at the Low Temperature Laboratory, Aalto University
(Espoo, Finland), using reciprocating sample SQUID Magnetic
Property Measurement System XL7 magnetometer (Quantum
Design) for the 10 patients and 10 controls. Care was taken
that the airlock valve was operated properly to prevent any air
leak into the system. For low temperature analyses a straw is
used as a sample holder. After the sample was mounted into
magnetometer, the sample space was purged with pure He a few
times, and the measurements were done at very low He pressure
in the measurement chamber. An oxygen test determined that
there was no leak of air into the chamber. Induced magnetization
was measured as a function of temperature between 5 and
270K in a 50 mT field after (1) the sample was cooled in a
zero field (ZFC) and (2) cooled in an applied field of 50 mT
(FC). In addition, induced magnetization was measured as a
function of the field for one patient sample up to 1T in 48K
and in 300K. Measured magnetic moments were normalized
with the masses of completely dry tissue samples (Tables 2, 3).
Each completely dry mass was weighed after the low temperature
measurement. For some of the dermal samples, dry mass was
calculated based on the water content of the corresponding
epidermal part.

Magnetically Extracted Particles
The magnetic extraction procedure was done for 11 dermal
samples (nine patients and two controls). Extraction for
the dermal sample was based on the procedure established
by Hirt et al. (7) with slight modification. Briefly, the
samples were first incubated for a day in a 1-mL solution
consisting of 50 µL of Proteinase K (5mg mL−1) + 950 µL
HEPES Buffer (50mM). The samples were then centrifuged
at 14,000 rpm for 10min. The supernatant was discarded
and the pellet was resuspended in a 1% Triton solution for
another day before the preparation of TEM grids. After the
initial trials, we decided to avoid magnetic separation, which
failed to successfully separate magnetic particles from other
nanoparticulate components.

Transmission Electron Microscopy (TEM),
Electron Energy Loss Spectroscopy (EELS)
and Energy-Dispersive X-Ray
Spectroscopy (EDS)
TEM measurements took place in a double Cs-corrected Jeol
JEM-ARM200F, equipped with a GIF Quantum Energy Filter

TABLE 2 | Magnetic properties of dermal samples.

Sample Saturation

moment

(10−10 Am2)

Dry

mass

(mg)

Content of

SD magnetite

(ng/g)

Tp

(K)

Tv

(K)

PD PATIENTS

1D 6.22 8.0 1640.0 20

2D 20.28 10.0 4408.7 118

3D 8.04 7.0 2428.1 41 121–123

6D 51.23 4.0 27842.4

8D 6.00 11.0 1219.2 54 120

10D 20.37 4.0 12652.2 48 121

11D 13.62 15.0 2028.0

12D 30.54 8.0 8852.2 46 118

14D 2.67 3.0 1733.0 42

18D 6.43 15.0 904.4 54

Mean 6370.8

Average deviation 6046.9

Median 2228.1

CONTROLS

5D 8.15 8.0 2108.4 121

7D 6.90 3.0 4713.3 117

9D 3.56 8.0 943.0

13D 9.89 13.0 1653.8

15D 5.77 2.0 5700.6 42 123

16D 7.98 5.0 3854.1 125

17D 16.11 20.0 1759.9 115

19D 11.01 13.0 1855.4

20D 1.89 2.0 1786.4

21D 2.20 3.0 1913.0

Mean 2628.8

Average deviation 1276.3

Median 1884.2

Tp, temperature for low temperature perturbation; Tv, Temperature for Verwey transition.

(Gatan) and a silicon-drift energy-dispersive X-ray spectroscopy
detector (Jeol). All spectroscopy measurements were done in
STEM mode. EELS spectra were recorded using a dispersion of
0.1 eV/channel, with a 5-mm spectrometer entrance aperture, a
convergence semi-angle α = 20 mrads and a collection semi-
angle β = 24 mrads. The energy resolution was 1.2 eV when
measured at the full width at half maximum (FWHM) of the
zero-loss peak. Due to rapid hydrocarbon deposition, only point
measurements were chosen. Spectra presented here come from
single particles, with an exposure time of 1 s and 60 frames
summed (total integration time 60 s); no smoothing was applied.
Background was subtracted before each edge by use of power-
law fitting, and plural scattering was removed by a Fourier-ratio
deconvolution, both available in Digital Micrograph 3.1 software
(Gatan Inc.). Plotting of the data and normalization were
carried out with OriginPro 8.5 software. For energy-dispersive
X-ray spectroscopy, the specimen was tilted toward the detector
(α-tilt= 18 ◦) to increase detection efficiency. Acquisition and
analysis of the data were completed with Analysis Station
software (Jeol).
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TABLE 3 | Magnetic properties of epidermal samples.

