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The perturbed genes from transcriptomes are often presented in terms of relative

expressions against control samples. However, the probe signal values (PSVs) of

genes, implying protein abundances, are often ignored. Here, we explored the PSVs

in tuberculosis (TB)-relevant signature genes. The signatures from Mycobacterium

tuberculosis-infected THP-1 cells were defined as induced (TMtb-i, with a derived

TMtb-iNet) and repressed (TMtb-r). The signature from human blood was defined as

a pulmonary TB (PTB)-specific signature (PTBsig). The analysis showed that before

infection, TMtb-i and TMtb-iNet had lower PSVs and TMtb-r genes had average

PSVs. In the blood of healthy donors, PTBsig (divided into up-regulated PTBsigUp and

down-regulated PTBsigDn) displayed average PSVs. This was partly due to masking by

the cellular heterogeneity of blood; diverse PSVs were seen in constituent cell populations

(CD4/8+ T, monocytes and neutrophils). Specifically, the PSVs of PTBsigUp in the

neutrophils of healthy donors were higher (implying higher protein abundances), and

much higher in the neutrophils of PTB (implying excessive protein abundances). Based on

the PSV patterns of PTBsigUp in four cell populations, we identified three representative

highly homologous genes (FCGR1A, FCGR1B, and the pseudogene FCGR1CP, which

were often poorly distinguished), of which the summed PSVs were the highest in the

neutrophils of PTB patients and healthy donors. The three genes were all up-regulated

and responsive to chemotherapy in the blood of PTB, as validated in an RNA-seq-based

analysis. This PSV-based study confirms the excessive involvement of neutrophil FCGR1

in PTB.

Keywords: Mycobacterium tuberculosis, whole blood, neutrophils, gene signature, probe signal value, Fc

fragment of IgG receptor I

INTRODUCTION

Transcriptome profiling of tuberculosis (TB)-relevant samples, whether from humans (1–3), model
animals (4, 5), or immortalized cell lines (6), have been widely utilized to deepen our understanding
of TB in many respects, e.g., pathogenesis, diagnosis, and prognosis. The biological samples used
for transcriptome profiling have a wide range of purity, ranging from in vitro homogeneous cell
lines to highly heterogeneous in vivo/ex vivo samples. Clearly, the readout from the latter is the
sum from the various included kinds of cells, which contribute differently.
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Irrespective of whether a hybridization-based platform or
a sequencing-based platform (7, 8) has been used, the typical
premier readout/illustration of transcriptome data has been the
relative gene expression between groups of relevant samples
and pre-defined groups of control samples (9, 10). However, in
contrast to the relative expression, the actual probe signal values
(PSVs) of perturbed signature genes have generally been ignored,
even though the PSVs of the perturbed signature genes have
been reliably detected (technically unreliable/undetected ones
have been filtered out prior to bioinformatics analysis). In this
study, the term “probes” mean the fluorescently labeled nucleic
acids/genes comprising an RNA sample that would hybridize
to the corresponding gene-specific DNA fragment of a gene
array in a dose-dependent manner. The term PSV means the
normalized and then log2-transformed probe signal strength of
any gene in a gene array/sample. We hypothesized that analysis
of the PSVs underlying published gene signatures might reveal
additional biologically relevant information, since PSVs are taken
to broadly reflect the abundance of mRNA, which in turn is a
critical determinant of cognate protein abundance. Accordingly,
we explored and compared the PSVs of signature genes identified
from a homogeneous cell line as a model and then from
heterogeneous in vivowhole blood. The signatures from theMtb-
infected THP-1 cell line were previously identified by us as the
induced signature (TMtb-i, from genes that were induced/up-
regulated after Mtb infection) and its derived network-based
signature (TMtb-iNet) and a repressed gene signature (TMtb-
r) from genes that were repressed/down-regulated after Mtb
infection (6, 11). The signature from whole blood was the
pulmonary TB (PTB)-specific signature PTBsig identified, by
Berry et al. (10), through comparing the transcriptome data of
whole blood in PTB patients to those in latent TB-infected (LTBI)

