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The emergence of computational pathology comes with a demand to extract more and

more information from each tissue sample. Such information extraction often requires

the segmentation of numerous histological objects (e.g., cell nuclei, glands, etc.) in

histological slide images, a task for which deep learning algorithms have demonstrated

their effectiveness. However, these algorithms require many training examples to be

efficient and robust. For this purpose, pathologists must manually segment hundreds

or even thousands of objects in histological images, i.e., a long, tedious and potentially

biased task. The present paper aims to review strategies that could help provide

the very large number of annotated images needed to automate the segmentation

of histological images using deep learning. This review identifies and describes four

different approaches: the use of immunohistochemical markers as labels, realistic data

augmentation, Generative Adversarial Networks (GAN), and transfer learning. In addition,

we describe alternative learning strategies that can use imperfect annotations. Adding

real data with high-quality annotations to the training set is a safe way to improve the

performance of a well configured deep neural network. However, the present review

provides new perspectives through the use of artificially generated data and/or imperfect

annotations, in addition to transfer learning opportunities.

Keywords: histopathology, deep learning, image segmentation, image annotation, data augmentation, generative

adversarial networks, transfer learning, weak supervision

1. INTRODUCTION

More and more information is needed for diagnosis and therapeutic decision-making, especially in
the context of “personalized medicine.” As a result, pathologists are expressing a growing demand
for the automation of their most recurrent tasks and for a more complex set of analyses required
for their research activities. It has therefore become crucial to integrate unbiased quantitative
assessments into pathologist’s practice and research. For this purpose, whole slide imaging
enables automated image analysis with multiple advantages, such as the objective evaluation of
morphological and molecular tissue-based biomarkers. Much progress has been made on slide
scanner devices. Hence, less than 30 s are necessary to scan a 10 × 10 mm2 at 40x with the newest

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2019.00222
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2019.00222&domain=pdf&date_stamp=2019-10-15
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yveycke@ulb.ac.be
mailto:cdecaes@ulb.ac.be
https://doi.org/10.3389/fmed.2019.00222
https://www.frontiersin.org/articles/10.3389/fmed.2019.00222/full
http://loop.frontiersin.org/people/729757/overview
http://loop.frontiersin.org/people/763126/overview
http://loop.frontiersin.org/people/731228/overview


Van Eycke et al. Reducing Supervision for Image Segmentation

devices1. The resolution and quality that can be obtained through
this process are now comparable to the resolution of a standard
light microscope. An additional interesting feature is the ability
to produce a sharp image from scans performed at different z-
levels, a process also known as z-stacking. This feature prevents
blurring on thick samples or enables to identify very thin
signals such as the small dots produced by in situ hybridization.
Whole slide imaging is now involved in a growing number
of developments and applications in various fields covering
basic science, pathology, and pharmaceutical research. With
the development of “personalized medicine,” the data relating
to each patient or population are exploding. Fortunately, the
computer storage and computing power is increasing. In this
context, the concept of “digital pathology” is shifting to that
of “computational pathology.” This latter approach “integrates
multiple sources of raw data (e.g., clinical electronic medical
records, laboratory data, including ‘omics,’ and imaging)” (1).
Figure 1 summarizes the different steps of this approach. In
addition to biomarker evaluation, computational pathology
aims to characterize a disease at the molecular, individual
and population levels. This approach also transforms those
data into knowledge that can be directly used by pathologists
and clinicians.

An important contribution to computational pathology is
computational histology or “histomics,” which aims to extract
as much information as possible from digital histological
slides (3). Histomics makes it possible to characterize the
histological manifestation of a disease by taking into account
the morphological, spatial and microenvironmental context.
Image analysis plays a key role in histomics. In this context,
deep learning provides new ways to extract information
more efficiently from raw data, in general, and from images,
in particular. A significant contribution to histomics is
brought by the development of challenges during biomedical
imaging conferences. During those challenges, image experts
are confronted with complex image analysis problems. Since
2013, the number of such challenges rocketed. In recent
ones, deep learning totally outperformed the classical image
analysis approach. For example, the Camelyon172. Deep neural
networks have also been applied to tumor grading (4), cancer
diagnosis (5), and prognosis (6). Interestingly, recent studies
also suggest that genetic traits can be inferred from histological
features (3, 7). However, deep learning is known to be a
data-hungry method, requiring much more training data than
standard machine learning approaches (8). Collecting such
data for histomics applications can be problematic, particularly
for image segmentation, which requires manual annotations
from pathologists, a rare and expensive resource. Histological
structure segmentation is involved in different key applications
in histopathology, such as the extraction of morphological
measurements for tumor grading or the possibility to evaluate
immunohistochemical biomarkers in specific compartments