Sample Saturation

moment

(10−10 Am2)

Dry

mass

(mg)

Content of

SD magnetite

(ng/g)

Tp

(K)

Tv

(K)

PD PATIENTS

1E 10.84 13.9 1695.3

2E 2.49 6.5 832.8

3E 17.08 11.0 3375.5

6E 8.68 8.3 2273.2

8E 21.31 7.5 6176.8

10E 11.70 11.2 2272.8

11E 18.25 25.7 1543.7

12E 14.02 7.8 3907.5

14E 4.33 4.2 2243.3

18E 16.46 14.7 2434.2 122

Mean 2675.5

Average deviation 1086.7

Median 2273.0

CONTROLS

5E 31.66 9.7 7095.5

7E 3.87 4.5 1869.6

9E 6.18 6.1 2203.5

13E 11.69 14.9 1705.6

15E 5.66 2.6 4729.1

16E 9.94 4.6 4697.5

17E 16.11 18.7 1872.8 42 124

19E 13.73 19.6 1522.8

20E 16.44 6.2 5764.4

21E 5.48 10.7 1113.8

Mean 3257.5

Average deviation 1815.3

Median 2038.2

Tp, temperature for low temperature perturbation; Tv, Temperature for Verwey transition.

Statistics
Study of statistical distributions of the measurements, as well
as the between-group analysis with non-parametric comparison
(Mann-Whitney U) and correlation (Spearman R) were carried
out with Statistica 13.1 software (Dell Inc., Tulsa, OK, USA).

RESULTS

Alternating field (af) demagnetization of SIRM of the samples
supports the presence of ferrimagnetic remanence carriers
(Figures 1A,B). IRM acquisition curves showed that the skin
tissue samples contained low-coercivity magnetic particles which
were magnetically saturated by 300 mT, indicating ferrimagnetic
magnetite/maghemite (Figures 1C–F).Wohlfarth’s ratios (28, 29)
between 0.19 and 0.24 for both PDs and controls were obtained
(Figure 1). The MDF of SIRM for PD samples showed a larger
range (7.9–20.5 mT) than did those for control samples (10–18
mT) (Figures 1, 2), indicating a wider range of domain size of
remanence carriers for PD samples than for controls. The limited
number of subjects did not, however, provide sufficient statistical

power to detect a significant difference. The Lowrie-Fuller (30)
test, where MDF values of ARM are higher than those of IRM,
indicates that the SD size MNPs dominate over MD size in all of
the samples.

The concentration of magnetic material in the samples was
calculated, assuming that the material was magnetite, having
saturation magnetization 92 Am2/kg (1). The highest observed
values of magnetite content were in the PD group, which
displayed a higher spread of the distribution, most clearly
in the dermal (D) samples (median 2228.1 ng/g, range 904-
27842 ng/g; in controls, median 1884.2 ng/g, range 943–5,700
ng/g) (Figure 2 and Table 2). Despite the trend, no significant
difference appeared between the subpopulations (p = 0.34,
Mann-Whitney U-test). Values of the dermal samples showed no
gender difference (p= 0.12, Mann-Whitney U-test) nor did they
correlate with age or body mass index of study participants (R =

−0.01, p= 0.97, and R=−0.32, p= 0.17, respectively, Spearman
Rank Correlation).

