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Primary membranous nephropathy (MN) is a glomerular disease mediated by

autoreactive antibodies, being the main cause of nephrotic syndrome among adult

patients. While the pathogenesis of MN is still controversial, the detection of

autoantibodies against two specific glomerular antigens, phospholipase A2 receptor

(PLA2R) and thrombospondin type 1 domain containing 7A (THSD7A), together with

the beneficial effect of therapies targeting B cells, have highlighted the main role

of autoreactive B cells driving this renal disease. In fact, the detection of PLA2R-

specific IgG4 antibodies has resulted in a paradigm shift regarding the diagnosis

as well as a better prediction of the progression and recurrence of primary MN.

Nevertheless, some patients do not show remission of the nephrotic syndrome or do

rapidly recur after immunosuppression withdrawal, regardless the absence of detectable

anti-PLA2R antibodies, thus highlighting the need of other immune biomarkers for

MN risk-stratification. Notably, the exclusive evaluation of circulating antibodies may

significantly underestimate the magnitude of the global humoral memory immune

response since it may exclude the role of antigen-specific memory B cells. Therefore,

the assessment of PLA2R-specific B-cell immune responses using novel technologies

in a functional manner may provide novel insight on the pathogenic mechanisms of B

cells triggering MN as well as refine current immune-risk stratification solely based on

circulating autoantibodies.

Keywords: membranous nephropathy, glomerulonephritis recurrence, PLA2R, THSD7A, autoreactive B cells

INTRODUCTION

Primary membranous nephropathy (MN) is an autoantibody-mediated glomerular disease that
represents one of the leading causes of nephrotic syndrome in adults (1). MN is characterized
by the deposition of anti-podocyte targeted IgG antibodies on the subepithelial layer of the
glomerular capillary wall. Autoantibodies deposition leads to the thickening of the glomerular
basement membrane, complement activation, and glomerular capillary injury with consequent
proteinuria. In∼25% of patients, MN is classified as “secondary,” due to a contemporary detection
of a causative disease, such as malignancies, infections, drug reactions, or autoimmune diseases
including systemic lupus erythematosus (2, 3). The natural history of the untreated disease is
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variable: spontaneous complete remission of primary MN is
observed in approximately the 30–40% of patients (4, 5), whereas
30% of cases develop end-stage kidney disease (ESKD) generally
over 10–15 years (6, 7). In kidney transplant recipients, MN
relapses appear in 10–45% of cases (8–12) and occur as a de novo
disease in about 2% of recipients (13, 14).

Current understanding of MN pathophysiology comes from
studies in rodent models. In 1959, Heymann et al. (15)
described a model of MN, now defined as active Heymann
nephritis, which was induced by immunizing Lewis rats with
intraperitoneal injections of crude kidney extracts, together
with complete Freund’s adjuvant. This resulted in a disease
characterized by subepithelial immune complexes similar to
human MN. Subsequent in vivo and in vitro studies have led
to a better understanding of how subepithelial immune deposits
lead to podocyte injury and proteinuria. Complement-mediated
cytotoxicity plays a major role in the disease pathogenesis,
especially the terminal complement complex C5b-9 (membrane
attack complex—MAC), which is detectable in the urine of
patients with MN and considered a marker of podocytes injury
(16–20). Data suggest that in primary MN, complement cascade
is firstly activated by themannose binding lectin pathway, leading
to the formation of C3 deposits in the subepithelial space along
with MAC on podocyte membranes (21–23).

The identification of the cell surface protease neutral
endopeptidase (NEP) as a target podocyte autoantigen in
a newborn with MN represented a cornerstone in our
understanding of MN pathophysiology. Pierre Ronco and Hanna
Debiec described the case of a mother genetically deficient in
NEP that had given birth to an infant who developed antenatal
nephrotic syndrome (24). During the previous pregnancy, the
mother generated circulating anti-NEP that crossed the placenta
and targeted NEP on the fetal kidney during her subsequent
pregnancy, leading to in situ immune deposits. Therefore, NEP
represents the first podocyte protein demonstrated to be a target
antigen in human MN (25).

