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Background: The causes of most arthropathies, osteoarthritis, and connective tissue

disorders remain unknown, but exposure to toxic metals could play a part in their

pathogenesis. Human exposure to mercury is common, so to determine whether

mercury could be affecting joints, bones, and connective tissues we used a histochemical

method to determine the cellular uptake of mercury in mice. Whole neonatal mice were

examined since this allowed histological assessment of mercury in joint, bone, and

connective tissue cells.

Materials and Methods: Pregnant mice were exposed to a non-toxic dose of 0.5

mg/m3 of mercury vapor for 4 h a day on gestational days 14–18. Neonates were

sacrificed at postnatal day 1, fixed in formalin, and transverse blocks of the body

were processed for paraffin embedding. Seven micrometer sections were stained for

inorganic mercury using silver nitrate autometallography, either alone or combined with

CD44 immunostaining to detect progenitor cells. Control neonates were not exposed to

mercury during gestation.

Results: Uptake of mercury was marked in synovial cells, articular chondrocytes, and

periosteal and tracheal cartilage cells. Mercury was seen in fibroblasts in the dermis,

aorta, esophagus and striated muscle, some of which were CD44-positive progenitor

cells, and in the endothelial cells of small blood vessels. Mercury was also present in

renal tubules and liver periportal cells.

Conclusions: Mercury is taken up selectively by cells that are predominantly affected

in rheumatoid arthritis and osteoarthritis. In addition, fibroblasts in several organs

often involved in multisystem connective tissue disorders take up mercury. Mercury

provokes the autoimmune, inflammatory, genetic, and epigenetic changes that have

been described in a range of arthropathies and bone and connective tissue disorders.

These findings support the hypothesis that mercury exposure could trigger some of these

disorders, particularly in people with a genetic susceptibility to autoimmunity.

Keywords: mercury, rheumatoid arthritis, osteoarthritis, connective tissue disorder, synovium, cartilage,

fibroblast, endothelial cell
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INTRODUCTION

The initial pathogenic causes of most connective tissue disorders,
and of rheumatoid arthritis and osteoarthritis, remain unknown.
In many of these disorders an underlying genetic (1) or
epigenetic (2, 3) susceptibility to autoimmunity has been
postulated, and circulating autoantibodies to nuclear and other
targets are common (4). It has been suggested that exposure to
environmental toxicants could play a part in the pathogenesis
of joint and connective tissue disorders (5). One such toxicant
is mercury, where human exposure is widespread and common
(6). Mercury and other toxic metals have now been implicated
in the pathogenesis of rheumatoid arthritis, osteoarthritis,
systemic sclerosis, mixed connective tissue disorder,
systemic lupus erythematosus, fibromyalgia, and Sjogren’s
syndrome (7–12).

Mercury may be the toxic element of particular relevance
to joint and connective tissue diseases (2, 4) since it
provokes the autoimmune (13), inflammatory (14), and
epigenetic (15, 16) changes that have been described in
these disorders. Mercury has also been associated with
the presence of many of the autoantibodies found in
connective tissue diseases (4), especially those to nuclear
proteins (17–20). Only some strains of mice produce
autoantibodies when exposed to mercury (20, 21), and

gender predispositions to mercury toxicity have been
described (22). This suggests that genetic and gender-
based susceptibilities may be required to produce these
mercury-induced autoantibodies (14).

Information about mercury uptake in vertebrate joints,

bone and other connective tissues is scanty, due largely to
the difficulty of analyzing toxic elements in hard, mineralized
tissues such as bone, which requires decalcification before

microtomy. However, evidence for mercury uptake in bone
and joints comes from autoradiographic studies in pregnant
mice, where mercury is seen in the adult mouse in mid-sagittal
images at the bone-cartilage junction of the vertebrae and
sternum, and in the hip (23) (Figure 1). These autoradiographs
also show traces of mercury in the fetuses in a similar
distribution to the maternal organs. Autoradiography of
radioactive mercury is a good method to demonstrate mercury
in organs, but it cannot detect the presence of mercury in
individual cells.