FIGURE 1 | Box plots of the PSVs from THP-1 cells responding to Mtb infection. PSVs refer to the normalized and log2-transformed probe signals. Whole genome:

the entire set of technically reliable/detected PSVs in the gene array. TMtb-i: the induced genes of THP-1 responding to Mtb infection (6). TMtb-iNet: a network-based

signature derived from TMtb-i based on STRING protein–protein interaction information (11). TMtb-r: the repressed genes of THP-1 responding to Mtb infection (6). In

the box plots, the top and bottom of the box represent the first and third quartile, respectively, and the dividing line represents the median; the lowest horizontal bar

represents the smallest datum; the highest horizontal bar represents 1.5 times the third quartile. Each data value larger than 1.5 times the third quartile is shown as a

dot above the highest bar. The false discovery rate (FDR) of differences between signature PSVs and whole genome PSVs is shown above the 0 h data panel;

FDR ≤ 0.05 was regarded as indicating a statistically significant difference.

donors and healthy control (HC) donors. It was divided into
the up-regulated and down-regulated sub-signatures, termed
PTBsigUp and PTBsigDn, respectively (10, 12).

The cell line-derived signatures TMtb-i and TMtb-iNet
are interferon-related signatures and TMtb-r is a functionally
undefined signature (6, 12). The whole blood signature PTBsig is
similarly an interferon-inducible blood signature and is present
in neutrophils rather than in CD4+ T cells, CD8+ T cells, or
monocytes (10). In essence, the numerical predominance and
larger gene expression in neutrophils inevitably account for the
PTBsig in whole blood (12). However, neutrophils appear to
mainly contribute to pathology rather than protection against the
bacteria in TB. Furthermore, the determinants of the underlying
balance of innate and acquired immunity are not currently
resolved and are likely to be complex (13–15). This investigation
of PSVs indicates that a high degree of expression of Fc receptor
for IgG (i.e., Fc fragments of IgG receptor; FCGR1A, FCGR1B)
on neutrophils may be a key signature of pulmonary TB.

RESULTS

TMtb-i and TMtb-iNet Genes Are at Lower
PSVs (Implying Lower/Negligible Protein
Abundances) in Homogeneous THP-1 Cells
Prior to Mtb Infection, Whereas TMtb-r
Genes Are at Average PSVs
Figure 1 (also see Figure S1) shows that in uninfected THP-
1 cells (i.e., at 0 h), TMtb-i and TMtb-iNet genes displayed
significantly lower PSVs than the whole genome genes (false
discovery rate, FDR = 0 in each case). The PSVs of the
TMtb-r genes at 0 h were not significantly different from the
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whole genome genes (FDR = 1). Similar phenomena were
also observed in another dataset, in which THP-1 cells were
infected for 72 h (Figure S2). In summary, TMtb-i and TMtb-
iNet genes, as a whole, displayed lower than average PSVs
(implying lower/negligible protein abundances) in homogeneous
THP-1 cells prior to Mtb infection, whereas the TMtb-r genes,
as a whole, displayed average PSVs (implying average protein
abundances) in the THP-1 cells prior toMtb infection.

PTBsigUp and PTBsigDn Genes Display
Average PSVs (Implying Average Protein
Abundances) in the Highly Heterogeneous
Whole Blood of HC Donors
After exploring the PSVs of signature genes of TMtb-i, TMtb-
iNet, and TMtb-r identified in homogeneous THP-1 cells,
we then explored the PSVs of signature genes of PTBsig
identified in highly heterogeneous whole blood. This analysis
would clarify if signature genes, being divided into up-regulated
sub-signature (PTBsigUp) and down-regulated sub-signature
(PTBsigDn) genes, displayed similar patterns of PSVs in the
heterogeneous whole blood of HC donors as compared to the
PSVs of TMtb-i, TMtb-iNet, and TMtb-r genes in homogeneous
THP-1 cells.

Figure 2 (also see Figure S3) shows that in whole blood of
HC donors, the PSVs of the PTBsigUp and PTBsigDn genes
were not significantly different from the PSVs of the filtered
whole genome genes (FDR= 1). This finding was cross-validated
in an independent dataset (Figure S4). Thus, in contrast to the
findings from uninfected THP-1 cells (Figure 1), PTBsigUp and
PTBsigDn genes, as a whole, displayed average PSVs (implying
average protein abundances) in the whole blood of HC donors.
However, whole blood is highly heterogeneous in nucleated cell
content with various types of white cells in differing proportions.
Accordingly, analysis of PSVs in each of the four main white cell
populations separately might reveal differences that were masked
in the whole-blood data.

