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Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane

microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular

Cavin 1–4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological

processes like lipid uptake, mechanosensitivity, or signaling events and are involved

in pathophysiological changes in the cardiovascular system. They serve as a specific

membrane platform for a diverse set of signaling molecules like endothelial nitric oxide

synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes

the complete loss of caveolae; induces vascular disorders, endothelial dysfunction,

and impaired myogenic tone; and alters numerous cellular processes, which all

contribute to an increased risk for hypertension. This brief review describes our current

knowledge on caveolae in vasculature, with special focus on their pathophysiological

role in hypertension.
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INTRODUCTION

In the 1950s, 60- to 100-nm caves in the plasma membrane of the cell were first described using
an electron microscope and named caveolae (1). It was later identified that most tissues and cell
types contain caveolae, but the quantity varied (2). Because of the lack of experimental approaches
and technologies, caveolae functions were mostly unclear until the 1990s. With the development of
molecular techniques, the major membrane proteins of caveolae, caveolins, were dissected, and the
secrets of function of these bulb-like caves were subsequently revealed. There are three caveolins,
which are named caveolin 1 (Cav1), caveolin 2 (Cav2), and caveolin 3 (Cav3) (3). These proteins
are encoded by different genes, CAV1, CAV2, and CAV3. Cav1 is expressed in most of the cell
types and is essential for caveolae biogenesis; Cav3 is predominantly expressed in muscle cells (i.e.,
cardiac, striated skeletal, and smooth muscle cells) and is required for caveolar morphogenesis;
Cav2 is generally expressed together with Cav1 in adipocytes, endothelial cells, pneumocytes, and
fibroblasts, but appears to be dispensable for caveolar formation (4). Loss of either Cav1 or Cav3
results in a complete lack of caveolae (5, 6). A few years later, a series of additional proteins were
identified, which play important roles in the formation of caveolae. Cavin 1–4 are essential for
caveolae formation (7, 8) and function (8, 9). Together with caveolins, cavins preserve the stable
coat around the bulb of caveolae (10, 11). In addition, Eps15 homology domain containing protein
2 (EHD2) is involved in mediating caveolar stabilization at the plasma membrane (Figure 1)
(13); pacsin2 is a protein that is involved in the membrane bending to form caveolae as well as
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FIGURE 1 | Model of caveolae. Caveolae model modified from Matthäus et al.

(12). EHD2, Eps15 homology domain containing protein 2; Dyn2, Dynamin 2.

in mediating caveolar stabilization and scission (14, 15).
Dynamin 2 is a caveolae neck-forming protein and plays a role
in caveolar internalization and scission (16). Cav1 is transported
from the Golgi complex to bulb from the plasma membrane and
associates with cavin complex and pacsin2 to form Cav1-rich
domains (11). Dynamin 2 is able to restrict the caveolar neck and
EHD2 is located in this neck to stabilize the caveolae.

In accordance with major knowledge and understanding
of caveolae structure, increasing interest has been focused on
caveolae functions in physiology and pathophysiology. The
physiological roles of caveolae vary depending on the organ
systems and cell types examined (17). In the cardiovascular
system, they contribute to maintaining a normal vascular tone
and act as signal platforms (18–20). Signal transduction is
critically important in the regulation of vascular homeostasis.
Caveolae is reported to act as signaling platforms to a set of
signaling molecules and receptors such as angiotensin II type 1
receptors (AT1R) (21), endothelial nitric oxide synthase (eNOS),
several ion channels, and tyrosine kinase receptors (RTK) in
vasculature (Figure 1) (19, 22, 23). The modification of caveolae
structure affects its physiological function; e.g., alterations of lipid
and proteins in caveolae induced by eicosapentaenoic acid (EPA)
changed eNOS activation (24); lowering of cholesterol content
in caveolae by simvastatin inhibited Akt1 serine–threonine
kinase/protein kinase B (Akt/PKB) signaling pathway (25).