1https://www.hamamatsu.com/jp/en/C13220-01.html
2https://camelyon17.grand-challenge.org challenge showed that deep learning was
able to effectively analyze information from several tissue slides from the same
patient to predict pN stages of breast cancers.

(e.g., tumor vs. stroma). For this purpose, pathologists have to
annotate thousands of structures present in histological slide
series, a long, tedious, and potentially biased task that would
greatly benefit from automation.

The present paper aims to review strategies that could help
provide the very large number of annotated images needed
to automate the segmentation of histological images using
deep learning. The following sections describe four different
approaches that we identified: the use of immunohistochemical
markers to label cells of interest, realistic data augmentation,
Generative Adversarial Networks (GAN)—another deep learning
method that is able to generate artificial examples—and transfer
learning. In addition, we describe alternative learning strategies
that are able to cope with imperfect annotations, another way
to reduce the experts’ workload in image annotation. We then
discuss tasks that remain to be done to make the most of these
strategies to minimize the need for expert supervision.

2. USE OF IMMUNOHISTOCHEMICAL
MARKERS TO LABEL CELLS OF INTEREST
FOR H&E IMAGE SEGMENTATION

Immunohistochemistry (IHC) and special colorations, such as
Goldner, are incredible technologies which allow highlighting
certain cell types or structures of interest. For instance, pan-
cytokeratin (AE1/AE3) is specifically expressed by the epithelial
cells in most epithelia and their tumors, with some exceptions
(e.g., in case of epithelial-to-mesenchymal transition) (9). This
kind of marker can be thus used to create a precise and
objective ground truth. A recent and interesting study on prostate
tissue analysis illustrates this approach (10). Tissue sections
were stained with H&E and digitized. They were subsequently
destained and restained with P63 and CK8/18 IHC markers to
highlight epithelial structures and also digitized. After registering
the IHC and H&E image pairs, segmenting the stained structures
on an IHC image enabled to produce a binary mask, i.e., an
image whose pixels only have two values: 1 for pixels at the
locations of objects of interest and 0 for other pixels. This mask
can then be applied as an annotation on the corresponding and
registered H&E image. The resulting annotated H&E images can
then be used to train a deep network to segment the structures
of interest on H&E prostate tissue sections. In this study the
authors also tried to improve the performance by correcting
mask alterations due to some staining artifacts, such as those
resulting from structures and debris inside the glands. To avoid
these alterations the authors propose to train a deep network
to produce correct masks from IHC images. This approach
required to provide staining masks corrected manually to the
system. These corrections took much less time than providing
the complete annotation manually but the obtained result
improvement is relatively low. Previously, the same team used
PHH3 restaining as a standard reference for automatizingmitosis
identification in H&E images from breast cancer sections (11).
Of course, this kind of approach is limited to targets that can be
specifically identified by antibodies or special staining. It should
be noted that such an approach is facilitated when there is close
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FIGURE 1 | The different steps implemented in computational pathology. These steps aim to extract the most accurate information possible from all available data to

improve complex diagnosis and therapeutic decisions (2).

collaboration between the people in charge of tissue processing
and those in charge of image analysis.

3. REALISTIC DATA AUGMENTATION

Data augmentation is a technique used in machine learning and
deep learning to create artificial data for training. These data can
be generated from rules set by the programmer or from actual
data that have been altered. Creating artificial data for learning
is useful to avoid overfitting and to increase the model’s ability
to generalize. This approach also aims to expose the model to as
many variations as possible that may occur in a specific sample
space and thus to enhance its robustness. Data augmentation is
therefore also a way to reduce the potential influence of irrelevant
sources of variation present in training data.