FIGURE 2 | Box plots of the PSVs of PTB-specific signature genes in human

whole blood. HC, healthy control donors; LTBI, latent TB infection donors;

PTB, pulmonary tuberculosis patients. Whole genome: the entire set of

technically reliable/detected PSVs in gene arrays of whole blood. PTBsigUp:

the up-regulated genes in the PTB-specific signature PTBsig. PTBsigDn: the

down-regulated genes in PTBsig (10). PSV, FDR, and the data plot method are

as described in Figure 1.

Separation of HC Blood Into Cell Types
Reveals Differences in PTBsigUp and
PTBsigDn PSVs Compared to Background
Whole Genome PSVs
As shown in Figure 3, in comparison to HC donors, the PSVs
of PTBsigUp genes in the CD4+ T cells and CD8+ T cells were
significantly lower (FDR = 0), whereas the PSVs of PTBsigDn
genes in the CD4+ T cells were significantly higher (FDR =

0.020) than the PSVs of the HC filtered whole genome genes.
The PSVs of PTBsigDn genes in the CD8+ T cells were not
significantly different from the HC whole genome PSVs (FDR =

0.291). In the monocytes, the PSVs of PTBsigUp genes were not
significantly different from the PSVs of HC filtered whole genome
genes whereas the PSVs of PTBsigDn genes were significantly
lower (FDRs = 1 and = 0, respectively). In the neutrophils,
the PSVs of PTBsigUp genes were statistically higher than the
PSVs of the corresponding HC filtered whole genome genes
whereas the PSVs of PTBsigDn genes were statistically lower
(both FDRs = 0). The data are available for visual comparison
in Figure S5. In summary, some huge and highly significant
differences from HC were seen in the PSVs (implying huge
differences in protein abundances) of PTBsigUp and PTBsigDn
genes within the four different cell populations, differences that
were masked in the average PSVs in the whole blood. Notably,
neutrophils displayed the highest PTBsigUp PSVs (implying the
highest protein abundances) compared to the abundances in the
other three kinds of cells.

The PSV Patterns of FCGR1 in the Four
Cell Populations Are Typical of the PSV
Patterns of PTBsigUp Genes in the Four
Cell Populations
The up-regulated sub-signature PTBsigUp genes displayed low
PSVs in the CD4+ and CD8+ T cells of HC donors, and
displayed average and higher PSVs in the monocytes and
neutrophils of HC donors, respectively (Figure 3). In the light of
this, we aimed to identify from the four cell populations those
genes that could be typical representatives of the PSV pattern
of PTBsigUp.

We used a combination of three selection criteria: median
PSVs in the neutrophils of HC donors (HC_neut) being ≥ 7;
log2 (fold change) between PTB_neut and HC_neut being ≥ 3;
median PSVs of HC_CD4 and HC_CD8 being ≤ 5. By these
criteria, we retrieved only two genes, i.e., FCGR1A and FCGR1B,
represented by the two gene-specific DNA fragments of the gene
array (i.e., ILMN_2176063 and ILMN_2261600, respectively).
Since FCGR1A, FCGR1B, and a pseudogene (FCGR1CP) are
highly homologous (Figure S6), we then aligned the sequences
of the two gene-specific DNA fragments of the gene array against
all human transcripts through the nucleotide BLAST (blastn)
of NCBI. The result showed that the two gene-specific DNA
fragments of the gene array were both highly homologous to
FCGR1A, FCGR1B, and the pseudogene FCGR1CP (Tables 1,
2), which indicated that each of the two gene-specific DNA
fragments of the gene array actually detected the summed
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FIGURE 3 | Box plots of the PSVs of PTB-specific signature genes in

separated cell populations of human whole blood. HC, healthy control donors;

PTB, pulmonary tuberculosis patients. Whole genome, PTBsigUp, and

PTBsigDn are as described in Figure 2. PSV, FDR, and the data plot method

are as described in Figure 1.

TABLE 1 | The sequence alignment of ILMN_2176063 against human transcripts

using nucleotide BLAST (blastn) of NCBI.