Loss of caveolae caused numerous vascular disorders,
e.g., vascular smooth muscle hypertrophy (26), endothelial
dysfunction (27), and impaired myogenic tone (28), which are
all risk factors for the development of hypertension (29). A study
pointed that renal hypertensive rats expressed a lower number of
caveolae in aortic smooth muscle cells (SMCs) and endothelial
cells, which induced an impaired effect of acetylcholine (30).
Therapeutic targeting of caveolae in vascular diseases is also
under study. For instance, a mutant cell-permeable scaffolding
domain peptide called Cavnoxin, which can increase basal NO

release in eNOS-expressing cells, has been recently identified
to reduce vascular tone ex vivo and lower blood pressure in
mice (31).

Here, we provide an overview of caveolae expression and
function in the vasculature and discuss their putative role in
pathophysiology of hypertension.

VASCULAR ENDOTHELIAL CAVEOLAE

Electron microscopic, biochemical, and immunochemical
analyses demonstrated that caveolae are highly expressed
in endothelial cells (32–34). Importantly, various signaling
molecules and receptors of endothelial cells enriched in caveolae,
in particular eNOS (31), G-proteins (35), protein kinase A (PKA)
(36), protein kinase C (PKC) (37), and various receptors (38).
They have been suggested to bind and be inhibited by Cav1
through its caveolin scaffolding domain (CSD), a conserved
amphipathic region for caveolae formation as well as for
regulating signal transduction (35, 39, 40).

Among these caveolae-localized signaling molecules, eNOS
has attracted great attention for its critical effects on vascular
homeostasis and blood pressure regulation (Figure 2) (41–43).
Both biochemical analysis and immunogold labeling showed
that a majority of eNOS resides in caveolae of endothelial
cells (44, 45). Caveolae represent a predominant location of
eNOS in endothelial cells (45, 46). The studies emphasize a
critical role of endothelial caveolae in regulating activation of
eNOS (Figure 2). In inactive endothelial cells, eNOS is shown
to associate with Cav1, which inhibits calmodulin complex
(CaM) binding to eNOS (47). This combination interrupts the
electrons from NADPH to eNOS. M2-muscarinic acetylcholine
receptor activation or other stimulation (e.g., increasing vascular
flow and pressure) initiates an influx of Ca2+ that binds to
calmodulin. In succession, eNOS dissociates from Cav1 and
then combines to CaM. The flow of electrons from NADPH is
therefore restored and consequently NO is produced (Figure 2)
(48, 49). This NO generation results in the association of
Cav1 and eNOS as previously shown, thus terminating the
signal transduction (32). Furthermore, due to the increased
cytosolic Ca2+ concentration, eNOS translocated from the cell
membrane to the Golgi complex and is fully activated. After
all, eNOS localizes back to the plasma membrane (35, 50, 51).
Moreover, it has been demonstrated in vivo and in vitro that
caveolin 1 is able to bind eNOS and therefore to inhibit the
synthesis of NO (47, 52, 53). Increased expression of Cav1 is
known to appear in patients with insulin resistance and type
2 diabetes (54), associated with impaired acetylcholine-induced
NO production and vasodilation (55). Cav1 knockout mice
show chronic and dramatic elevation in systemic NO levels
and enhanced acetylcholine-induced arterial relaxation (56, 57).
Conversely, the Bendhack group (58) reported that caveolae
disassembled by methyl-β-cyclodextrin (mβcd) treatment cause
an impaired acetylcholine-induced relaxation in the rat isolated
aorta. This is in agreement with another study showing that
caveolar disruption results in a decreased release of endothelial-
derived NO in femoral arteries (59). This difference is supposed
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to be due to chronic Cav1 deficiency vs. acute caveolar disruption,
as upon chronic lack of Cav1, an adjustment of an attenuated
myogenic tone can be observed over a longer time period, i.e.,
active constriction induced by pressure, as compensation at the
level of the vascular wall (60, 61).