In the context of histological image processing, the sample
space consists of all images of all tissue samples that are likely
to be analyzed with all possible variations regarding staining,
acquisition parameters, and possible artifacts. Data augmentation
therefore aims to reproduce those variations. Current practices
often focus on geometric variations applied to the training
images, such as affine transformation (e.g., flip, rotation, and
translation) and blurring, in order to make the model invariant
for these transforms (12). Recently, Xu et al. showed that
the additional use of elastic transformations—modifying tissue
morphology—is beneficial for gland instance segmentation (13).
Color augmentation is also investigated to take into account
stain variations. It usually consists in random transformations
applied on standard color representations such as those provided
by the RGB or HSV color space [see e.g., (12, 14, 15)], or after
extraction of principal (RGB) components (16, 17). It should
be noted that random variations in the RGB space should be
small to prevent from producing aberrant colors out of the range
of the standardly used histological staining techniques (such
as H&E and IHC). Concerning principal components, studies
on color normalization show that the principal components
do not provide an appropriate representation of the color
space for H&E (18) and IHC staining (19). Furthermore, the

color alterations proposed in previous studies are generally
based on linear transformations applied to the whole image
without specifically targeting the stained tissue. In a recent
work, we propose a more sophisticated approach for realistic
“color augmentation” (20). Our approach is based on color
deconvolution, a standard method to separate the different
staining components (e.g., H&E, or hematoxylin and DAB in
IHC). It essentially consists in identifying in the RGB color
space the color vector specific to each staining component.
Each of them can then be independently altered in terms of
orientation to modify the staining color. Transformations at
the intensity level complete the possible staining component
alterations. Figure 2 illustrates images generated by a data
augmentation strategy targeting geometry, color, intensity, and
other acquisition-related features (20). The alterations are
applied to the training images (and their segmentation masks
in the cases of spatial transformations) to increase their number
drastically. Different studies clearly evidence the positive impact
the different data augmentation components have on deep
learning performances (12, 13, 20). Furthermore, realistic data
augmentation strategies are able to limit the impact of changes
in tissue processing, staining, and image acquisition features,
including changes in resolution (20).Table 1 provides a summary
of the different methods presented in this section.

4. GENERATIVE ADVERSARIAL
NETWORKS (GAN) TO AUGMENT
TRAINING DATA

Generative adversarial networks (GAN) are algorithms that
combine two artificial neural networks, a generator (G) and
a discriminator (D) network, to generate realistic artificial
data (21). The purpose of the G network is to create more-real-
than-life data capable of “deceiving” a human (and an algorithm).
Network D is used to judge the reality of the data (instead of a
human). The two networks are trained in parallel in a competitive
scheme until they converge and reach a Nash equilibrium (22): G
is “rewarded” if it manages to fool D, whereas D is rewarded if
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FIGURE 2 | Images generated by a data augmentation strategy. (A) The original image and (B–E) various images which are generated from (A) using a data

augmentation strategy described in Van Eycke et al. (20). This strategy combines image alterations targeting color, intensity, geometry, and image quality features,

such as sharpness.

TABLE 1 | Summary of data augmentation methods.

References Geometry

transforms

Color transforms Other

Xu et al. (13) Affine + elastic

transforms

– –

Lafarge et al.

(14)

Affine transform Linear transforms on each

RGB color channel

–

Sirinukunwattana

et al. (15)

Affine transform Linear transforms in the

HSV color space

–

Mishra et al.

(16)

Xu et al. (17)

Affine transform Linear transforms on the

principal (RGB) components

–

Van Eycke

et al. (20)

Affine + elastic

transforms

Linear or non-linear (if

required) transforms

on color channels in the

deconvoluted space + linear

transforms of the exposure

and color temperature

Blurring

he can distinguish false images (generated by G) from true ones
(see Figure 3). For generating artificial images, the input of G
is usually a series of random numbers or images (as explained
below), while that of D mixes real images and those provided by
G. Once the GAN is trained, new sequences of random inputs are
used to generate new realistic images from G.

