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Thiopurines are a cheap, effective treatment option in the management of inflammatory

bowel disease (IBD). However, with the growing choice of targeted therapies available,

as well as the well-documented toxicities of thiopurines, the role of thiopurines has

been questioned. Nevertheless, given their inexpense in an era of spiraling healthcare

costs, thiopurines remain an attractive option in the right patients. In the age of

personalized medicine, being able to predict patients who will respond as well as those

that will develop toxicity to a treatment is vital to tailoring therapy. This review will

summarize the available literature with respect to predictors of response and toxicity

to thiopurines in order to guide management in IBD. Specifically, toxicities addressed will

include myelotoxicity, hepatotoxicity, pancreatitis, alopecia, gastrointestinal and flu-like

symptoms, and complications associated with Epstein-Barr virus. While more work

needs to be done to further our ability to predict both response to and side effects

from therapies, pharmacogenomic research shows significant promise in its ability to

personalize our use of thiopurines.

Keywords: thiopurines, azathioprine, 6-mercaptopurine, inflammatory bowel disease, Crohn’s disease, ulcerative

colitis, toxicity, response

INTRODUCTION

Thiopurines, including azathioprine, 6-mercaptopurine and tioguanine, are longstanding therapies
within the ever-expanding inflammatory bowel disease (IBD) treatment armamentarium (1–5).
They have shown themselves to be effective in the maintenance of remission in patients with
IBD and have also resulted in reductions in the need for surgery, post-operative recurrence and
IBD-related colorectal cancer risk. In addition, they improve pharmacokinetics of anti-tumor
necrosis factor agents when used in combination with these therapies (6). Given their efficacy,
oral delivery, and low cost they are frequently used as pre-biologic treatments in both Crohn’s
disease (CD) and ulcerative colitis (UC) and many clinicians have extensive experience with their
use. However, up to 60% of patients will either respond inadequately or will develop toxicity to
thiopurines (7), necessitating their cessation or treatment modification. With the continual advent
of new targeted biologic therapies, the role of thiopurines in the current era is, therefore, being
questioned (8).

The ability to use clinical and biologic characteristics of an individual to predict their disease
course and to personalize their treatment pathway is the aim of precision medicine (9). An essential
component of this goal is the ability to predict those who are more likely to respond or develop
toxicity to a particular therapy, in order to improve the safety and efficacy of treatment choices.
While some authorities suggest that treatment choices should not be influenced by cost, the
compounding prevalence of IBD in conjunction with the increasing burden of drug costs mean
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that such an approach is perhaps naïve within the context of finite
resources. Thus, optimizing the use of inexpensive treatments
like thiopurines could have significant financial advantages to
health services.

While thiopurines are still felt to have a role in the current
era (8, 10), our ability to tailor their use to a population which
will both tolerate them and achieve the treatment goals that our
new treatment paradigms demand will determine their use in the
future. This article aims to summarize the available evidence with
respect to clinical, genetic, and biological predictors of response
and toxicity to thiopurines.

PREDICTORS OF TOXICITY

Thiopurine use is undoubtedly hindered by the high incidence
of adverse drug reactions which affect up to 25% of people
who take them, resulting in drug discontinuation in 17% of
patients (11). Side effects often occur in the first few months.
Accordingly, the ability to predict which patients are likely to
develop these potentially serious side effects would be of great
use in clinical practice.

Thiopurine-Induced Myelotoxicity
Thiopurine-induced myelotoxicity (TIM) is one of the most
serious thiopurine-induced side effects and can occur at any
time during treatment. In some patients this can lead to life
threatening bone marrow suppression. Whilst leucopenia is
the commonest hematological abnormality, thrombocytopenia,
and pancytopenia can rarely occur. In a review of 66 studies,
including more than 8,000 thiopurine-treated patients, the
incidence rate of drug-induced myelotoxicity was 3% per patient
year of treatment (12). In East Asian populations, however, the
incidence of myelotoxicity can be as high as 15% (13).