The elevation of systemic NO levels and impaired myogenic
tone in Cav1 knockout mice would be expected to show a lower
systemic blood pressure (6, 28). However, there are several studies
reporting no difference in systolic and diastolic blood pressure
between Cav1 knockout and wild-type mice (62–64). Of note,
Wunderlich et al. (65) reported reduced systemic blood pressure
whereas Pojoga et al. (66) reported an elevated systolic blood
pressure in Cav1 knockout mice. Another study showed that
Cav1 knockout mice have a slightly increased heart rate (60),
suggesting possible compensation via increased baroreceptor
reflex activation leading to increased sympathetic activity and
neurogenic tone. Moreover, what should also be mentioned is
that the deletion of Cav1 impaired the Mg2+ absorption and
increases K+ excretion in renal distal convoluted tubule (67). The
involvements of baroreceptor reflex and electrolytes disturbance
in blood pressure regulation of Cav1 knockout mice make this
scenario even more complicated.

Last but not least, endothelial transient receptor potential
vanilloid receptor 4 (TRPV4) channels, where the NO-dependent
vasodilation in arteries is triggered by Ca2+ entry (68), colocalize
with Cav1 in the caveolae-enriched membrane fractions (69).
These channels are potent Ca2+ influx channels (Figure 2). Cav1
knockout results in total absence of TRPV4-induced relaxation,
suggesting that caveolae are essential for TRPV4 function and
Ca2+ signaling in endothelial cells (68).

VASCULAR SMOOTH MUSCLE CAVEOLAE

Caveolae are also abundant in SMCs, which are known to
express Cav1–3 (70). Similar to the endothelial cells, caveolae
are also important for SMC function, providing a platform
for signal transductions through G-protein-coupled receptors
and ion channels, therefore helping to maintain vascular
homeostasis (18).

Angiotensin II (Ang II) working through AT1R is a well-
known signaling pathway in vascular SMCs, which plays a
great role in renal hypertension. Dysfunction of this pathway
shows a predominant role in the pathophysiology of renal
hypertension and several renal diseases (71, 72). In vascular
SMCs, Ang II induces rapid translocation of a subset of
AT1Rs to caveolae, where AT1Rs bind to Cav1 (73, 74)
(Figure 3), which, in succession, activate the downstream
signaling events, such as NADPH oxidase activation (cell
migration and growth) (75), Ca2+ mobilization (arterial
contractile responses) (6), epidermal growth factor receptor
(EGFR) transactivation (tyrosine phosphorylation) (73, 76), and
vascular SMC hypertrophy (77). Cav1 showed a beneficial effect
in hypertensive mice. Cav1 protected against the development
of systemic high blood pressure and enhanced resistance artery
constriction through its binding to AT1R, which delays AT1R
reactivation after Ang II stimulation (78). Ang II-induced

hypertensive vascular remodeling is attenuated in Cav1 knockout
mice (79).

Besides endogenous hormones, hypertension-induced
mechanical stress contributes to the genesis of vascular
hypertrophy and vascular remodeling, which can induce
translocation of Cav1 in vascular SMCs (80). In response to
chronic shear stress, Cav1 is translocated to non-caveolar
sites and then combined to β1-integrins/Fyn/Shc, which
mediates stretch-induced extracellular signal-regulated kinase
(ERK) activation (80–82) (Figure 3). When exposed to acute
mechanical stresses, caveolae disassemble completely and rapidly
lead to the translocation of caveolins in the plasma membrane
(<30 s), which flattens out caveolae in the plasma membrane to
provide additional membrane and extra buffer tension (83). This
reversible and rapid disassembly of caveolae provides a basic
vascular response to an acute shear stress (Figure 3).