Despite the suspicion that toxic metals such as mercury could
contribute to the pathogenesis of connective tissue disorders,
information is lacking as to whether cells in bone, joint, and
fibrous tissues take up these metals selectively. One way of getting
around the difficulty of measuring mercury in bones and joints
is to study the early neonatal mouse, where the bones have not
yet calcified. Using neonatal mice has the added advantage of
allowing visualization of the whole body in transverse sections,
so that connective tissues that are often not studied histologically
in adults are included in the analysis. We therefore examined the
cellular distribution of mercury in the tissues of neonatal mice
that had been exposed to mercury vapor during gestation, using
a histochemical technique, autometallography, that enables the
detection of inorganic mercury within individual cells.

MATERIALS AND METHODS

Mercury Exposure
Paraffin tissue blocks from a project that had studied the effect
of prenatal mercury on the neonatal brain and spinal cord (24)
were used to examine the distribution of mercury in the non-
CNS organs of these neonates. Four pregnant C57 mice were
exposed to 0.5 mg/m3 of mercury vapor in a mercury vapor
chamber (25) for 4 h a day from gestational days 14–18, a non-
toxic dose for rodents (26). One neonate from each litter was
sacrificed with carbon dioxide on postnatal day 1 and immersed
in 10% formalin for 48 h. Three mm thick transverse blocks of
the body were processed routinely for paraffin embedding and
microtomy. Negative controls were four neonatal mice that had
not been exposed to prenatal mercury vapor.

Autometallography
Seven micrometer sections of paraffin blocks were stained
with silver nitrate autometallography to demonstrate inorganic
mercury bound to sulfides and selenides, which is visible
microscopically as black silver-coated grains (27). Briefly,
sections were placed in physical developer containing 50% gum
arabic, citrate buffer, hydroquinone and silver nitrate, covered
with aluminum foil and placed in a water bath at 26◦C for
80min. Excess silver was removed by immersion in 5% sodium
thiosulphate for 10min and sections were counterstained with
mercury-free hematoxylin. Adjacent sections were stained with
hematoxylin only. For a mercury-positive control, a mouse spinal
cord section, where motor neurons were known to contain
mercury after an intraperitoneal injection of mercuric chloride
(28), was included in each staining run.

CD44 Immunostaining
Progenitor synovial and cartilage cells, and embryonic
fibroblasts, express the phenotypic marker CD44 (29, 30).
To see if mercury was present in these CD44-containing
cells, sections were first stained with autometallography then
treated with Epitope Retrieval Solution 1 at pH 6.0 for 20min
and immunostained with mouse anti-human CD44 antigen
(Novocastra, UK) at 1:300, using a Bond III instrument (Leica).
Bond Polymer Refine Red Detection (polymeric alkaline
phosphatase-linker antibody conjugate) was used so that the
black-staining autometallography deposits were not obscured by
dark brown chromogens such as diaminobenzidine.

Ethics
The methods to expose mice to mercury vapor, animal housing,
handling, sacrifice, and tissue preparation had been approved by
the University of Sydney Animal Ethics Committee (24). Because
this work was undertaken on archived paraffin tissue blocks the
ethics committee waived the requirement for renewal of the
ethics protocol.

RESULTS

Clinical
Mice from the same litters that had been prenatally exposed to
mercury, but not sacrificed immediately after birth, suckled, and
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FIGURE 1 | Distribution of mercury in the pregnant mouse. (A) Autoradiography of a pregnant mouse 4 days after injection with radioactive mercuric chloride. The

liver (asterisk), kidney and placenta contain large amount of dark-appearing mercury. Mercury is present in the hip joint (circled), labeled as “bone marrow (femur)” and

at the bone-cartilage junctions in the sternum (e.g., arrow), anterior to the heart. Smaller amounts of mercury are seen in the fetuses. (B) Autoradiography of a

pregnant mouse vertebral column 16 days after radioactive mercuric chloride injection. Mercury (dark lines) is seen at the junctions between cartilage and bone.

Reproduced with permission from Berlin et al. (23).

gained weight normally, and when followed for up to 40 days of
age showed no abnormal features. The pregnant mice suffered no
ill-effects from themercury vapor exposure, either during or after
pregnancy (24).

Developing Joint and Bone
In the large limb joints of neonatal mice, the developing
synovium projects a short distance into the joint space, and often
contains a large thin-walled blood vessel (Figure 2). Other nearby
identifiable developing tissues are the articular chondrocytes,
periosteum, bone marrow, and striated muscle. At this age
mineralized bone has not yet formed.

Autometallography
Mercury was seen on autometallography in the following tissues.
The changes seen were similar in all neonatal mice that had been
exposed to mercury prenatally.