The prodrug azathioprine is non-enzymatically converted
to 6-mercaptopurine (6MP) and then through competing
pathways is metabolized into thioguanine nucleotides (TGNs).
TGNs exert their immunosuppressive effect by interfering with
DNA replication of the most actively dividing cells, as well
as by inducing apoptosis in activated and pre-activated T
lymphocytes (14). Thiopurine-S-methyltransferase (TPMT) is
an enzyme which catalyzes the methylation of 6-MP to 6-
methylmercaptopurine (6-MMP), a non-therapeutic metabolite.
Approximately 1 in 10 people have intermediate TPMT activity
due to heterozygosity of TPMT, and 1 in 300 have TPMT
deficiency, which is inherited in an autosomal recessive manner
(15). In heterozygotes, TPMT∗3A is the commonest mutant allele
(85%), whilst TPMT∗2 and TPMT∗3C are rarer (15). TIM is
strongly linked to low TPMT enzyme activity and high 6-TGN
blood levels (16). Standard thiopurine dosing in heterozygous
or TPMT-deficient patients leads to 6-TGN accumulation in the
bone marrow and potentiates the risk of life-threatening bone
marrow suppression.

TPMT phenotype testing is commonplace in clinical practice
and is one of the most frequently used pharmacogenetic tests.
TPMT enzyme assays can also be used alongside genotyping,
which is used less commonly, to assess activity where rarer
mutations may be missed on genotyping. Genetic testing is useful

in patients with renal failure and reduced clearance of TPMT
inhibitors, where enzyme activity can be falsely low. However,
routine genotyping is not commonplace with some evidence
suggesting that this may not be cost-effective compared with
standard phenotyping (17, 18). TIM can also occur with normal
TPMT activity necessitating regular full blood count monitoring
in clinical practice to allow dose reduction or drug cessation in
cases of TIM. Ameta-analysis found that low TPMT is associated
with TIM but not hepatotoxicity or pancreatitis (19).

Nudix hydrolase 15 (NUDT15) variants have also been linked
to altered thiopurine metabolism and TIM (20). Mutations
of NUDT15, which occur more frequently in the East Asian
population, lead to reduced enzyme activity and TIM in a
TGN-independent manner (20, 21). More recently, variants in
NUDT15 were found to be associated with increased risk of TIM
among IBD patients of European ancestry (22). Furthermore,
patients with mutations in both TPMT and NUDT15 developed
TIM faster (22). These findings highlight the importance of
NUDT15 genotyping, alongside TPMT phenotype, or genotype
testing. This is supported by a recent systematic review and
meta-analysis (23), and recently published guidelines provide
suggested dosing regimens in patients with TPMT or NUDT15
variants (24).

It may also be possible to predict early myelotoxicity
by measuring thiopurine metabolites soon after treatment
commencement. In a Dutch study, patients with 6-TGN levels of
more than 213 pmol/8 × 108 red blood cells (RBC) and 6-MMP
levels higher than 3,525 pmol/8× 108 RBCmeasured after 1 week
of thiopurine initiation were six times more likely to have early
TIM (25).

Thiopurine-Induced Hepatotoxicity
Thiopurine-induced hepatotoxicity (TIH) is an uncommon but
important side effect of thiopurine use. Most commonly, this
results in increased transaminase levels, which resolves with
dose reduction or drug discontinuation. Less commonly, TIH
manifests as idiosyncratic cholestasis or nodular regenerative
hyperplasia. A systematic review, which included 3,485 patients,
described an overall prevalence of 3.4% for TIH (26). In a
pediatric cohort, TIH was found to be strongly correlated with
6-MMP levels with a 3-fold increased risk at levels >5,700
pmol/8 × 108 RBC (16). In a Dutch cohort study of 270 adult
patients, when TIH occurred it did so within 8 weeks in 85%
of patients and was associated with elevated 6-MMP levels (27).
Furthermore, in the same study, a predictive algorithm based
on a week one 6-MMP level >3,615 pmol/108 RBC, older age,
male gender and higher BMI yielded an area under the curve of
0.83 (95% CI: 0.75–0.91) for hepatotoxicity risk. Another study
found elevated 6-MMP levels in those with TIH but sensitivity
and specificity were poor (28). These studies highlight that whilst
6-MMP levels are associated with TIH, intervention should be
reserved for those in whom the high 6-MMP levels are associated
with abnormal liver function tests.