Description Identity

(%)

Accession

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ia (FCGR1A), transcript

variant X2, mRNA

100.00 XM_005244958.4

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ia (FCGR1A), transcript

variant X1, mRNA

100.00 XM_005244957.3

Homo sapiens Fc fragment of IgG

receptor Ic, pseudogene (FCGR1CP),

non-coding RNA

100.00 NR_027484.2

Homo sapiens Fc fragment of IgG

receptor Ia (FCGR1A), mRNA

100.00 NM_000566.3

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ib (FCGR1B), transcript

variant X3, misc_RNA

98.00 XR_001737041.1

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ib (FCGR1B), transcript

variant X2, misc_RNA

98.00 XR_001737040.1

Homo sapiens Fc fragment of IgG

receptor Ib (FCGR1B), transcript variant 4,

non-coding RNA

98.00 NR_045213.1

Homo sapiens Fc fragment of IgG receptor

Ib (FCGR1B), transcript variant 3, mRNA

98.00 NM_001244910.1

expressions of FCGR1A, FCGR1B, and FCGR1CP (the three
genes together are hereafter termed FCGR1). Hence, the two
gene-specific DNA fragments of the gene array revealed that
FCGR1 displayed higher PSVs in the whole blood of PTB patients
compared to its expression in the whole blood of HC and LTBI
donors, and this was markedly reduced during chemotherapy
(Figure S7). FCGR1 displayed low PSVs in the CD4+ and CD8+
T cells from both HC and PTB donors (Figure 4). In contrast,
it had higher PSVs in the monocytes and neutrophils of HC
donors and was present at much higher levels in the monocytes
and neutrophils of PTB patients, especially in neutrophils (i.e.,
5.1- and 13.4-fold higher, respectively, for ILMN_2176063; 4.8-
and 9.0-fold, respectively, for ILMN_2261600; Figure 4). By
implication, there may have been higher expression of the
actual receptor on neutrophils than even on monocytes of PTB
patients (i.e., 3.29-fold higher for ILMN_2176063 and 2.44-
fold for ILMN_2261600). In summary, transcriptome array-
based analysis revealed that FCGR1 can be regarded as a typical
representative of PTBsigUp genes in relation to the PSVs patterns
in the four cell populations (i.e., CD4+ T cells, CD8+ T cells,
monocytes, and neutrophils) and the majority of the receptor
may be on neutrophils.

Confirmation That FCGR1 Genes (i.e.,
FCGR1A, FCGR1B, and the Pseudogene
FCGR1CP) Are All Up-Regulated in the
Whole Blood of TB Patients
Definitive evidence for higher mRNA expression levels of

FCGR1A, FCGR1B, and the pseudogene FCGR1CP in the whole
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blood of PTB patients than in blood of LTBI and HC donors
(Figure S7) was sought by RNA-seq analysis. The promoter
sequences of the three genes (from −2,000 bp upstream to
50 bp downstream of the transcription start sites) are highly
homologous, indicating that the three genes likely undergo
concordant expression in response to a stimulus such as Mtb
infection (Figure S8). RNA-seq might accurately discriminate
differing expression of these highly homologous genes by

TABLE 2 | The sequence alignment of ILMN_2261600 against human transcripts

using nucleotide BLAST (blastn) of NCBI.

Description Identity

(%)