Synovium
Mercury was present in many cells within the developing
synovium, especially those situated at or near to the

synovial surface (Figure 3A). None of the synovial cells
that contained mercury stained with CD44. Adjacent sections
stained with hematoxylin only showed no black grains in the
synovium (Figure 3B).

Articular Chondrocytes
In all joints, mercury was present in the few layers of
chondrocytes adjacent to the joint space (Figure 4A). Mercury
appeared to attach preferentially to the nuclear envelope and
plasma membrane of these chondrocytes. Chondrocytes distant
from the joint space did not contain mercury.

Periosteum
Elongated periosteal cells of all developing long bones and
vertebrae contained mercury, as did a thin membrane overlying
the periosteum that was continuous with the synovium
(Figure 4B). Deeper endochondral cells did not contain mercury.

Skin
Mercury was present in elongated and stellate fibroblasts in
the deep dermis (Figure 5) and in the subdermal connective
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FIGURE 2 | Neonatal mouse joint and bone. The developing synovium (arrow)

projects into the synovial space between the scapula (SC) and humerus (HU).

Mercury staining (i.e., black autometallography grains) is seen within the

synovium (see higher magnification in Figure 3A). Chondrocytes adjacent to

the joint space are in the region of the future articular cartilage (AC) (see higher

magnification in Figure 4A). The periosteum (P) stains darkly due to the

presence of mercury (see higher magnification in Figure 4B). Early bone

marrow (BM) formation is seen. MU: striated muscle.

Autometallography/hematoxylin.

tissue. Some of the fibroblasts containing mercury were CD44-
positive. The dermal appendages and the epidermis did not
contain mercury.

Blood Vessels
Mercury was present in elongated cells in the outer two-thirds
(muscular and adventitial layers) of the posterior wall of the
descending thoracic aorta (Figure 6), where it was close to the
mercury-containing periosteum of the adjacent vertebrae. No
mercury was seen in the abdominal aorta which was not near to
the vertebrae. Mercury grains were also seen in the endothelial
cells of smaller blood vessels, such as the intercostal arteries.

Trachea
A large amount of mercury was present within the trachea in
the region of the future tracheal cartilage, both in chondrocytes
and in elongated fibroblasts (Figure 7A). Smaller amounts of
mercury were seen in fibroblasts of the lamina propria beneath
the respiratory epithelium. The respiratory epithelium itself did
not contain mercury.

Esophagus
Mercury was present in fibroblasts in the lamina propria beneath
the esophageal epithelium, and in scattered cells of the adventitia
(Figure 7B). The esophageal epithelium did not containmercury.

FIGURE 3 | Mercury in synovial cells. (A) Mercury is present in a number of

large and small synovial (SY) cells, predominantly those at the edge of the

synovium adjacent to the joint space (JS). At higher magnification (inset)

mercury is seen to occupy the cytoplasm of synovial cells. Nearby articular

chondrocytes (AC) also contain mercury. BV: blood vessel.

Autometallography/hematoxylin. (B) In an adjacent section not stained with

autometallography, no black grains are seen in synovial cells or articular

chondrocytes. Hematoxylin.

Kidney
Mercury was present in the cells of renal cortical tubules
(Figure 8A). No mercury was seen in the glomeruli or in the
renal medulla.

Liver
Mercury was present in liver cells surrounding the portal veins
(Figure 8B), but not in liver cells distant from the portal tracts.

Striated Muscle
Scattered elongated or stellate mercury-containing fibroblasts,
some CD44-positive, were present in striated muscle between
myofibers. Myofibers themselves did not contain mercury.

Other Organs
No mercury was seen in the heart, lungs, pancreas, spleen, or
intestines, but mercury was present in capillary endothelial cells
of the brain and spinal cord.
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FIGURE 4 | Mercury in articular chondrocytes and the periosteum. (A) Up to

five rows of articular chondrocytes (AC) adjacent to the joint space (JS) contain

mercury, but no mercury is seen in chondrocytes distant from the joint space.

Mercury appears attached to the nuclear envelope of the articular

chondrocytes (insets). A mitosis (dashed circle) is present. (B) Elongated

periosteal cells (PE) and a thin membrane adjacent to the periosteum (arrow)

stain positively for mercury (inset). MU: striated muscle.

Autometallography/hematoxylin.

Control Neonates
Neonatal mice that had not been exposed to prenatal mercury
had no autometallography staining in any tissues.