Nodular regenerative hyperplasia is a condition characterized
by diffuse nodulation of the hepatic parenchyma, leading to
portal hypertension. Although its natural history is not clearly
understood, it can occur in patients treated with purine analogs,
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particularly tioguanine (29). Studies have shown that this is more
likely to occur in male patients with a stricturing small bowel
disease phenotype (30–32). Although rare, regular monitoring
of blood tests is necessary, particularly for the gradual onset of
thrombocytopenia signaling portal hypertension.

Although there is no validated genetic predictor of TIH, there
is a worldwide collaborative effort to achieve this aim. This
includes the Helmsley IBD Exome Sequencing Program (33), and
the Predicting Serious Side Effects in Gastroenterology (PRED4),
conducted by the UK IBD Genetics Consortium.

Thiopurine-Induced Pancreatitis
Pancreatitis occurs in <5% of patients treated with azathioprine
or mercaptopurine and often occurs in the first month of
treatment (11, 34, 35). Reinstating therapy upon recovery leads to
recurrent pancreatitis, so indefinite drug withdrawal is required
although a switch to tioguanine may be considered (34, 36).
Thiopurine-induced pancreatitis (TIP) is an idiosyncratic drug
reaction and the pathophysiology is unknown. Interestingly, and
for unclear reasons, patients treated with thiopurines for IBD
have a greater incidence of TIP compared to those treated for
other diseases (37). However, TIP is almost always mild in IBD
patients and generally responds rapidly to drug withdrawal (38).
Smoking has been found to be a strong risk factor in TIP (39),
along with having CD (11, 38).

Two genome wide association studies of patients with TIP
found a link to the class II HLA region, with the most significant
associations identified being at rs2647087 (40, 41). Patients
heterozygous at rs2647087 have a 9% risk of developing TIP and
homozygotes have a 17% risk (40) although tests to predict risk of
TIP are not yet commonplace in clinical practice. Approximately
76 patients need to be genotyped for rs2647087 to prevent one
case of pancreatitis, and given that most cases of TIP run a
benign course, there is an argument that screening may not be
a cost-effective strategy.

Thiopurine-Induced Alopecia
Alopecia secondary to thiopurine use is a rare, dose-related
adverse event, with an incidence of 1.5% in patients of Asian
descent (13). Whilst clearly not life-threatening, alopecia can
have profound psychological effects and increases the risk of
non-compliance with therapy. Studies have shown that the
NUDT15 variants are associated with risk of thiopurine-induced
alopecia (42, 43). Therefore, dose reduction in heterozygotes and
thiopurine avoidance in homozygotes can mitigate and avoid
both TIM and alopecia in this cohort.

Gastrointestinal Toxicity and Flu-Like

Illness
Themost common but least serious adverse effects of thiopurines
are gastrointestinal disturbances (nausea, vomiting, abdominal
pain) and flu-like symptoms (malaise, fever, myalgia), which
are responsible for drug discontinuation in many patients. The
flu-like symptoms are likely to be immune-mediated and tend
to occur shortly after starting treatment. It is not clear if the
reactions are dose-dependent or idiosyncratic. A prospective
evaluation of azathioprine-treated IBD patients found that

TPMT heterozygosity strongly predicted GI adverse effects (37%
heterozygous vs. 7% wild-type TPMT, P < 0.001) (44).

Switching treatment to 6MP may be one way to curb some of
these side effects. An observational study and systematic review
demonstrated 60% of patients intolerant of azathioprine were
able to tolerate 6MP (45). In those ceasing 6MP due to further
adverse effects, 59% experienced the same side effect as they had
with azathioprine.

Serious Complications Associated With

Epstein-Barr Virus (EBV)
The association between thiopurine use and EBV-driven B-cell
lymphoma has been understood for many years. A roughly four-
fold increase in risk over background has been identified across
several studies (46) and, thus, the greatest absolute risk is in those
with the highest background risk, i.e., the elderly.