This type of architecture can be used in several ways
and notably to generate examples, a process sometimes called
“GAN augmentation.” This process can be considered as an
alternative or a complement to standard data augmentation
described above. Other applications include the increase in image
resolution, image normalization or style transfer, which consist
in composing an image with a style (i.e., characteristics such that
pattern, color palette, etc.) learned from another set of images. In
the present review, we focus on GAN-based data augmentation
useful for histological image segmentation. An advantage of this
approach on standard data augmentation is that a GAN is able
to learn the different sources of variation present in an image set.
This learning, or modeling, is then used to generate artificial but
realistic images in order to increase a training set (23).

In histopathological imaging, GAN-based approaches can
be very useful to take into account complex variations, such
as those induced by tumor heterogeneity. These variations are

difficult to produce by standard data augmentation techniques.
Given a sufficient number of training examples illustrating this
heterogeneity, a trained GAN is able to produce new examples
that are “intermediate” between training examples. However, for
image segmentation supervision must also be generated.

The most common way consists in generating binary
segmentation masks that mimic true ones observed in the
available supervised data and feeding them to the generator as
inputs (Figure 4). These binarymasks are usually generated using
specific algorithms adapted to the targeted tissue/cell structure.
For example, in the case of cell nuclei, white discs can be drawn
automatically and randomly in a black image (24). The outputs
of the generator are expected to be realistic images showing
the structures of interest at locations indicated by the input
masks. The synthesized images are then fed as inputs to the
discriminator together with real images. The masks can also be
fed as inputs to the discriminator together with the (generated or
real) images to enforce a better consistency between the masks
and images (24).

The study by Bowles et al. (23) provides a very good
illustration of such methodology applied to medical image
segmentation. The authors noted that GAN augmentation
provides an efficient tool for interpolating within the training
data distribution. However, it cannot extrapolate beyond its
extremes without the aid of standard geometric augmentation.
These results suggest a synergic effect between standard data
augmentation and GAN augmentation. This effect was obtained
on very small image sets and remains to be confirmed on
histological images. Concerning histological image segmentation
specifically, most studies on GAN has focused on cell nucleus
segmentation (24–28). Each of them provides slight variations
such as the ability to generate more specific images (27),
to improve even more the consistency between the mask
and the synthesized image (24), or to generate images
with positive and/or negative nuclei for IHC staining (28).
Concerning the architectures used, the discriminator usually
consists of modified versions of classification networks such
as the Resnet (29) or the Markovian discriminator (30).
The generator usually consists of a modified version of
a U-net (31). GAN training usually follows a standard
procedure consisting of alternating discriminator and generator
training at each step (21). Table 2 provides a summary of
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FIGURE 3 | Generative adversarial networks (GAN) principles. Cylinders represent data while black rectangles represent neural networks. The main path appears in

blue while the feedback loops appear in orange. The generator receives input data that allows it to synthesize an image. The discriminator receives either a real image

or a synthesized image as an input. It must then determine whether it is a real or generated example. The generator is rewarded if it succeeds in deceiving the

discriminator while the discriminator is rewarded if it succeeds in distinguishing the true images from the generated images.

FIGURE 4 | Use of a GAN to generate examples for histological image segmentation (same graphic conventions as in Figure 3). Computer-generated binary images

are provided as inputs to the generator to generate images (of the same size) that mimic the targeted tissue structure. The discriminator receives as input a binary

image and a tissue image, artificial or real, of which it must determine the origin. The binary images associated with the real images are the segmentation masks of the

structures of interest. Therefore, in the generated images the structures of interest must appear at the locations indicated by the white masks in the generator inputs in

order to be able to deceive the discriminator. In this way, after system optimization, the binary images provided to the generators correspond to the segmentation

masks of the generated images.

the characteristics of the different methods mentioned in
this section.

5. TRANSFER LEARNING

Transfer learning relates to the use of a model trained on a task
as a starting point, i.e., as a pre-trained model, to tackle another
different task that does not necessarily relate to the first one

[for a general survey, cf. (32)]. This pre-trained model can then
be refined using a limited dataset available for the new task of
interest. Transfer learning has become very popular with deep
learning because of the large amounts of resources required to
train models from scratch (33).

In image processing a common application of transfer
learning consists first in training a convolutional neural network
(CNN) using large public databases of natural images. Then,
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TABLE 2 | One-sentence summary of GAN augmentation methods [focusing on

cell nucleus segmentation, except the first one (23)].