Induced magnetization, after both low-temperature
experiments, where the sample was cooled in a zero field
(ZFC) and cooled in an applied field of 50 mT (FC), showed a
rapid loss in magnetization on rewarming from 5 to 25K. This
range includes the temperature range for a paramagnetic signal
from blood in tissue (2–8K) (7, 31). With further warming,
the ZFC showed an anomaly for the majority (six of ten) of
the D samples of PD patients, and for one D sample and one
E sample of the controls, with the peak ranging from 41 to
54K (Tables 2, 3 and Figure 3). As to dermal samples, Fisher’s
exact test showed a trend-like difference in the occurrence of
this anomaly between patients and controls (p = 0.06). The
anomaly was absent for the FC curve. With continued warming,
ZFC curves indicated Verwey transition for D samples of six
PD patients at a temperature range of 118–123K and for five
D samples of controls at a temperature range of 115–125K
(Figure 3 and Table 2).

We measured induced magnetization as a function of the field
for PD patient 18D near the low temperature anomaly peak at
48K and at 300K (Figure 4). After the diamagnetic correction,
nearly saturated magnetization emerged at both temperatures,
indicating ferrimagnetic material. A slightly higher coercivity
value of 20 mT appeared at 48K, compared to 15 mT at 300K.
At 48K, in the descending and ascending limbs of the curve in
both positive and negative fields showed a bifurcation. At 300K,
this behavior was absent.

TEM and EELS analyses of the extracted particles confirmed
the occurrence of magnetite (Figure 5). The size of these
particles varied in the range of 50–100 nm, close to SD
size, exceeding the size of nanoparticles formed within an
8-nm diameter of the ferritin cors (10). The nanoparticles
displayed a faceted morphology, in contrast to the rounded or
spherical morphologies found in brain tissue and attributed to
combustion-derived sources (5). Energy loss near ege structure
(ELNES) analysis of the Fe L2,3-edge clearly shows a magnetite
profile, both in patients and controls (Figure 5). The L3–edge
presents a single maximum located at 709.4 (±0.1) eV, and
L2–edge at 721–723 eV. The energy between the two lines
being 13.2 eV and the relative intensity 4.0, are in agreement
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FIGURE 1 | Normalized saturation isothermal remanent magnetization (SIRM/SIRM0 ) as a function of demagnetizing AF field (semi-log) (A) for patient samples, (B) for

control samples. Normalized acquisition of isothermal remanent magnetization (IRM/IRM1T ) and normalized SIRM (SIRM/SIRM0) as a function of AF field for cervical

skin samples of patients with PD (C,D) and for healthy controls (E,F). Wohlfarth’s ratio (W) is defined from the intersection of these curves. MC, median coercivity; D,

dermal; E, epidermal.

FIGURE 2 | Estimated magnetite concentration (micrograms per gram, µg/g)

vs. median destructive field (MDF) of saturation isothermal remanent

magnetization (SIRM) for dermal part of the cervical skin samples. Y-axis in

logarithmic scale.

with earlier values for magnetite particles (32). The O K-edge
shows a pre-peak around 530 eV that presents an asymmetry,
with a shoulder located at 530 eV on the high-energy side,
and a principal feature at 540 eV that is common for all iron-
oxide phases.

DISCUSSION

Room-temperature IRM and SIRM measurements identified
ferrimagnetic particles in all of the samples. The broad range
of Verwey transition temperatures (PD: 118–123K; controls:
115–125K) indicates both pure magnetite and partial oxidation
of magnetite to maghemite or the presence of impurities (33),
such as Ti4+, Zn2+, Al3+, in magnetite. TEM observations
demonstrated that some of the particles were pure magnetite
(Figure 5). Lowrie-Fuller test (30) refutes the presence of
MD grains and Wohlfarth’s ratios < 0.5 for both PDs and
controls indicate that the grains capable of carrying remanent
magnetization at room temperature are magnetically interacting
(28, 29). The median MNP concentrations for the dry skin-
tissue samples were in the same range as reported for dry brain-
tissue samples (5). Although the highest concentrations of MNPs
came from the PD patients, no statistical difference between PD
patients and controls emerged, possibly due to the small number
of samples studied.