In addition, severe and potentially fatal EBV primary
infections and post infectious lymphoproliferative disorders have
also been associated with thiopurine use (46–48). This has
prompted some to advocate for pre-treatment EBV serology
testing and avoidance of thiopurines, if possible, in EBV
seronegative individuals (48). In the CESAME study (Cancers
Et Surrisque Associé aux Maladies inflammatoires intestinales
En France), a low incidence of 0.1 per 1,000 patient years
of postmononucleosis lymphomas was observed overall, rising
to 3 per 1,000 patient years when considering young males,
seronegative for EBV (46). In addition, in a pediatric population
of 5,766 participants, there were 5 cases of haemophagocytic
lymphohistiocytosis (HLH), all exposed to thiopurines, equating
to an incidence of 0.2 per 1,000 patient years (49).

Despite the majority of pediatric patients being EBV
seronegative at initiation of thiopurines (50), the incidence of
HLH is low. Furthermore, as EBV is not the sole trigger of serious
infectious complications like HLH (47), some argue against
routine pre-thiopurine EBV testing (51, 52). Nevertheless, given
the potentially severe, albeit rare, consequences of primary EBV
infections or post infectious lymphoproliferative disorders in
patients on thiopurines, coupled with the increasing availability
of therapeutic alternatives, we carefully balance the risk and
benefit of thiopurine use in EBV negative patients, but do not
avoid its use completely.

PREDICTORS OF RESPONSE TO

THIOPURINES

The ability to predict who will respond to thiopurine therapy
and to maximize likelihood of response earlier in the disease
course would enable clinicians to tailor therapy sooner, with
the aim of altering the natural history of the disease (53).
Heterogeneity in definitions of response, as well as the tenuous
relationship between clinical response and mucosal activity
make interpretation of the literature challenging with respect to
prediction of response. While thiopurine metabolite monitoring
enables personalized dosing, it obviously relies on patients having
already commenced the therapy; pre-treatment predictors are
the ideal.

Frontiers in Medicine | www.frontiersin.org 3 November 2019 | Volume 6 | Article 279

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luber et al. Predicting Thiopurine Toxicity and Response

Clinical Predictors
The relatively small numbers of patients in azathioprine efficacy
studies has limited our ability to identify clinical predictive
factors of response (3, 54). As such, clinical predictive factors
have thus far not been incorporated into clinical practice in a
significant way. A number of retrospective studies have identified
factors that may predict response, or lack of it, although their
results must be interpreted with caution.

Some of the largest studies addressing predictive factors of
thiopurine response have yielded conflicting results in terms of
disease type (CD vs. UC) and location. In a single center review
of 622 patients, remission rates in those who completed 6 months
of azathioprine were highest in UC patients compared to CD
(87% vs. 64%, p = 0.0001) (55). In CD cases specifically, colonic
distribution was associated with a higher rate of clinical remission
compared to other distributions. This finding was mirrored in
another study which found that azathioprine caused mucosal
healing in 70% of patients with Crohn’s colitis and 54% with
ileitis (56). However, in a study of 139 IBD patients, rates of
response to thiopurines were highest in patients with ileal CD (27
responders vs. 2 non-responders, p = 0.003) (57). No difference
was found in response rate in other IBD subtypes, although
numbers were small.

Body mass index (BMI) has been associated with response,
surprisingly with opposite effects in UC and CD. In a large
retrospective study (n = 1176), patients with UC with a
BMI <25 had a lower flare rate after starting azathioprine
than those with BMI >25, albeit only in those with disease
duration <3 years (58). In CD, flare rates were similar between
BMI groups, however upon azathioprine withdrawal, patients
with a BMI <25 had higher flare rates than BMI >25 (58).
It is theorized that adipocytes and fatty tissue may play an
immunological role, involved in the physiologic and pathologic
regulation of the immune system and inflammation (59). BMI,
however, had no effect on thiopurine efficacy in a smaller
study (57).