Accession

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ia (FCGR1A), transcript

variant X1, mRNA

100.00 XM_005244957.3

Homo sapiens Fc fragment of IgG

receptor Ic, pseudogene (FCGR1CP),

non-coding RNA

100.00 NR_027484.2

Homo sapiens Fc fragment of IgG

receptor Ib (FCGR1B), transcript variant 4,

non-coding RNA

100.00 NR_045213.1

Homo sapiens Fc fragment of IgG receptor

Ib (FCGR1B), transcript variant 3, mRNA

100.00 NM_001244910.1

Homo sapiens Fc fragment of IgG receptor

Ib (FCGR1B), transcript variant 1, mRNA

100.00 NM_001017986.3

Homo sapiens Fc fragment of IgG

receptor Ia (FCGR1A), mRNA

100.00 NM_000566.3

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ib (FCGR1B), transcript

variant X3, misc_RNA

98.00 XR_001737041.1

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ib (FCGR1B), transcript

variant X2, misc_RNA

98.00 XR_001737040.1

PREDICTED: Homo sapiens Fc fragment

of IgG receptor Ib (FCGR1B), transcript

variant X1, mRNA

98.00 XM_017000661.1

exploiting differences such as single-nucleotide polymorphisms
and/or nucleotide insertion/deletions. For this purpose, we
utilized an RNA-seq-based whole blood transcriptome dataset
from LTBI donors who had eventually displayed clinical PTB
(tagged as progressors) and LTBI donors who did not display
clinical PTB (tagged as LTBI controls) (16). As shown in
Figures 5A–C and Figure S9, compared to LTBI controls, the
expressions of FCGR1A, FCGR1B, and FCGR1CP were all
increasing when progressors were approaching clinical TB and
decreasing when progressors were undergoing chemotherapy. In
comparison to the median expression in LTBI controls, FCGR1A
had the highest and FCGR1CP had the lowest levels (Figure 5D
and Figure S10). In conclusion, all three FCGR1 genes displayed
up-regulation in the whole blood of PTB patients.

DISCUSSION

This investigation appears to confirm our hypothesis: the
customary focus on relative expressions between PSVs in
transcriptome arrays, rather than on the absolute values of the
PSVs, can lead to loss of meaningful information. Although
transcript levels by themselves are not sufficient to predict
protein levels in many scenarios (17, 18), they are generally
accepted to provide a convenient guide to cell phenotype
changes. Accordingly, in interpreting the results, we have
extrapolated from PSVs, through implied mRNA levels, to
potential protein levels.

The concept that analysis of PSVs could be revelatory was
first validated by the re-analysis of the published data from
TB-infected THP-1 cell line. As might be expected, significant
differences in PSVs were only revealed when the up-regulated
and down-regulated signature genes were analyzed separately;
the PSV differences otherwise tended to cancel out. The genes
that were previously shown to be up-regulated in defining
the signature of TB infection (TMtb-i) were here found to be
expressed at below-average levels before infection (Figure 1).
This was consistent with the mRNA from these signature genes

FIGURE 4 | Box plots of the PSVs of FCGR1 in the separated blood cells. FCGR1 was revealed by signals from ILMN_2176063 (A) and ILMN_2261600 (B).

HC_CD4, CD4+ T cells isolated from the whole blood of HC donors; PTB_CD4, CD4+ T cells isolated from the whole blood of PTB patients; other abbreviations are

similarly arranged.
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FIGURE 5 | The relative expressions of FCGR1 in the whole blood of LTBI progressors compared to the whole blood of LTBI controls. (A–C) The relative expressions

of FCGR1A, FCGR1B, and FCGR1CP, respectively. Each data point represents the PSV from a single individual: LTBI controls were HC and LTBI non-progressors,

plotted in arbitrary sequence from left to right; PSVs from progressors were synchronized to the time of PTB diagnosis, with positive value representing days prior to

PTB diagnosis and negative value denoting days post PTB diagnosis. (D) The PSVs of FCGR1A, FCGR1B, and FCGR1CP relative to the median PSV of FCGR1A in

LTBI controls. The line in each panel represents the moving average trend line with the interval of 15 (i.e., averaging adjacent 15 data points).

being below the levels needed for translation into protein before
infection. For example, CCL1, IL11, CXCL10, CCL8, and CXCL9
are some of these up-regulated signature genes and the cognate
proteins in the supernatant of Phorbol 12-myristate 13-acetate
(PMA)-differentiated THP-1 cells were barely detectable in a
human inflammation antibody array (19). The finding that the
mean PSV of the down-regulated signature genes (TMtb-r) was
substantially below average after infection suggests that some
of these mRNA levels may have dropped below those needed
for translation.

In view of the derivation of the PTBsig from whole human
blood, it was no surprise to see that the mean PSVs of
PTBsigUp and PTBsigDn were significantly different from the
average background in PTB (Figure 2). However, much bigger
differences, including differences in HC donors, were revealed
when data for separate cell types were analyzed (Figure 3).
The concealment in whole blood was largely a consequence of

the masking effect imposed by differences of opposite polarity
in the different cell types. Furthermore, the signatures were
evident in HC donors also, where the pattern was similar but
of smaller magnitude. The biggest differences were evident
in the neutrophils of HC donors, presumably arising through
stimulation by cytokines such as IFN-g and G-CSF since un-
stimulated neutrophils express little if any surface FCGR1 (20–
22). We interpret the presence of the signature in the PSV data
from HC subjects as evidence of a background of responses to
other infections. This may perhaps limit the practical utility of
whole signature PSV data in clinical applications.