References Method

Bowles et al. (23) Progressive Growing GAN (with added noise on some

layers) using multichannel image patches containing a

tissue image and its segmentation mask

Mahmood et al. (24) Cycle GAN to generate examples with consistent

segmentation from unpaired images and masks

Zhang et al. (25) Conditional GAN with tweaks to generate image patches

and their segmentation masks from an original tissue

image (not really data augmentation)

Hou et al. (26) Generation of nuclei-free background and foreground

textures separately, using standard image processing

techniques, which are then combined into an image that

is finally refined using a GAN

Hu et al. (27) InfoGAN to generate different cell subtypes from

unclassified segmented cells

Senaras et al. (28) Conditional GAN to generate 3 classes of examples for

IHC staining (positive cells, negative cells and

background)

TABLE 3 | Summary of transfer learning methods.

References Pre-training Fine-tuning

Bayramoglu and

Heikkilä (34)

On natural images The last layers with task-related

training examples

Du et al. (35) On natural images End-to-end with task-related

training examples

Van Eycke et al. (20) On a task close to

the final task

With task-related training

examples

the last layers of the network are refined using other images
specific to the task of interest, e.g., cell nucleus classification (34).
This strategy is based on the fact that in a deep neural
network, the first layers act as generic feature extractor, whereas
the last layers tend to be more task-specific (33). The fine-
tuning step using new images requires prior adaptation of
the structure of the last CNN layers in order to produce the
desired outputs for the task of interest. A variant consists
of end-to-end fine-tuning of the whole structure, and not
only the last layers, of the pre-trained network (35). The
underlying assumption of transfer learning, which is now
confirmed by many studies, is that the features learned by
CNNs trained on natural images could also be useful for
medical ones. Moreover, such pre-trained networks on natural
images are publicly available and thus allows to reduce
significantly both the time and the number of examples
specific to the final task that are required to fine-tune the
deep network. Studies show that compared to models trained
from scratch, transfer learning improves the robustness and
performance of CNNs for medical image processing tasks,
including segmentation (35–37). Transfer learning can also be
used to fine-tune a model to a specific task close to the task
for which it was originally trained. For example, a model that
has been trained to segment colorectal glandular epithelium
may be re-trained with a minimum number of examples

to be able to segment prostate epithelium. Similarly, it is
possible to use transfer learning to adapt a network to different
acquisition parameters, different structures of interest, different
stainings, . . . with a minimum number of examples (20). Table 3
provides a summary of the different methods presented in
this section.

6. OTHER LEARNING STRATEGIES ABLE
TO USE IMPERFECT ANNOTATIONS

Being less demanding in the quality of annotations is another
way to facilitate the collection of large annotated datasets.
Being able to use imperfect or imprecise supervision while
producing good results is an important challenge for deep
learning. For example, in histopathology a pathologist might
label whether or not a given histological image includes cancer
cells rather than precisely delineating the cancer region. After
training on a collection of such inaccurately annotated images,
a weakly-supervised learning algorithm could automatically
detect and even segment cancerous tissue areas in new
images (38).

Imperfect annotations can be characterized using well-known
paradigms from classical machine learning. In a recent study, we
classify these imperfections in three broad categories (39). First,
semi-supervised learning describes cases where a large part of
the dataset lacks labels, i.e., the number of supervised samples is
lower than all available samples. Second, weak learning generally
describes a lack of precision in the segmentation label. Instead
of the expected pixel-precise segmentation, the labels may apply
to approximate shapes, bounding boxes, or an entire image
(as mentioned in the example above). Third, the last category
covers cases where the accuracy of the annotated pixel class is
doubtful, which are denoted as noisy datasets. There is some
overlap between those categories. For instance, semi-supervised
datasets can also be characterized as noisy, because missing
labels can also be considered as objects mistakenly labeled as
belonging to the background class. Figure 5 shows illustrations of
such imperfect annotations. Using the classical machine learning
paradigms allows us to get inspiration from strategies which have
already been used to cope with these imperfections, outside of
Deep Learning.