With regard to clinical disease activity, it has been reported
that long term clinical response is improved in CD when
azathioprine is commenced when patients are in remission (58).
While this may reflect less severe disease, the same difference was
not seen in UC. In a Korean study published in abstract form
only, however, high Mayo score was associated with thiopurine
treatment failure in patients withUC (HR 1.28, 95%CI 1.04–1.58,
p = 0.023) (60). In addition, in a cohort of mixed IBD patients
response was associated with shorter duration of disease at the
time of commencing azathioprine than non-response (47.4± 6.6
months among responders, vs. 85.4 ± 14.6 in non-responders, p
= 0.007) (57), suggesting earlier introduction of thiopurines may
improve response.

In contrast to these studies, a prospective double-blind trial
of patients with a recent (<8 weeks) diagnosis of CD found that
rates of corticosteroid-free clinical remission at week 76 were
similar in azathioprine and placebo-treated patients (61). This
finding was supported by an open-label French study, in which
early (<6 months) administration of azathioprine was no more
effective than conventionalmanagement (62).Whilst the findings
of theses studies need careful interpretation (63, 64), the early

introduction of thiopurines cannot, therefore, be recommended
in all patients with CD.

Ethnicity may also play a role in thiopurine metabolism and
response. In an observational study of Chinese patients with UC,
standard dose thiopurine (>2 mg/kg/day) was compared to low
dose thiopurine therapy (<2 mg/kg/day). Cumulative relapse-
free survival rates were similar between groups, however a three-
fold increased risk of leucopenia was seen with standard dosing
(65). This may be reflective of variations in genotypes between
ethnic groups such as has been seen with variants of NUDT15,
associated with an increased risk of leucopenia, which are more
commonly found in Asian patients (22, 66).

The effect of gender has been conflicting across studies, and
likely plays no role. Female gender was found to be associated
with thiopurine response by some (57, 67), with the opposite
found in a pediatric population (68) and no difference in another
larger adult population (55).

Thiopurine Metabolites and TPMT
6-TGN levels have been shown to correlate with efficacy (69), and
levels ≥ 235 pmol/108 RBC are associated with clinical response
and remission in thiopurine monotherapy (16). Meta-analysis
data confirm this, showing a higher rate of clinical remission
in patients with a 6-TGN above this threshold compared with
below (62 vs. 36%, pooled OR 3.3, 95% CI 1.7–6.3; p < 0.001),
as well as higher TGNs in patients in clinical remission vs.
active disease (53, 70). However, it must be recognized that these
data are based upon studies which are small, heterogeneous and
generally retrospective (71) and a prospective multicenter study
of thiopurine weight-based dosed IBD patients found a poor
relationship between TGN and clinical response rate, with no
useful TGN cut-off determinable (72).

While a threshold of 235 pmol/108 RBC may be sufficient for
clinical remission, mucosal healing, increasingly recognized as
a more robust, and potentially disease-modifying endpoint (73,
74), may require higher levels. A recent multicenter, international
retrospective study showed that 6-TGN levels were associated
with mucosal healing, and that a level of 397 pmol/108 RBC was
86.7% specific but only 35.3% sensitive for mucosal healing (75).
However, higher 6-TGN levels are also associated with increased
rates of early or late myelotoxicity (23), particularly above 450
pmol/8 × 108 RBC (76), and so a fine balance exists between
response and toxicity. Interestingly, while a lower thiopurine
dose may be sufficient for Asian patients, as discussed above, it
is the 6-TGN and not the dose that was associated with mucosal
healing in a cohort including a large proportion of Chinese
patients (75).

The optimal use of thiopurine metabolite levels (6-TGN and
6-MMP) to maximize response, however, is a controversial area,
with practices varying across the world (77–79). Observational
data support the use of TGN monitoring in non-responding
patients, with TGN-directed dose optimization eliciting a
response rate of 87–90% compared to 18–33% inwhich treatment
was not TGN directed (p<0.001 for both studies) (77, 80). In
one retrospective study of 169 patients undergoing thiopurine
metabolite testing, themajority (52%) had subtherapeutic 6-TGN
levels and testing resulted in a change in patient treatment in 68%
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of patients overall and 86% of patients with active disease and
sub-therapeutic levels (81).