However, the selection criteria that we applied to find themost
representative PSV signals in the signature led to identification of
FCGR1 as the most robust and analysis of PSVs of the isomers
of this gene in the data from separated cell types revealed very
large and highly significant differences between HC and PTB
datasets (Figure 4). The greatest difference between HC and
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PTB was in the neutrophil data where, for ILMN_2176063,
the PSV of PTB was over 13-fold higher than the PSV of
HC. This may point to a practical utility since, even in whole
blood data, the PSV of FCGR1 increased substantially as the
status of LTBI transitioned into active PTB disease (Figure 5).
It is notable that the up-regulation of FCGR1A and/or FCGR1B
has been repeatedly reported as a component of human TB
signatures (23–26). Furthermore, recently, FCGR1A was found
among blood RNA signatures that prospectively discriminated
controllers from progressors early after low-dose Mtb infection
of cynomolgus macaques (27). However, a caveat is indicated
regarding extrapolation from the mRNA and protein levels of
FCRG1. The reported FCGR1A and/or FCGR1B signals from
high-throughput approaches/platforms reflect a combination
of FCGR1A, FCGR1B, and FCGR1CP together since they are
highly homologous in their promoter regions (Figure S8) and
mRNA sequences (Figure S6). Neither mRNA nor protein
isomers (Figure S11) were distinguished by the gene arrays
or commercial antibodies employed in the various studies. A
possible modulatory effect of pseudogene FCGR1CP on the final
expression of the receptor remains to be explored. Similarly,
because there are three highly homologous genes/pseudogenes
in the human genome (all located in chromosome 1), whereas
there is only one (Fcgr1 annotated as human FCGR1A ortholog)
in mouse genome (located in chromosome 3; Table S1),
the mouse model is not ideal for precise decipherment of
potential functional differences of the three human genes post
Mtb infection.

Dozens of host-response-based gene signatures, which were
identified from human whole blood or peripheral blood
mononuclear cells (PBMCs), have been reported to have
potential for human TB diagnosis (28). Additional analyses,
based on PSVs, could imply/identify the cell types in which
the signature genes were sufficiently changed for alteration
of cell function. This would aid our limited understanding
of TB immunity and immunopathology. It may also guide
the cell type-specific implementation of the gene signatures in
clinical settings. The role of neutrophils in TB is complex and
is likely to vary at different stages of infection and disease
(29). Despite their numerical predominance, the functional
significance of circulating neutrophils with presumptive high
levels of expression of FCGR1 is not known (30). If they reflect
the status of neutrophils within TB lesions, then the abundance
and high affinity of this IgG receptor may have a key involvement
in modulation of innate and acquired immunity in addition to
pathology of PTB (31). The predominant infected phagocytes
in the airways of TB patients are neutrophils (14) and they
are associated with enhanced TB pathology (13). Their FCGR1
receptors may facilitate the phagocytosis that is followed by rapid
intracellular replication ofMtb and cell necrosis (15). In addition,
the cross-linking of the abundant high-affinity receptors by
antigen–antibody complexes may generate a cytokine storm that
also impairs acquired immunity.

In conclusion, PSVs-based analysis implies an excessive
involvement of neutrophil FCGR1 in the impaired balance
between protection and pathology in TB.

METHODS

The Transcriptome Datasets Used in This
Study
A total of six publically available gene expression datasets with
NCBI GEO (32) accession numbers GSE29628 (6), GSE19439
(10), GSE19443 (10), GSE17477 (33), GSE42830 (34), and
GSE79362 (16) were utilized in this study.

GSE29628 contains time-course (i.e., 0, 4, 18, and 48 h)
transcriptome data of human macrophage-like cells (THP-1 cells
treated with PMA) that had then been infected by the Mtb
lab strain H37Rv or with one of 11 different Mtb W-Beijing
strains (6). The array platform of GSE29628 is Affymetrix Human
Genome U133 Plus 2.0. Based on the dataset GSE29628, we
previously reported a highly prominent induced/up-regulated
interferon-related gene signature, termed TMtb-i, in addition
to a repressed/down-regulated, function-undefined, minor gene
signature, termed TMtb-r. Based on STRING protein–protein
interaction information (35), we further refined a network-based
signature TMtb-iNet from TMtb-i (11).