Identification of autoantibodies reactive against M-type
phospholipase A2 receptor type 1 (PLA2R) (26) and, later, against
thrombospondin type 1 domain containing 7A (THSD7A) (27),
two podocyte-expressed proteins, represented a further major
step forward in defining the disease pathogenesis. Autoantibodies
against such antigens can be detected in the 75–85% of primary
MN patients (28, 29): anti-PLA2R autoantibodies are present in
∼70–80% of adult cases, particularly in men (26, 30), whereas
anti-THSD7A antibodies may be detected in only 3–5% of
adults with primary MN, mainly in women (27, 31). Only about
1% of MN patients have both anti-PLA2R and anti-THSD7A
autoantibodies detectable (32).

A 2019 study (33) showed that, in MN patients without
detectable anti-PLA2R or anti-THSD7A autoantibodies,
exostosin1/exostosin2 could represent target antigens. The
authors performed mass spectrometry on laser microdissected
glomeruli and immunohistochemistry on kidney biopsy of 22
MN patients, including 7 with anti-PLA2R antibodies and 15
without, detecting exostosin1/exostosin2 expression uniquely in
five cases without detectable circulating anti-PLA2R antibodies.
In a larger cohort of 209 MN patients negative for circulating

anti-PLA2R antibodies, immunohistochemistry revealed bright
granular glomerular basement membrane staining for exostosin
1/exostosin 2 in 16 cases (33). Eleven of the 16 cases showed signs
of lupus nephritis or autoimmunity, suggesting that exostosin
1/exostosin 2 may represent a potential marker of a specific
subtype of MN, most commonly associated with autoimmune
diseases (33).

Altogether, these mechanistic findings have highlighted
the key role of B cells in the pathogenesis of MN, both as
autoantibody producing cells (34) and as antigen presenting cells
(35), thus providing the basis for B-cell target therapies (36–39).
However, response to such therapies remains unpredictable and
the identification of subjects who would develop spontaneous
remission (in whom immunosuppression could be avoided) is
still very challenging. The discovery of MN-specific antigens has
allowed the development of many diagnostic and prognostic
serologic tests and optimal non-invasive biomarkers for
monitoring disease activity. Nevertheless, while the assessment
of autoantibodies provides useful information about the humoral
memory immune response, other assays are needed to better
immune-risk stratify patients and to tailor treatment in a
personalized fashion.

CURRENT CLINICAL MN BIOMARKERS:
SERUM CREATININE, URINARY PROTEIN
AND KIDNEY BIOPSY

According to the most recent Controversies Conference on
KDIGO guidelines (39), proteinuria, and serum creatinine
are still considered the gold-standard biomarkers to risk-
stratify MN patients. For instance, individuals with subnephrotic
proteinuria have excellent long-term renal survival, therefore,
immunosuppression is not recommended (39). Conversely, in
patients with proteinuria above 4–5 g/24 h, MN prognosis may
range from spontaneous remission to development of ESKD.

Urinary markers of renal tubular damage, such as, Beta2
microglobulin, N-acetyl-β-D-glucosaminidase (NAG) and
retinol-binding protein (RBP), kidney injury molecule 1 (KIM-
1) and neutrophil gelatinase-associated lipocalin (NGAL) have
been also proposed to risk-stratify patients with MN. Yet, the
levels of these biomarkers seem to not correlate with the severity
of the disease (40).

Despite its invasive nature, kidney biopsy is still important for
the diagnosis of MN, in particular among patients with altered
kidney function and evidence of possible secondary causes (41),
but the capacity of histological lesions to predict outcomes or
response to therapy is limited at best. Hence, new approaches
to better risk-stratify MN patients are highly needed in the
clinical setting.

TARGET ANTIGENS IN MN

Over the last decade, discovery of target podocyte antigens
and the development of commercial assays for the detection
of serum anti-PLA2R and anti-THSD7A autoantibodies has
revolutionized the traditional algorithms for diagnosis and
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management of MN, particularly due to their high specificity
for disease diagnosis (26, 27). Such autoreactive antibodies
recognize the target conformational epitopes on the membrane
protein expressed on glomerular podocytes under non-reducing
conditions and are predominantly of the IgG4 subclass.
Importantly, both autoantibodies are emerging as clinical
biomarkers to predict outcome in MN patients.