DISCUSSION

Key findings in this study are that mercury localizes to the
synovial cells and articular chondrocytes that are affected in two
major joint disorders, rheumatoid arthritis and osteoarthritis.
In addition, mercury is retained postnatally in connective tissue
fibroblasts in several organs, many of which are involved
in multi-organ connective tissue disorders. Mercury appears
to attach to the nuclear membrane of cells, a feature noted
previously in electronmicroscopic localization of mercury within
cells (31), which could be pertinent to the common finding of
anti-nuclear antibodies in connective tissue disorders (17–20).

FIGURE 5 | Mercury in the skin. Mercury in seen in scattered stellate and

elongated fibroblasts of the deep dermis (arrows), some of which are

CD44-positive (inset). Dermal appendages (AP) and the epidermis (EP) do not

contain mercury. Autometallography/CD44/hematoxylin.

FIGURE 6 | Mercury in blood vessels. In the aorta (AO) mercury is seen within

elongated cells in the muscle layer (MU) and adventitia (AD) of the outer

two-thirds of the posterior aortic wall, with smaller amounts in endothelial cells

(EN) (inset). Mercury grains are also present in the endothelial cells of an

intercostal artery (IA) (arrow). Mercury is seen in the periosteum (PE) of an

adjacent vertebra. Autometallography/hematoxylin.

While these findings do not provide direct evidence that mercury
is involved in the pathogenesis of connective tissue disorders,
the finding of mercury within the cells most affected by these
disorders suggests that further experiments to test the hypothesis
that toxic metals play a part in these disorders are warranted.

Rodents in late gestation develop a chorioallantoic placenta
similar to that of humans (32), and pregnant women are
commonly exposed to mercury due to fish consumption or
mercury-containing amalgam dental restorations (33). There is
therefore reason to believe our findings in the mouse could be
applicable to mercury uptake in humans. Mercury affects the
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FIGURE 7 | Mercury in the trachea and esophagus. (A) In the trachea, heavy

mercury staining is seen in rounded chondrocytes and elongated fibroblasts in

the tracheal cartilage (TC) (inset). A smaller amount of mercury is seen in

elongated fibroblasts of the lamina propria (LP) underlying the tracheal

epithelium (EP), which does not contain mercury. (B) In the esophagus,

mercury is seen in many fibroblasts of the lamina propria (LP) (inset), and to a

lesser degree in fibroblasts in the adventitia (AD) (arrow). No mercury is seen in

the esophageal epithelium (E), but a small amount is present in the muscular

layer (MU). Mercury is also present in the periosteum (PE) of an adjacent

vertebra. Autometallography/hematoxylin.

epigenetic profile of cells (34) and damages DNA (35), so finding
mercury in this range of connective tissue cells has implications
for susceptibility to a number of later-life disorders that effect
the synovium, cartilage, and bone. Although we studied the
fetal uptake of mercury, autoradiographic studies indicate that
mercury is also taken up and retained by adult vertebrate bone
and joint (23). This implies that mercury uptake is not confined
to developing cells but also occurs in adults. This fits with our
finding that most of the cells in our study taking up mercury did
not contain CD44 and so are likely to be mature cells.

The reason this assortment of cells in our mice has a
propensity to take up mercury is unclear. However, a pointer
may come from our kidney findings, where some renal tubules
stained strongly for mercury. Mercury transporters have been
identified in a number of tissues, but the best defined are those

FIGURE 8 | Mercury in the kidney and liver. (A) In the kidney, some cortical

tubules stain strongly for mercury (closed arrows) while others (open arrow)

contain no mercury. A glomerulus (asterisk) contains no mercury. (B) In the

liver, a portal vein (PV) is surrounded by numerous periportal (PP) cells

containing mercury (inset). No cells distant from the portal vein contain

mercury. Autometallography/hematoxylin.

in the proximal renal tubule (36). The finding of mercury in non-
renal cells in our mice, in the presence of renal tubule mercury
uptake at the same exposure time and mercury dose, suggests
that mercury transporters may also be present in the synovial,
cartilage, periosteal, fibroblastic, and endothelial cells in which
mercury was seen.