GSE19439 contains transcriptome data of whole blood from

HC donors, LTBI donors, and PTB patients, who were recruited

from London, UK. The array platform of GSE19439 is Illumina
HumanHT-12 V3.0 expression beadchip. It served as the training
set, and is a SubSeries of SuperSeries GSE19491 (10). Only
GSE19439 was utilized in this study because the reported PTB-
specific blood signature (PTBsig) was defined from GSE19439,
and PTBsig could readily distinguish PTB patients from LTBI
and/or HC donors in the other two SubSeries of GSE19491
(which served as test set and validation set).

GSE19443 contains transcriptome data of four cell
populations (i.e., CD4+ T cells, CD8+ T cells, monocytes,
and neutrophils) separated from whole blood of HC donors and
PTB patients who were recruited from London, UK. The array
platform of GSE19443 is the same as that of GSE19439 (i.e.,
Illumina HumanHT-12 V3.0 expression beadchip). GSE19443
served as test set_separated, and is also a SubSeries of SuperSeries
GSE19491 (10).

GSE17477 contains the transcriptome data of THP-1 cells,
THP-1 cells infected with H37Rv (72 h post-infection), THP-
1 cells treated with IFN-γ (2 h), or THP-1 cells infected with
H37Rv (72 h post-infection) and then treated with IFN-γ (2 h)
(33). The array platform of GSE17477 is Affymetrix Human
Genome U133A 2.0, of which the gene-specific DNA fragments
are identically represented on Affymetrix Human Genome U133
Plus 2.0 used in GSE29628.

GSE42830 contains the transcriptome data of whole blood
from HC donors, TB patients, sarcoid patients, pneumonia
patients, or lung cancer patients (34). The platform used for
GSE42830 is Illumina HumanHT-12 V4.0 expression beadchip,
which shares a majority of gene-specific DNA fragments with
the Illumina HumanHT-12 V3.0 expression beadchip used in
GSE19439 and GSE19443.

GSE79362 contains RNA-seq-based transcriptome data of
whole blood from LTBI controls (people who did not display
clinical PTB during the period of investigation after diagnosis)
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and progressors (LTBI donors who displayed clinical PTB
at a later time) (16). See the original research for detailed
information of RNA sequencing and the alignment of sequence
reads against the human genome (16). The gene expression
abundance wasmonitored based on splice junction counts, which
quantify the relative frequency of specific RNA splicing events of
expressed genes.

TB-Relevant Gene Signatures and PSV
Analysis
The PSVs of published gene signatures from THP-1 cells (i.e.,
TMtb-i, TMtb-iNet, TMtb-r) together with the PSVs in control
THP-1 cells prior toMtb infection were compared to the PSVs of
their cognate filtered whole genome genes in the control samples
(6). Likewise, the PSVs of gene signatures PTBsigUp (the up-
regulated sub-signature of PTBsig) and PTBsigDn (the down-
regulated sub-signature of PTBsig) (12) together with their PSVs
in control samples (whole blood of HC donors) were compared to
the PSVs of their cognate filtered whole genome genes in control
samples (10). Since there might be multiple gene-specific DNA
fragments for a single gene in a gene signature, we applied the
PSV analysis on the basis of an individual gene-specific DNA
fragment for each gene. See the original research (6, 10) for
the detailed procedures of normalization of transcriptome data
and the generation of filtered whole genome gene data. In brief,
THP-1-relevant transcriptome data (i.e., dataset GSE29628) were
normalized using Robust Multi-array Averaging (RMA) with
quantile normalization in R (Bioconductor) (36). Then, gene-
specific DNA fragments that had PSVs consistently below the
95th percentile of all the “Absent” call-flagged signals of the entire
dataset were filtered out (6). Illumina BeadStudio software and
GeneSpring GX software were utilized for the normalization of
whole blood-relevant transcriptome data (i.e., GSE19439) and
of the separated cell populations-relevant transcriptome data
(i.e., GSE19443). Any PSV < 10 was set to 10. A gene-specific
DNA fragment was retained when it was called “present” (signal
precision < 0.01) in >10% of all samples in GSE19439 and had
a minimum of 2-fold expression change compared to the median
intensity in >10% of all samples in GSE19439 (10).