Thrombospondin Type 1 Domain
Containing 7A (THSD7A)
THSD7A is a large transmembrane glycoprotein expressed
by podocytes. In Europe and United States only 3% of MN
subjects expresses anti-THSD7A autoantibodies (predominantly
IgG4), while it increases to a 9% in Japan (27, 31, 42,
43). Importantly, anti-THSD7A antibodies induce a MN-like
pattern of disease when injected in mice (29). In a recent
retrospective study, Zaghrini et al. (44) developed a new ELISA
assay to detect THSD7A-specific antibodies: levels of anti-
THSD7A autoantibodies correlated with disease activity and
with response to treatment. Also, patients with high titers
at baseline had a poorer clinical outcome. I has also been
reported an association between anti-THSD7A autoantibodies
and malignancies (42, 43, 45), but this needs to be better clarified
in larger, multicenter studies.

Phospholipase A2 Receptor Type 1 (PLA2R)
The M-type phospholipase A2 receptor (PLA2R) is one of four
members of the mannose receptor in mammals (46). PLA2R is a
multifunctional receptor for soluble phospholipase A2 (sPLA2),
which is described as a pro-inflammatory enzyme and PLA2R
acts as a scavenger receptor to remove secreted PLA2 enzyme
(47). Despite this receptor being highly expressed by human
podocytes as well as by neutrophils and alveolar type II epithelial
cells (26, 48, 49), autoantibodies against PLA2R exclusively
induce nephrotic syndrome without apparent impairment in
other organs.

The complexity of the PLA2R structure is illustrated by
the identification of distinct immunogenic PLA2R epitopes,
including a cysteine-rich domain (CysR), a fibronectin type II
domain and eight distinct C-type lectin domains (CTLD1–8)
(50), which are dependent on the protein conformation (26).
Main antigenic epitopes recognized by anti-PLA2R antibodies
have been recently identified and reported to be sensitive to
reducing agents, thus confirming that conformational structure
is of great importance in PLA2R epitopes (51, 52). A further
dominant epitope of PLA2R (P28mer) was recently identified
being also a dominant epitope of THSD7A in the N-terminal
domain, suggesting that this shared motif could be involved in
the initial B-cell activation in MN (53).

GENETIC SUSCEPTIBILITY AND
HUMORAL AUTOIMMUNE RESPONSE IN
MN

A genetic predisposition for MN was initially speculated by the
associative evidence linking variants in the HLA locus and the

risk of developing MN (54). Years later, family case reports of
MN were also described (55).

Several genome-wide association studies (GWAS) have
recently associated risk alleles in HLA genes with the increase risk
of MN. Stanescu et al. (56) defined the association between HLA-
DQA1 allele with MN in Caucasian individuals, suggesting that
the interaction between sequence variations in immune-proteins
and glomerular components may explain a trigger-target model
in the disease development. Such interaction between PLA2R
and HLA-DQA1 variants was also studied in an Asian cohort
with similar results (57). More studies confirmed this association
in different cohorts of MN patients (58–61), but the related
mechanisms remain unknown.

The possible role of specific HLA alleles in MN was
further investigated in two recent studies. Cui et al. (62)
genotyped HLA-DRB1, DQA1, DQB1, and DPB1 genes in
261 primary MN patients and in 599 healthy controls. These
investigators confirmed that risk alleles of HLA-DQA1 and
PLA2R are significantly associated with the susceptibility to MN.
Particularly, authors showed that these risk alleles are associated
with the presence of circulating anti-PLA2R antibodies as well as
to the increased expression of PLA2R in the glomeruli. Authors
also detected the classical DRB1∗1501 and DRB1∗0301 alleles,
showing significant independent effects on the risk of MN among
the ethnic group of Han Chinese. Le et al. (63) sequenced
HLA locus in 99 anti-PLA2R-positive MN subjects and in 100
healthy controls. Again, the association between DRB1∗1501
and anti-PLA2R positive MN was demonstrated, and suggested
DRB3∗0202 as new risk allele for MN. These two alleles were
subsequently confirmed in an independent cohort of 285 controls
and 293 cases. Although DRB1∗1502 was not revealed as a risk
allele for MN, it was associated with significantly higher levels of
anti-PLA2R autoantibodies and a significantly increased risk of
progression to ESKD (64).