In vascular smooth muscle, most of the physiological
processes are known to require Ca2+ (84). Ca2+ flux and
intracellular Ca2+ level take part in numerous physiological
processes of smooth muscle (85). Vascular caveolae are known
to provide functional organization of ion channels, in particular
calcium channels. Although multiple Ca2+ handling molecules
[the plasma membrane Ca2+ pump (PMCA) (86), Na+-Ca2+

exchanger (NCX1) (87), T-type Cav3.2 channels (88), and
transient receptor potential canonical channels (TRPCs) (89) are
shown to localize or associate with Cav1 or Cav3 within caveolae
(Figure 3); the exact function of most Ca2+ handling molecules
in vascular SMCs regarding intracellular Ca2+ signaling remains
elusive (90).

Myogenic tone, which serves to regulate blood flow and
protect downstream vessels from pressure-induced damage, is
largely dependent on an influx of extracellular Ca2+ via voltage-
operated calcium channels (91). In large cerebral vessels in vitro,
the myogenic tone is mainly regulated by L-type Cav1.2 channels
(92). However, as the vessel size decreases (< 40µm), L-type
Cav1.2 channels have been reported to disappear (93). Recent
studies showed that T-type Cav3.2 channels functionally located
in caveolae activate BKCa channels to limit vasoconstriction
(88, 94–96). This spatial functional organization between T-
type Cav3.2 channels, ryanodine receptors, and BKCa channels
contrasts the role of L-type Cav1.2 channels in non-caveolar
membrane sites to produce primary Ca2+ influx into vascular
SMCs and release of Ca2+ sparks via indirect ryanodine type
2 receptor (RyR) activation through sarcoplasmic reticulum
Ca2+ content (88, 97–99) (Figure 4). In both cerebral and
mesenteric arteries, T-type calcium currents show increased
amplitudes as vessel size decreases (93, 100). Genetic deletion
of Cav1 or mβcd treatment of vascular SMCs impairs caveolae
formation and impacts either the activity or localization of T-
type Cav3.2 channels (88, 95, 101). Together, the data support
the idea that T-type Cav3.2 channels within caveolae play an
important role in the regulation of myogenic tone in small
peripheral resistance vessels, which may represent an attractive
explanation for attenuated myogenic arterial tone observed in
Cav1 knockout models.

Another remarkable ion channel group located in vascular
SMC caveolae are TRPC channels, which are suggested to work
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FIGURE 2 | Schematic model of active eNOS in endothelial caveolae. Caveolae model modified from Matthäus et al. (12). M2-muscarinic acetylcholine receptor

activation initiates an influx of Ca2+ that bind to calmodulin, eNOS dissociates from CBD of caveolin-1, CaM binds to eNOS, and the flow of electrons from NADPH to

eNOS is restored, and then NO is produced. eNOS, endothelial nitric oxide synthase; NO, nitric oxide; CaM, calcium–calmodulin complex; CBD, caveolin scaffolding

domain; ACh, acetylcholine; EHD2, Eps15 homology domain containing protein 2.

FIGURE 3 | Schematic model of AngII-induced and mechanical stress-induced signaling pathway in vascular smooth muscle caveolae. Caveolae model modified

from Matthäus et al. (12). Left: Ang II induces rapid translocation of AT1R to caveolae, AT1R and Caveolin 1 associate with each other. Caveolin 3 accompanies with

AT1R. Right: Mechanical stress induces translocation of Caveolin 1 to non-caveolar sites and is associated with β1-integrins/Fyn/Shc to activate ERK signaling

pathway. Cav1, Caveolin 1; Cav3, Caveolin 3; AngII, Angiotensin II; AT1R, AngII type1 receptor; ERK, extracellular signal-regulated kinase; Ca2+-permeable ion

channels, such as TRPC, transient receptor potential channels, and EGFR, epidermal growth factor receptor.
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FIGURE 4 | Schematic model on the role of caveolae in Ca2+ signaling in vascular smooth muscle. L-type Cav1.2 channels in noncaveolar membrane sites and