A major pathological feature of rheumatoid arthritis is
a persistent synovitis with altered behavior in fibroblast-like
synovial cells (37), and the synovium was a conspicuous target
of mercury uptake in our mice. Although about 50% of the
risk of developing rheumatoid arthritis is attributed to genetic
variants, environmental factors remain largely unknown, apart
from an increased risk from smoking (37). The reason for the link
between smoking and rheumatoid arthritis remains unknown,
though factors such as oxidative stress, inflammation, epigenetic
changes and antibody formation have been proposed (38). At
first glance it seem unlikely that mercury is responsible for
this link since only a small amount of mercury is present in
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cigarette smoke (39). However, the large amount of cadmium in
cigarette smoke (40) may be relevant, since cadmium exposure
is a proposed risk factor for rheumatoid arthritis (41), and
synergistic actions between toxic metals such as cadmium and
mercury are recognized (42). Cadmium and mercury from
cigarette smoke could therefore accentuate each other’s toxicity
within the synovium.

The autoantibodies in rheumatoid arthritis against IgG
(rheumatoid factor) and citrullinated peptides suggest
rheumatoid arthritis is an autoimmune disorder (4, 43),
and the propensity for mercury to trigger autoimmunity is
now established (13, 14, 17, 44). Of relevance regarding human
exposure to mercury, studies in Brazil of artisanal gold miners
(who use mercury to extract gold) showed these miners have a
high prevalence and higher titers of antinuclear and antinucleolar
antibodies, higher concentrations of serum pro-inflammatory
cytokines (45, 46), and have an array of other autoantibodies as
well (47). A subset of people consuming mercury-affected fish in
Brazil had raised antinuclear antibodies and changes in cytokine
profile, suggesting a specific phenotype of mercury susceptibility
(48). These findings indicate that mercury exposure can lead to
autoimmune dysfunction and systemic inflammation in humans.

Articular cartilage and synovium appear to play key roles in
the pathogenesis of osteoarthritis (49–51), and both these tissues
took up mercury in our mice. The immune system is activated in
osteoarthritis (50), and epigenetic variation has been implicated
in this disease (52), both mechanisms in which mercury plays a
part (15). One puzzling feature of osteoarthritis is why obesity
should be a risk factor for the disease in non-weight bearing
joints (50). Raised blood levels of mercury have been found in
people with obesity (53, 54) and a link has been made between
adipokines arising from fatty tissue (55, 56) and osteoarthritis
(57). Mercury raises the levels of damaging adipokines from
fatty tissue (58), so mercury may be one factor underlying the
co-occurrence of obesity and osteoarthritis.

A severe early-onset form of osteoarthritis, Kashin-Beck
disease, is found in parts of China where soil selenium levels are
low (59). Dietary selenium is a protective factor against mercury
toxicity (60) so a lack of selenium in regions affected by Kashin-
Beck disease may allowmercury to damage articular cartilage and
synovium, with consequent early-onset osteoarthritis.

Cartilage destruction is a prominent feature in both
osteoarthritis and active rheumatoid arthritis (61), and it has been
proposed that cartilage damage in these disorders is mediated by
matrix metalloproteinases (62–64). Of relevance to our findings,
mercury exposure increases circulating levels of some matrix
metalloproteinases (65), and certain polymorphisms in matrix
metalloproteinase-9 lead to increased levels of the proteinase
in people exposed to low doses of environmental mercury
(66). It would therefore be of interest to see whether people
with rheumatoid arthritis or osteoarthritis have higher than
expected circulating levels of metalloproteinase-9 levels if they
have the identified polymorphisms combined with low levels of
circulating mercury.

A striking finding in our neonatal mice was the amount
of mercury that was taken up by developing periosteal cells.
The periosteum contains osteogenic cells that help form and

repair cortical bone (67, 68) and attempts have been made
to increase periosteal osteogenic activity to treat osteoporosis
(69). The causes of osteoporosis remain largely unknown (70),
though environmental factors are considered to play a part (71).
One such environmental factor could be mercury taken up by
periosteal cells, since mercury affects the epigenome (16), which
appears to be involved in osteoporosis (72).

Chondrocytes and fibroblasts in the trachea of our neonatal
mice took up mercury avidly. If the same mercury uptake
occurs in humans, this could affect the postnatal formation
of cartilage within the trachea, so prenatal mercury exposure
could an environmental factor underlying the collapsibility
of the trachea found in infants with tracheomalacia (73).
Furthermore, given the ability ofmercury to trigger inflammation
(14), episodic exposure to mercury with widespread uptake of
mercury in cartilage could trigger the condition of relapsing
polychondritis (74).