Altogether, GWAS has provided robust data about the genetic
susceptibility to MN, suggesting that genetic tests could become
a non-invasive tool to risk-stratify MN patients (65), although
more data testing these associations in different ethnic groups are
needed (66).

IMMUNE-MONITORING OF
AUTOREACTIVE ANTIBODIES

Detection of PLA2R Antigen in the Kidney
Anti-PLA2R IgG4 autoantibodies are detected in the sub-
epithelial immune deposits using immunofluorescence or
immunohistochemistry in patients with primary MN (67).
In normal kidneys or other glomerular diseases, the PLA2R
antigen is weakly expressed on the podocyte surface (67).
Generally, a strong association between glomerular PLA2R
staining and circulating anti-PLA2R antibodies is found (28,
60, 68), particularly when autoantibody levels are measured at
the time of the biopsy assessment (69). However, glomerular
PLA2R staining is not considered a diagnostic test for active
disease, since the positivity of glomerular PLA2R staining with
undetectable circulating anti-PLA2R autoantibodies is unlikely
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(28, 69, 70) and may reflect an immunologically inactive disease
as a positive PLA2R antigen can persist for weeks or months after
remission (67).

Detection of Serum Anti-PLA2R
Autoantibodies as a Diagnostic Tool
Western blotting was initially performed to detect anti-PLA2R
(26) and anti-THSD7A (27) autoantibodies, but this test is
inadequate for routine clinical use. The first commercially
available assay for serum anti-PLA2R autoantibodies detection
was an indirect immunofluorescence assay (CBA-IFA;
Euroimmun, Luebeck, Germany), based on a semi-quantitative
determination, and therefore, not ideal for monitoring
therapeutic response and disease progression. Most clinical
laboratories routinely use an ELISA-based assay (Euroimmun),
because it is able to quantify anti-PLA2R autoantibodies, but
this assay is not as sensitive as CBA-IFA assays. Conversely,
the CBA-IFA anti-PLA2R immunoassays detection may be
considered only when diagnosis of PLA2R-associated MN is
strongly suspected, but there is a negative ELISA test. The most
recent diagnostic assay is a laser bead immunoassay (ALBIA;
Mitogen Advanced Diagnostics Laboratory, Calgary, Canada),
that allows a sensitive and a quantitative detection of these
autoantibodies. This assay allows the detection of different
molecules such as antibodies, complement or cytokines. A
comparison between the CBA-IFA, ELISA and ALBIA platforms,
showed similar capacity across the different tests to detect
anti-PLA2R autoantibodies (71).

Serum Anti-PLA2R Autoantibodies as a
Risk-Prognostic Biomarker of MN
Different groups have suggested the use of anti-PLA2R
autoantibodies to predict spontaneous remission of MN. Hofstra
et al. (72) reported that spontaneous remission is inversely related
to high antibodies titers measured by up to 6 months after
biopsy assessment. Similarly, Timmermans et al. (73) showed
that, among 109 MN patients, subjects with detectable serum
anti-PLA2R autoantibodies at the time of biopsy had a lower
probability for spontaneous remission than seronegative patients.
In a retrospective study including 68 patients with biopsy-proven
MN, Jullien et al. (74), reported that spontaneous remission
was correlated with low titers of anti-PLA2R autoantibody
at time of biopsy. These data were recently confirmed by
a prospective study involving 62 MN patients: complete
spontaneous remission was more common in subjects with lower
anti-PLA2R autoantibody levels at the time of diagnosis (<40
UI/mL) (75).