The majority of the D samples from PD patients showed
anomalous behavior in the direct current magnetization at
around 50K. Earlier low temperature measurements have
indicated that heme-iron and ferritin do not contribute to the
obtained anomaly around 50K (7, 31). The only iron phase
in human tissue, one that has shown anomalous behavior in
its magnetic properties around 50K, is magnetite/maghemite
(34, 35). An anomaly at ca. 50K in measurement of magnetic
after-effect (MAE) or AC susceptibility has been associated
with the onset of electron hopping upon warming and ionic
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FIGURE 3 | Normalized induced magnetization as a function of temperature for ZFC (Mzfc/Mzfcmax) (A) patient samples and (B) control samples. Solid line–ca. 50K

anomaly or Verwey transition; dashed line–no low temperature features. For comparison, the magnetization values are normalized to maximum value of ZFC

magnetization.

FIGURE 4 | (A) Normalized ZFC (Mzfc/Mzfcmax) and FC (Mfc/Mfcmax) curves

for patient sample 18D exhibiting 50K perturbation. (B) Induced magnetization

as a function of field near the anomaly at 48K and in 300K after slope

correction. Normalization of ZFC-FC as in Figure 3.

ordering within domain walls, which indicate wall movement
(36). However, the size of MNPs in this study indicates SD or
SPM grain size, contradicting the presence of domain walls, being
in line with the size range of MNPs in human brain tissue (7).

In 1998, Moskowitz et al. associated a low-temperature
anomaly during ZFC analyses with SPM- to SD-sized maghemite
particles (partly aggregated clusters) in magnetoferritin (37).
Accordingly, we propose that the ∼50K anomaly indicates
magnetically interacting clusters of possible SPM- and SD- sized
ferrimagnetic MNPs. The peak for this perturbation occurred
only on the ZFC curve, since, due to increased temperature,
initially SD sized particles progressively unblock, align their
moments with the applied field, and eventually randomize
due to thermal energy. This anomaly did not occur during
the FC analyses, since magnetization was already aligned with
the field during the cooling through blocking temperature
and this experiment only shows the demagnetization of the
blocked particles.

Additional support for SPM grains comes from low
temperature hysteresis measurements, which show higher
coercivity at 48K than at room temperature (Figure 4B),

indicating the presence of SPM grains as being able to carry
remanence at 48K (4). The bifurcations similar to those obtained
in the hysteresis loop have been evident in studies on human
tissue (7, 36), with a suggestion that the switching of the a-
b crystalline axes of magnetite around 45K could possibly
explain this bifurcation (36). In the initial field, the easy axis
of magnetization would lie along one of the axes. As the
field is reduced and then raised to the starting value again,
what may occur is a switch in preferred axis, leading to the
bifurcation observed.

Another explanation for the anomaly at ∼50K may be
the magnetic ordering of molecular oxygen, which undergoes
an antiferromagnetic transition at about 43K being strongly
paramagnetic above this temperature (38). We took care to
prevent any oxygen leak into the system. Furthermore, the
magnetic intensity of the ∼50K signal was for most of the
samples an order ofmagnitude larger (10−4 Am2/kg) than known
effects related to the magnetic ordering of oxygen at 43K (<2
×10−5 Am2/kg) (7), providing additional evidence against the
oxygen as a cause for the∼50 K anomaly.

Our magnetometric studies revealed MNPs with SD
characteristics in all skin samples and interacting SPM
characteristics for the majority of the D samples from the
PD patients. The shapes of the SD-size magnetic nanoparticles
studied by TEM did not resemble the cubo-octahedral crystals
of possible biogenic magnetite (1, 9), but merely resembled
non-biogenic magnetite. No rounded or spherical morphologies
were detectable. EEL spectra of four samples demonstrated that
their particles were composed of magnetite (Figure 5); on the
basis of their size, we propose a source different from that of
ferritin cores.