A puzzling finding was that mercury was found in the aorta
only in its posterior wall. This may relate to the proximity of
the posterior wall of the aorta to the anterior aspect of the
vertebral bodies, whose periosteum contained large amounts
of mercury in our mice. Atherosclerosis has been noted to be
more prevalent in people with rheumatoid arthritis than in the
general population (75), though the cause behind this association
is not known. The posterior wall of the aorta is the region
first affected by atherosclerosis (76), which may be of relevance
since mercury is associated with the risk of atherosclerosis (77)
and the metal is known to affect the function of endothelial
cells (78). Our findings therefore raise the possibility that the
increased atherosclerosis seen in rheumatoid arthritis could
be due to underlying mercury toxicity in both synovial and
endothelial cells.

The wide range of cells containing mercury in our mice
fits with the finding that multiple tissues are often involved
in the connective tissue disorders. For example, in rheumatoid
arthritis, although the primary damage appears to be the joint
synovium, several other organs and tissues including skin, blood
vessels, cartilage, esophagus, kidney, and liver are often damaged
(79, 80), and all of these tissues in our mice contained mercury.
However, not all the tissues in our mice that are commonly
affected by rheumatoid arthritis, such as the lung parenchyma,
the pericardium and the pleura (81) contained mercury, so
other factors may be operating in these organs. Apart from
rheumatoid arthritis, the widespread uptake of mercury in
connective tissues could be responsible for the multiple organ
involvement of people who suffer from systemic sclerosis (10, 12,
18), systemic lupus erythematosus (8), mixed connective tissue
disease, polymyalgia rheumatica and fibromyalgia (11).

This study has a number of limitations. (1) This is mouse
model, but the cellular distribution of mercury in human bone,
joint, and connective tissues remains unknown. In addition, only
limited information is available on the cellular distribution of
mercury in non-connective tissues of humans known to have
been exposed to mercury. In one man who injected himself with
metallic mercury, mercury deposits were found in renal tubules
and periportal hepatocytes (82), similar to our mouse mercury
uptake. Therefore, at least some similarity of mercury tissue
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distribution in mice and humans is likely. However, differences
in mercury distribution have also been noted between these
two species, for example in the uptake of mercury by certain
cells in the brain (83). At present, no techniques are available
to explore the cellular distribution of mercury in the tissues
of living humans, but future imaging techniques may be able
to achieve this. (2) In this experiment only the vapor form
of mercury was used, which is relevant to humans in certain
occupations and those with amalgam fillings (6). However,
humans are often exposed to methylmercury from eating larger
mercury-containing fish, so further mouse experiments using
organic mercury exposure are needed to see if this form of
mercury also targets connective tissues. (3) Disorders such as
rheumatoid arthritis and osteoarthritis are likely to result from
gene-environment interactions (50, 84), but we studied only
one environmental toxicant, mercury. To obtain more evidence
that toxic metals could trigger connective tissue diseases, further
studies using this toxicant model could be combined with strains
ofmice that are genetically susceptible to develop an autoimmune
reaction to mercury (21), with mice exposed to cigarette smoke
(38), or with mice on a low selenium diet which could potentiate
mercury toxicity (85). In addition, other metal toxicants such as
lead (86) and cadmium (41) could be studied for their effects
on connective tissues. In the case of osteoarthritis, this toxicant
model could be used to see if osteoarthritis develops earlier than
expected in genetic strains of mice who develop spontaneous
osteoarthritis or obesity, or in mice who have a destabilized
medial meniscus to predispose them to osteoarthritis (51).

In conclusion, mercury is taken up selectively by mouse
synovium and articular chondrocytes, tissues that are affected
in rheumatoid arthritis and osteoarthritis, as well as by
fibroblasts, periosteal cells and endothelial cells. Mercury
provokes autoimmune, inflammatory, and genetic and epigenetic
changes that have been described in joint and connective
tissue diseases. Our findings lend weight to the hypothesis
that mercury could trigger these disorders in people with
genetic or epigenetic susceptibilities that promote autoimmunity,
inflammation, mercury transport into cells, or mercury-induced

cellular toxicity. Further experiments combining a variety of
toxicant exposures, with known genetic and environmental
susceptibilities to a range of connective tissue disorders, will
enable more light to be cast on the role of toxic metals in
these diseases.
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