Beck et al. (76) evaluated the relationship between changes
in serum PLA2R-specific autoantibodies levels and the response
to B cell-depleting antibody rituximab therapy in 35 adult
patients with MN. Circulating autoantibodies were detected in
71% of patients at baseline and levels decreased after rituximab
therapy in the majority of them. The reduction of anti-
PLA2R autoantibody levels anticipated the decline of proteinuria,
and in one particular patient with a relapse of proteinuria,
the reappearance of the autoantibody in serum preceded the

recurrence of MN. However, proteinuria may persist, regardless
the presence of autoreactive anti-PLA2R antibodies due to
irreversible capillary wall injury thus, perpetuating albuminuria
levels in absence of active autoimmunity.

More recently, Ruggenenti et al. (77) investigated the
association between treatment effect, circulating anti-PLA2R
autoantibodies and genetic polymorphisms predisposing to
antibody production in 132 MN patients with nephrotic range
proteinuria treated with rituximab. Outcome of patients with
or without detectable anti-PLA2R autoantibodies at baseline
were similar. However, among 81 patients with autoantibodies,
lower anti-PLA2R autoantibodies titer at baseline and full
depletion at 6 months post-treatment strongly predicted
remission over a median follow-up period of 30.8 months. All
25 patients displaying complete remission were preceded by
undetected anti-PLA2R autoantibodies in circulation, while re-
emergence of circulating antibodies predicted clinical disease
relapse. Accordingly, a further study involving 30 patients
with MN and elevated anti-PLA2R autoantibodies (78) showed
that clinical remission was heralded by a reduction in
circulating autoantibodies.

Collectively, the above studies and further published data (79–
83) suggest that serial measurements of anti-PLA2R autoantibody
titers in the serum may help at risk-stratifying patients, allowing
to personalize treatment and to reduce the side-effects related
to over-immunosuppression.

However, antigen-specific memory B cells may exist
and be ready to develop a rapid and effective secondary
immune response even in absence of detectable circulating
autoantibodies. This suggests that the assessment of the
humoral auto-immune response using other cell-based
assays may significantly improve the understanding of
the effector mechanisms of the disease in patients with
primary MN.

PLA2R Epitope Spreading and Disease
Progression
Epitope spreading is a common immunopathogenic response
to self-antigens: the immune response primary involves the
so-defined immunodominant epitope recognized by most
autoantibodies, then expands to the intramolecular epitope
on the same protein (intramolecular epitope spreading) or to
dominant epitopes on neighboring molecules (intermolecular
epitope spreading) (84, 85). The result is an increased diversity
in antibody repertoire, leading to a broader overall immune
response. Epitope spreading for the CysR epitope of PLA2R has
been recognized as independent risk factor for reduced renal
survival (86). In the GEMRITUX (Evaluate Rituximab Treatment
for Idiopathic Membranous Nephropathy) randomized
controlled trial (87), including a cohort of 58 patients positive
for anti-PLA2R-specific autoantibodies randomly treated with
rituximab or conservative therapy, epitope spreading strongly
correlated with serum titer of anti-PLA2R autoantibodies The
absence of epitope spreading at onset was an independent
predictor of remission at 6 months and at last follow-up
(median of 23 months) (88). Of interest, 10 of the 17 patients
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TABLE 1 | Studies on the immune phenotype of patients with membranous nephropathy.

Reference Patients’ characteristics (number) Assay/biomarkers Results

Ozaki et al. (89) MN (30):

- Untreated,

- with Prednisolone,

- incomplete remission,

- complete remission

Flow cytometry/ Helper,

suppressor T cells

• Untreated nephrotic patients showed a significant

decreased in suppressor T cell levels and a relative

increase in helper T cells.

• Prednisolone-treated patients showed an increased

number of suppressor T cells.

Wang et al. (90) MN (66): - No previous IS

HC (40)

Flow cytometry/ Treg, B and

T cells

• Treg cells were decreased in MN patients.

• B cells were increased in MN patients.

T cells (CD4+/CD8+) were increased in MN patients.