The origin of MNPs in human tissues has
remained speculative (biogenic, non-biogenic, or
anthropogenic/combustion). Polluted air (combustion-derived
MNPs) via the respiratory route has been proposed as one
source of these MNPs (5). The olfactory route was considered
to be the passageway to the brain for these round and spherical
particles (5), but was recently contradicted (6). Here, no particles
were detectable with such morphology. However, we cannot
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FIGURE 5 | High annular dark field (HAADF) image of particles extracted from human cervical skin with respective EEL spectra; A–C (Healthy control), D–F (PD

patient). Iron L2.3-edge (B,E) and oxygen K-edge fine structure (C,F) confirm that particles are composed of magnetite.

fully exclude that airborne MNPs, via a respiratory route or
even through skin structures, may in part explain the results.
Low-temperature magnetic measurements showed the presence
of apparent SPM particles mainly in the dermal samples of PD
patients (Tables 2, 3), hinting strongly of a source other than the
skin surface. As to intrinsic sources, the ferrihydrite core of the
iron-storage protein ferritin has been proposed to be a precursor
of MNPs (11, 12). Considerable argumentation goes against this
view, as the size of single-domain MNPs is not compatible with
the 6- to 8-nm diameter of the inner cavity of the ferritin protein
(10). Further, nuclear magnetic resonance relaxometry studies
have shown that the content of magnetite in the ferrihydrite
core is <1% (39). At least, what is not ruled out is that ferritin
could by some mechanism produce small superparamagnetic
MNPs, which can then aggregate into larger MNPs with SD-like
characteristics. Experimens have shown that nucleation and
growth of magnetite proceeds through rapid agglomeration of
nanosized primary particles (40). Recently, it has been reported
that human stem cells have an ability to synthesize magnetic
nanoparticles from nanodegeneration products (41).

A potential source of MNPs may be the gastrointestinal
tract. Having been present in many organisms (10), MNPs may
be expected to be found in various foodstuffs, which, when
ingested, are probably absorbed into the bloodstream from the
gastrointestinal tract. In addition, drinking-water can contain
MNPs (42). Ferrihydrite in soils deserves attention, since in its
amorphous form, it can percolate into groundwaters and further
into drinking-water (43), and magnetite crystal formation may

occur by an abiotic mechanism (44). As to bacteria sporadically
residing in the human gastrointestinal tract, sulfate-reducing
Desulfovibrio species are able to synthesize magnetite (45–
47). As these bacteria also produce hydrogen sulfide, known
to cause olfactory dysfunction (48), a prevalent phenomenon
in PD (49), the potential occurrence of these bacteria in PD
is relevant. The uptake of nanoparticles from the intestinal
lumen into the blood circulation may take place mainly through
an endocytic transcellular transport, with even 100-nm-sized
particles transported (50). Iron nanoparticles can evidently cross
plasma membranes by a non-endocytic pathway, gaining direct
access to the cytoplasm (51). The gut epithelial enteroendocrine
cells, known to contain α-Syn, may therefore be structures to
display α-Syn aggregation promoted by magnetite nanoparticles
(24, 52, 53). In the blood, nanoparticles become coated by
proteins, small molecules and ions (50). Tissue macrophages are
considered the primary cell types that phagocytose nanoparticles
which have ended up in the blood circulation (54). As the
macrophage density in normal human dermis is considerable
(55), skin may play an important role in removing MNPs from
the blood circulation. This view is supported by an animal study
showing intravenously administered nanoparticles to accumulate
in the dermis, first localizing in dermal macrophages (56). The
substantial magnetite content of the skin samples detected in this
study may reflect such a process.

MNPs can evidently interfere with cell functions. Interactions
of SPM particles with prolonged external magnetic fields may
lead to biological impacts, because SPM particles have a
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strong magnetic susceptibility; relatively weak static magnetic
fields can induce loss of membrane potentials in mitochondria
(19, 20), which may potentially lead to mitophagy (56).
Magnetite nanoparticles per se may induce mitochondrial
dysfunction (21), and promote, in an uncoated form, α-Syn
aggregation (24).

In the present pilot study, the number of samples was too
small to allow definitive conclusions as to the true differences
in MNP characteristics and quantities between the study
groups. As an additional factor, PD is a disease with diverse
characteristics in which various pathophysiological mechanisms
may come into play (57), and the overall accuracy of clinical
diagnosis of PD is far from satisfactory particularly in its early
stages (58, 59). Notably, relatively high amounts of single-
domain MNPs were observable in all cervical skin samples.
A possible clustering of such particles with superparamagnetic
particles needs further exploration in Parkinson’s disease. Our
study raises questions as to the origin and role of MNPs
in physiologic and pathologic states in human beings as
well as to the importance of the skin as an internalizer of
these particles.
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