Semi-supervised methods typically use a two-step process.
First, they estimate the shape of the data distribution from the
entire dataset, including unlabeled samples. Then, the labeled
data is used to separate the classes within that distribution (40).
Weak Learning methods usually follow the framework of
Multiple Instance Learning (MIL), where unlabeled instances
(i.e., pixels in image segmentation) are grouped into labeled bags
(i.e., images) and the task is to predict instance-level label (41, 42).
Strategies formanaging noisy dataset will often rely on estimating
the noise transition matrix, which describes the probability for a
given label to be mistaken to another (43). These strategies can
all be adapted to Deep Learning methods (44, 45). In particular,
the MIL strategy was successfully applied for histological
image segmentation by operating typical imperfections in image
annotations (38). This work was very recently generalized and
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FIGURE 5 | Examples of imperfect annotations generated from high quality ones. (A) Original annotations from the GLaS challenge (12), (B) noisy annotation where

some labels are removed, (C) weak annotations based on bounding boxes.

TABLE 4 | Characteristics of the discussed public databases. WSI, whole slide images; ROI, region of interest.

Database Tissue Staining Training samples Test samples Annotations

GlaS Colorectal H&E 85 images from 16

histological sections

60 images from 16

histological sections

Gland

segmentation

Tupac 2016

main dataset

Breast cancer H&E 500 WSI from the

cancer genome atlas

321 WSI Proliferation

scores

Tupac 2016

auxiliary

dataset 1

Breast cancer H&E 656 images from

73 different cases

34 images from

34 different cases

Mitosis

locations

Tupac 2016

auxiliary

dataset 2

Breast cancer H&E 148 WSI from

the main dataset

321 WSI Mitosis counts

in some ROIs

Camelyon

2016

Mammary

(sentinel) lymph

node metastasis

H&E 270 WSI from

2 medical centers

130 WSI from

2 medical centers

Metastasis

segmentation

Camelyon

2017

Mammary

lymph node

metastasis

H&E 500 WSI from

100 patients from

5 different centers

500 WSI from

100 patients from

5 different centers

Metastasis

segmentation

extended to other medical image modalities (46). In a systematic
study on imperfectly labeled datasets (39), we firstly show
that deep learning methods are naturally robust to a certain
amount of noise and imprecision in the annotation outlines.
Secondly, the performance against highly imperfect supervision
is greatly improved by combining semi-supervised, noisy and
weak learning strategies. In particular, it is often better to
use a smaller data set with fewer annotation problems than
a larger one with strong defects. In this latter case, it seems
more appropriate to consider those dataset parts with strongly
uncertain supervision as unlabeled in a semi-supervised learning
paradigm (39).

7. DISCUSSION AND CONCLUSION

The literature lacks systematic and comparative studies to
draw clear conclusions about the adequacy, contribution
and potential synergies of the different techniques described
above. Moreover, not all segmentation problems are equivalent,
particularly in terms of the size, number and degree of
heterogeneity of the objects of interest (e.g., cell nuclei,
glands, tumor vs. stroma areas, etc.). It can be expected
that the characteristics of the targeted objects have an

impact on the strategies to be implemented to overcome
supervision deficiencies. Nevertheless, some aspects can be
highlighted from the above literature review by crossing
some results.

As detailed in the previous section, CNNs seem to be
insensitive to small imperfections in annotations (39).
Therefore, one can be reassured about the use of IHC
markers to identify cells and structures of interest on
H&E images via image realignment that can be a source
of (small) errors, as can small staining artifacts. The same
applies to small variations in the manual annotations
of experts.

Concerning transfer learning, using pre-trained CNN on
large sets of natural images may be questioned for histological
image segmentation tasks. The advantage is that such pre-trained
networks are publicly available. However, these networks usually
present heavy structures and are initially designed for image
classification. An alternative that seems more suitable is to use
a network configured for (biomedical) image segmentation, such
as U-Net, which is now available via an ImageJ plugin (31, 47).
This network can be pretrained on public histological image
databases to extract more specific histology-related features,
and then fine-tuned on a small set of images related to the

Frontiers in Medicine | www.frontiersin.org 7 October 2019 | Volume 6 | Article 222

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Van Eycke et al. Reducing Supervision for Image Segmentation

TABLE 5 | For each challenge, best participating teams and a summary of their

data augmentation methods.