• No association between circulating B cells and

disease activity.

Cagnoli et al. (91) MN (27)

- 12/27 nephrotic syndrome,

- 6/27 isolated proteinuria,

- 9/27 complete remission

- No previous IS

MCD (20)

IgAN (12)

HC (15)

Indirect IF/ Total peripheral T

cells, CD4+, and CD8+ T

cells

• Patients with MN and nephrotic syndrome presented a

CD4+/CD8+ ratio greater than the control group due

to a reduction of CD8+ T cell subset.

Zucchelli et al. (92) MN (39):

- 23/39 were treated with

methylprednisolone + chlorambucil

- 16/39 not treated

- Patients with serum creatinine >1.7

mg/dl were excluded

HC (30)

Indirect IF/ Total peripheral T

cells (LEU4), helper T cells

(LEU3a), cytotoxic T cells

(LEU2a)

• Helper/cytotoxic T cell ratio was significantly higher at

baseline in MN patients than the in controls due to a

reduction of LEU2 cell subset.

• Baseline helper/cytotoxic T cell ratio was significantly

higher in patients achieving remission as compared to

non-responder patients.

Taube et al. (93) MN (21)

MCD (11)

FSGS (15)

Suppressor cell function

evaluation due to response

to Concanavalin A

• Significant reduction in lymphocyte transformation in

each group of patients as compared to the control

group.

• Suppressor cell function was decreased in each group

of patients as compared to the control group.

Hirayama et al.

(94)

MN (8):

- Proteinuria ranging from 2 to 7 g/day

- Creatinine clearance> 100

ml/min/1.73 m2 HC (23)

Intracellular cytokine assay

by flow cytometry/T-helper

cells, Th1 and Th2 cytokines

• Percentages of IL-2+CD4+ T cells were significantly

lower in MN patients than in the controls.

• No differences in percentages of IFN-γ+ IL-4+CD4+ T

cells were observed between different groups.

• Percentages of IL-10+CD4+ T cells were significantly

higher in MN patients than in the control group.

Masutani et al. (95) MN (24)

MCD (13)

FSGS (12)

HC (51)

Intracellular cytokine assay

by flow cytometry/ T-helper

cells, Th1 and Th2 cytokines

• Percentages of IL-4 in MN patients were significantly

higher than in the other groups.

• Th1/Th2 ratio was significantly lower in MN patients

than in the other groups.

• Percentages of IL-4 correlated with the amount of

proteinuria in MN patients.

Kuroki et al. (96) MN (14)

HC (14)

Flow cytometry/ T cells,

T-helper cells, T-cytotoxic

cells, B cells

Real-time PCR/ Th1 and

Th2 cytokines

• CD4/CD8 cell ratio was higher in MN patients than in

the control group, although numbers of T and B cells

were similar to the control group.

• IL-10 and IL-13 mRNA expression levels was higher in

MN patients.

• IL-4 enhances in vitro production of IgG4 by B cells

in MN.

Fervenza et al. (97) MN (20)

- Patients were all treated with Rituximab

- Creatinine clearance ≥30 ml/min/1.73

m2

- Persistent proteinuria >5 g/24 h

Flow cytometry/ T, B and

NK cells

• After rituximab treatment, proteinuria decreased and

creatinine clearance increased.

• None of the T-reg subset analyses showed significant

quantitative differences.

• Baseline quantification of lymphocyte subpopulations

did not predict response to rituximab therapy.

Roccatello et al.

(98)

MN (17) - Patients were all treated

with rituximab

Flow cytometry/B, T, Treg

cells

ELISA assay/IL-35 and

PLA2R antibodies

• After rituximab treatment, proteinuria decreased and

serum creatinine remained stable during the follow-up.

• Treg percentages were significantly higher after

treatment as compared to baseline.

(Continued)
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TABLE 1 | Continued

Reference Patients’ characteristics (number) Assay/biomarkers Results

Rosenzwajget al.