T-type Cav3.2 channels in caveolae produce Ca2+ influx into vascular SMCs to release Ca2+ sparks via ryanodine type 2 receptors (RyR) in the sarcoplasmic

reticulum (SR). The Ca2+ sparks produce a negative-feedback effect on vasoconstriction by activating maxi Ca2+-activated K+ (BKCa) channels.

as store-operated Ca2+ entry (SOCE) channels and are essential
for the restoration of internal Ca2+ (102). As SOCE channels,
TRPC channel proteins need to associate with other regulatory
signaling molecules within caveolae, where they provide a
platform for the assembly of TRPC signalplex, including Cav1, G
protein, and G-protein-coupled receptor (103). Cav1 deficiency
reduced agonist-stimulated Ca2+ secretion and disrupted TRPC
signalplex assembly (104). TRPC/TRPC signalplex shows an
important role not only in the pathogenesis of pulmonary
hypertension (105, 106) but also in essential hypertension and
renal hypertension (107–109), which indicated that TRPC or
TRPC signalplex may act as important new targets for treatment
of hypertension.

PERSPECTIVE AND CONCLUSIONS

Caveolae, cholesterol- and glycosphingolipid-rich membrane
microdomains, serve as a platform for signal transduction
in endothelial cells and vascular SMCs. Within the caveolae
membrane domain, in particular Cav1, is a critical molecule,
allowing for the rapid activation by posttranslational protein
modification. Deletion of caveolin genes is not lethal but caveolin
knockout mice show several vascular disorders and dysfunction
(110–113) (Table 1).

In this review, we discussed pathophysiological roles of
caveolae in endothelial and vascular SMCs in hypertension,

TABLE 1 | Molecules located in caveolae and their effects in Cav 1 deficient mice

in vasculature.

Molecules

located in

caveolae

Deletion of caveolin genes

associated with

References

VASCULAR ENDOTHELIAL CELLS

eNOS Elevated NO levels (55, 56)

Enhanced vasodilation (55, 56)

Impaired vasodilation (57, 59, 60)

Decreased release of NO (58–60)

Impaired myogenic tone (6, 27, 60)

Unchanged blood pressure (61–63)

Reduced blood pressure (64)

Elevated blood pressure (65)

TRPV4 Impaired TRPV4-induced relaxation (67, 68)

VASCULAR SMOOTH MUSCLE CELLS

AngII Enhanced vascular remodeling (78)

Ca2+ channels Elusive effects (89)

T-type Cav3.2

channels

Attenuated myogenic tone (87, 94, 100)

TRPC Reduced agonist-stimulated Ca2+

secretion

(103)

Hypertension (104–108)

eNOS, endothelial nitric oxide synthase; NO, nitric oxide; TRPV4, transient receptor

potential vanilloid receptors 4; AngII, Angiotensin II; TRPC, transient receptor

potential canonical.
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although caveolae most likely also have an impact on
vascular function in different tissues like adipose tissue. In
the vasculature, except cerebral arteries, blood vessels are
directly surrounded by perivascular adipose tissue (PVAT),
which directly expresses and secretes Cav1 (18, 113, 114).
Numerous studies point out a putative role of caveolae
in adipocytes in regulating lipid trafficking, storage, and
modulating insulin signal transduction and metabolism (115–
118). Moreover, EHD2, which is located in the neck of caveolae,
seems to act as a negative regulator of caveolae-dependent
lipid uptake (12). These data suggest that adipocyte-secreted
Cav1 and EHD2 could contribute to vascular metabolic
diseases; however, direct evidence is missing and remains to
be determined.

An increasing number of caveolae-associated diseases
are explored in order to achieve a more precise assessment
of caveolae function in various pathophysiological

conditions in vasculature. With the convinced and
diversified roles of caveolae in the vasculature, studies on
future therapeutic targeting of caveolae in hypertension
are necessary.
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