Best participating teams Data augmentation methods

GlaS challengea (colon gland segmentation)

CuMedVision Transfer learning from natural images; affine and

elastic (geometry) transforms

ExB Affine and elastic (geometry) transforms; Gaussian

blurring

Freiburg Affine and elastic (geometry) transforms; random

multiplications in HSV color space

Tupac 2016b (breast tumor proliferation assessment)

Lunit inc. Image translation; color, brightness, and contrast

modifications

Contextvision Affine (geometry) transforms

Sectra No information

Radboud UMC Affine and elastic (geometry) transforms; linear

intensity transforms

of the deconvoluted color channels; brightness,

contrast, and

saturation modifications; blurring and additive

Gaussian noise

IBM Research No information

Camlyon 2016c (detection of lymph node metastases)

HMS and MIT Image rotation; additive color noise

ExB Image rotation and mirroring

Q.Wong Image mirroring

Camelyon 2017d (detection of lymph node metastases)

Shlee Affine (geometry) transforms; contrast and HSV

color space

modifications

Ozymandias.watchman Image flip and rotations; HSV color space

modifications

Ericzz Affine (geometry) transforms; linear transforms of

the RGB color

channels and HSV modifications

ahttps://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
bhttp://tupac.tue-image.nl
chttps://camelyon16.grand-challenge.org
dhttps://camelyon17.grand-challenge.org/

targeted task (48). These public databases are notably available
via the challenges organized during conferences such as ISBI
and MICCAI3,4,5,6. Tables 4, 5 provide an overview of the
corresponding datasets and the data augmentation strategies
used by the best-performing teams in these different challenges.
In a recent study, we successfully applied this approach with
a new CNN that we pre-trained (from scratch) on the H&E
images provided by the MICCAI Gland Segmentation (GlaS)
Challenge 2015 (12) and then fine-tuned on a very small
set of IHC images from our laboratory (20). However, our
results also show that intensive and realistic data augmentation
can be able to challenge this kind of transfer learning even
with a small amount of training data. Our results also

3https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
4http://tupac.tue-image.nl
5https://camelyon16.grand-challenge.org
6https://camelyon17.grand-challenge.org/

suggest that the same applies for classical transfer learning
from natural images (20). Indeed, our data augmentation
strategy allowed us to achieve, with full network training
from scratch, superior performance on the Glas Challenge
dataset than the challenge winner, i.e., the DCAN network,
that benefited from pre-training on a wide range of natural
images (49).

In view of the complexity of some of the methods with respect
to their effectiveness, here are some recommendations:

1. The use of IHC biomarkers to create segmentation masks can
be considered the most effective and accurate approach. It is
therefore to be preferred when it is usable.

2. As far as possible, pretrain the network with data close to the
final data and for which supervision exists.

3. Data augmentation has proven to be a very effective way
to improve performance. For histopathological images, it is
preferable to apply at least a mix of geometric and color
transforms. The kind(s) of geometric transform (e.g., affine
and/or elastic) to be applied depend(s) on the morphological
characteristics of the object to be segmented.

4. GANs allow to generate variations that are too difficult to
implement with standard augmentation techniques. However,
GANs can only interpolate between existing examples. It
should be noted that GANs may be subject to instability
during training and can have unpredictable behaviors. Given
the current state of the art, it is difficult to recommend them
as part of a systematic approach.

5. When supervision is very imperfect, the alternative learning
methods described in section 6 can be used to extract
the best possible information from the segmentation
examples. However, having at least a small set of correctly
annotated images is strongly recommended and allows
data augmentation techniques to be applied. It is preferable
to complete with unsupervised data in a semisupervised
learning scheme, rather than include highly incorrect or too
partial supervision.

In conclusion, adding to the training set real data with high-
quality annotations, obtained either from an expert or with the
IHC approach described in section 2, is a reasonably safe way
to improve the performance of a well configured deep neural
network. Even with (slightly) noisy supervision, a logarithmic
relationship between performance and the amount of training
data can be expected (50). In this context, the present literature
review brings new perspectives with the use of artificially
generated data and/or imperfect annotations, in addition to
transfer learning opportunities. It remains to clarify possible
synergies in combining several strategies, such as data and GAN
augmentation. In future work, we will also assess the usefulness
of such intensive augmentation strategies in cases of relatively
imperfect annotations.
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