(99)

MN (25):

- 16/25 were treated with NIAT +

rituximab

- 9/25 were treated with NIAT alone

HC (27)

Flow cytometry/ B, T, NK,

Treg, γδ-T cells

Multiplex to detect several

cytokines/ chemokines

• Percentages of switched (IgD−CD27+) and non-

switched (IgD+CD27+) memory B cells were higher in

MN patients due to a higher percentage of naïve B cells

at baseline.

• Treg percentages were lower in MN patient at baseline.

• After rituximab treatment, responder patients to

treatment showed a significantly increased percentage

of Treg cells than non-responders.

FSGS, focal segmental glomerulosclerosis; IFN, interferon; HC, healthy controls; IL, interleukin; IF, immunofluorescence; IS, immunosuppression; MCD, minimal change disease; MN,
membranous nephropathy; NIAT, nonimmunosuppressive antiproteinuric treatment; NK, natural killer; Treg, regulatory T cells.

FIGURE 1 | Activation and inhibition of autoimmune B cell responses and the influence of different B cell subsets in the fluctuation of circulating anti-PLA2R

antibodies. (A) After failure in self-tolerance mechanisms, autoreactive naïve B cells may encounter the self-antigen and can be activated in the secondary lymphoid

organ by helper signals from T follicular helper cells. Then, B cells can differentiate into short-lived plasma cells, which secrete mainly IgM antibodies or differentiate

into memory B cells or long-lived plasma cells after somatic hypermutation and immunoglobulin isotype class switching in the germinal center. After a re-encounter

with the self-antigen, memory B cells can rapidly differentiate into antibody-secreting cells, sustaining long-lasting humoral immunity. Memory B cells may occupy

empty bone marrow niches after secondary activation replenishing plasma cell pool. Anti-CD20 monoclonal antibodies (Rituximab) mainly target naïve B cells and

memory B cells but not long-lived plasma cells. (B) Levels of anti-PLA2R autoantibodies may fluctuate over time and may become undetectable without indicating MN

remission. Memory B cells can be detected in the absence of antibody levels in serum and its rapid differentiation and production of antibodies can be of great

importance for a subsequent humoral response. Such effective and rapid response of the memory-B cell population indicates that although anti-PLA2R

autoantibodies may not be detected in serum, PLA2R-specific memory B cells can be a target indicator of MN relapse.

who had epitope spreading at baseline and were treated with
rituximab, showed reversal of epitope spreading at 6 months
(88). The anti-PLA2R autoantibody titer has been shown to
correlate with the degree of epitope spreading (88). Therefore,

due to the lack of epitope-specific assays for anti-PLA2R
autoantibodies for clinical practice, the total titer of anti-PLA2R
autoantibodies could be considered a surrogate of epitope
spreading (88).
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FIGURE 2 | Measuring anti-PLA2R reactive memory B cells. (A) Peripheral blood mononuclear cells are first polyclonally activated for 6 days to expand the pool of

memory B cells and antibody secreting cells (ASC). Expanded cells are next used for an enzyme-linked immune absorbent spot (ELISPOT) assay to detect cells

producing antibodies against PLA2R. (B) Two representative patients with membranous nephropathy and similar levels of proteinuria and circulating anti-PLA2R

antibodies. Patient #1 has a positive ELISPOT, indicating the presence of autoreactive memory B cells (sign of active disease), while Patient #2 has no detectable

autoreactive memory B cells (indicative of a remission phase). Adapted from Luque et al. (112).

Immune Cell Phenotyping and Circulating
Cytokines in MN
Non-antigen-specific Cell Subset Measurements
A few studies have investigated the immune phenotype
of MN patients and its changes in relation to
treatment (Table 1). Some investigators reported an increase
of the CD4+/CD8+ T cell ratio in MN patients with or
without nephrotic proteinuria (89, 90). Some evidence
has shown a reduction of CD8+ T cells in patients with
MN and nephrotic syndrome when compared to healthy
subjects (91). This broad phenotype seems to be associated
with a more favorable prognostic response to classical
immunosuppressive therapy (92), but not to anti-CD20
depletion (93). MN is characterized by a predominance of IgG4

subclass autoantibodies, thus suggesting an involvement of
a Th2 immune response, which has been described in some
series (94–96).