The dataset GSE17477 (33) was utilized to cross-validate the
PSVs of TMtb-i, TMtb-iNet, and TMtb-r genes. The dataset
GSE42830 (34) was utilized to cross-validate the PSVs of
PTBsigUp and PTBsigDn genes. There are several datasets
addressing the transcriptome of THP-1 cells infected with
Mtb strains (e.g., GSE51029, GSE52819, GSE57028, GSE7870,
GSE15539, GSE17477, GSE19052, and GSE6209) and different
array platforms were used to generate these datasets. Different
array platforms may use different gene-specific DNA sequences
to quantify a gene, which might generate platform-specific
expression patterns for a gene. To minimize the platform-specific
inconsistent expression patterns, we chose the dataset GSE17477,
since its array platform was Affymetrix Human Genome U133A
2.0, of which the gene-specific DNA fragments are identically
represented on Affymetrix Human Genome U133 Plus 2.0. The
Affymetrix Human Genome U133 Plus 2.0 also contains all the
gene-specific DNA fragments of Affymetrix Human Genome
U133B and many additional gene-specific DNA fragments. The
dataset GSE17477 was normalized and filtered exactly the same

as for GSE29628 (6). For cross-validating the PSVs of TMtb-
i and TMtb-r, we focused on the transcriptome data of THP-1
cells or THP-1 cells infected with H37Rv. The genes of TMtb-i,
TMtb-iNet, or TMtb-r could be matched between GSE29628 and
GSE17477 through their IDs of gene-specific DNA fragments.

There are a few studies/datasets addressing the transcriptome
of PBMCs or whole blood from (pulmonary) TB patients
and/or HC donors (1). Of these datasets, only GSE42830 used
the Illumina HumanHT-12-relevant platform that contains the
transcriptome data of whole blood from both TB patients and
HC donors (34), and therefore could be used to validate the PSVs
of PTBsigUp and PTBsigDn genes. GSE42830 was normalized
and filtered the same way as for GSE19439 (10, 34). For cross-
validating the PSVs of PTBsigUp and PTBsigDn genes, we
focused on the transcriptome data of whole blood from HC
donors and TB patients. The genes of PTBsigUp or PTBsigDn
could be matched between GSE19439 and GSE42830 through
their IDs of gene-specific DNA fragments.

Also, we retrieved the training set from “GSE79362_
primarySampleJunctions.xlsx” and followed the published
normalization procedures to normalize the RNA splicing events
of expressed genes (16). The expression data of FCGR1 genes,
including FCGR1A, FCGR1B, and the pseudogene FCGR1CP,
were extracted from the normalized training set and their
expression in LTBI controls and progressors were analyzed.

Statistical Analysis
This approach was to test if signature genes, as a whole, displayed
lower, higher, or average PSVs, compared to the PSVs of filtered
whole genome genes. The reason for applying PSV analysis is
that PSVs could broadly reflect the abundances of mRNAs, which
in turn are critical determinants of cognate protein abundances.
We believe that the information of protein abundance in cells,
even before a stimulation (e.g., Mtb infection), could imply the
degree of functional involvement of that protein, whereas the
often adopted relative expression strategy, which just reflects
the relative fold change after a stimulation, simply ignores the
information of implied protein abundance.

An FDR was defined for assessing the significance of
differences (p-value) between datasets. FDR was calculated as
follows: 10,000 randomly sampled gene sets from cognate filtered
whole genome genes with the same set size as the gene signature
of interest were generated. Then, the PSVs of each of the 10,000
randomly sampled gene sets were iteratively compared to the
PSVs of signature genes using the Kolmogorov–Smirnov test (KS
test), a process that generated 10,000 p-values. The proportion of
p-values larger than the empirically determined value 0.0001 in
the 10,000 p-values was treated as the FDR. If the FDR was equal
to or <0.05, then the signature genes’ PSVs as a whole were said
to be significantly different from the PSVs of the filtered whole
genome genes.
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