However, prospective randomized trials of TGN monitoring
vs. standard weight-based dosing in patients commencing on
thiopurines for IBD have failed to show benefit (82, 83). In a
study of 57 patients, rates of clinical remission in TGN-guided vs.
standard weight-based dosing groups were similar at 16 and 24
weeks (82). However, it should be noted that mean 6-TGN levels
in the standard group ranged between 216 and 266 pmol/108

RBC. This is in contrast to real world data suggesting 50%
of thiopurine-treated patients are not receiving the appropriate
weight-based dose, corresponding to 40–50% being underdosed
on TGN criteria (80, 81). In another prospective study of 50
patients, clinical remission rates at week 16 were higher in the
TGN-based vs. weight-based dosing. However, this failed to
achieve statistical significance, possibly due to underpowering
(40% vs. 16%, p= 0.11) (83).

Thiopurine metabolite testing is also helpful when preferential
6-MMP metabolism or “shunting” occurs. This phenomenon
is associated with reduced efficacy and increased side effects
(84). Fortunately, it can be overcome with a reduction in
dose of the thiopurine and the introduction of allopurinol
(85–87). Indeed, commencing low dose thiopurine-allopurinol
combination therapy at thiopurine initiation, regardless of TGNs,
may achieve higher response rates and reduced side effects (88).

While measuring 6-TGN may be useful for optimizing
response, it may also be useful for predicting a lack of response.
In patients with active disease on thiopurine therapy, persistence
despite a therapeutic 6-TGN is unlikely to result in success (80),
necessitating treatment alteration.

TPMT activity has also been assessed with regards to its
role in predicting response. In a study of 39 patients with IBD,
patients with TMPT activity <30.5 EU/mL were more likely to
have a clinical response to thiopurines than those with higher
TPMT activity (65 vs. 29%, p = 0.05), independent of TGN
values. In patients with TPMT activity <30.5 EU/mL and a
therapeutic 6-TGN, 100% responded compared to 25% with
higher TPMT activity and low 6-TGN (p = 0.01) (89). Others,
however, have found no relationship between TPMT activity
and clinical response (72). Given biologic plausibility as well as
evidence that low TMPT activity is associated with higher 6-TGN
(16), clinical response is more likely to be related to TGN than the
TPMT activity.

Genetic Predictors
TPMT polymorphisms have not been associated with response
(67, 90). In a prospective multicenter trial of 783 patients

randomized to either TPMT polymorphism pre-screening and
pre-emptive dose reduction vs. standard treatment, clinical
response rates did not differ (90).

A recent small pharmacogenomic study assessed the
role of polymorphisms of potential genes of relevance to
azathioprine metabolism on clinical response and toxicity
to azathioprine in IBD. GSTM1 deletion, a polymorphism
of the gene encoding Glutathione-S-transferase, the
enzyme responsible for conversion of azathioprine to 6-
mercaptopurine, was significantly associated with poor
response to azathioprine on multivariate analysis albeit
with a wide confidence interval (OR 9.22, 95% CI 1.081–78.62,
p= 0.042) (67).

Published in abstract form only, a predictive model for
achieving corticosteroid free remission with thiopurines at 26
weeks in a pediatric cohort of mixed IBD patients showed
promise. Using novel pharmacogenetic genome-wide association
study-identified loci, the previously identified IBD susceptibility
locus HLA-DRB-1, and clinical features including pANCA
positivity, disease duration, and diagnosis of UC as opposed to
CD, themodel had an area under the curve for corticosteroid-free
remission of 0.985 (68).

CONCLUSION

Thiopurines remain an effective treatment for IBD, with their
relative cost, decades of use and the ability to measure and
optimize metabolites maintaining their role in the biologic era.
As we strive for an era of personalized medicine and gain further
experience with our expanding therapeutic choices, our ability to
predict thiopurine response and toxicity, and to tailor therapy
accordingly, will determine its future role. While thiopurine
metabolite monitoring shows utility in those already commenced
on thiopurines, pharmacogenetic testing, which already plays a
significant role in preventing toxicity, shows some promise in
predicting response.
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