Interestingly, despite the well-reported role of regulatory
T-cells (Treg) in autoimmune diseases (100, 101), limited
studies have investigated the role and impact of Tregs in
primary MN, with controversial results (97, 98). Recently,
Rosenzwajg et al. (99) measured 33 lymphocyte subpopulations
and also 27 serum cytokines/chemokines in 25 MN patients
and 27 healthy subjects at the time of biopsy. After rituximab
treatment, responder patients to treatment showed a significantly
increased percentage of Tregs than non-responders concluding
that monitoring T-cell subset could be a potential biomarker of
MN activity.
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Cellular Assays Measuring Antigen-Specific Immune

Responses
The discovery of anti-PLA2R and anti-THSD7A autoantibodies
represented a paradigm shift for the diagnosis and management
of MN patients. Taking into account the putative pathogenic
role of anti-PLA2R autoantibodies and the efficacy of B cell
depleting therapies (77, 102–104), it is reasonable to speculate
that autoreactive memory B cells play a fundamental pathogenic
role inMNby fueling a persistent IgG4-specific humoral immune
response. However, levels of anti-PLA2R autoantibodies fluctuate
over time despite persistent renal injury, suggesting that the
evaluation of anti-PLA2R autoantibodies alone may not capture
the global humoral immune response taking place in patients
with primary MN (69, 79–81). Once B cells recognize the
target antigen through the help of autoreactive T Follicular
Helper (TFH) cells, B cells can differentiate into short-lived
plasmablasts (secreting manly low-affinity IgM antibodies) or
into memory B cells (mBC) and long-lived plasma cells after
undergoing somatic hypermutation and immunoglobulin isotype
class switching in the germinal center. In case of persistence
of the priming antigen and T-cell help, auto-reactive mBC can
rapidly differentiate into antibody-secreting cells and produce
the effector antibodies against the specific target antigen and
may finally occupy empty bone marrow niches after secondary
activation replenishing plasma cell pool (105, 106). Noteworthy,
autoreactive memory B cells can be detected in absence of
autoantibody levels in serum and its rapid differentiation and
production of antibodies can be of great importance for a
subsequent humoral response (Figure 1) (107, 108). Recent
works in kidney transplantation have shown the value of
measuring circulating allospecific mBC in a functional manner,
especially in the absence of detectable alloantibodies in the
serum (109–111).

Starting from this background, our group has recently
developed a new approach to functionally evaluate the PLA2R-
specific mBC response in MN patients. Using a PLA2R-specific
B-cell ELISPOT-based immune assay, we have been able to
accurately detect circulating mBC capable of producing anti-
PLA2R-specific antibodies at the time of the flare of disease
activity, thus confirming the presence of an active humoral
immune response (personal communication). While evaluating
PLA2R-specific antibody-secreting cell frequencies using an
ELISPOT-based assay allows for an accurate detection of mBC
responses at the single cell level after a polyclonal mBC culture

stimulation, anti-PLA2R-specific antibodies may also be detected
from these cell culture supernatants using single-antigen beads
immune assay. Figure 2 shows two representative patients with
similar proteinuria and anti-PLA2R autoantibody levels. While
the first patient with detectable autoreactive mBC is having
a disease flare, the second one has no detectable autoreactive
mBC and is therefore predicted to undergo remission. If
properly validated, this assay may be used to differentiate
patients for whom therapy is needed vs. those who will undergo
spontaneous remission.

CONCLUSIONS

Primary MN is the main cause of nephrotic syndrome in adults
and is caused by the formation of autoimmune complexes in
the glomeruli. Since the identification of different podocyte
antigenic targets, the diagnostic strategies and treatment options
for MN have significantly improved. The efficacy of rituximab
treatment in MN patients has highlighted the importance of
B cells in the pathogenesis of the disease (113); therefore a
more accurate investigation of autoreactive mBC using new
technology may refine current immune-monitoring largely
based on the measurement of circulating anti-PLA2R or anti-
THSD7A autoantibodies.
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