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The Janus kinase (JAK)—Signal transducer and activator of transcription (STAT) pathway

is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting

the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic

strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA

has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and

upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed

published studies of jakinib effects on resolving synovial pathology in inflammatory

arthritis. We discussed the results of jakinibs on structural joint damage in clinical

trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo

synovial experimental models. We delved rigorously into experimental designs of in vitro

fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse

experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can

readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We

highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and

inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required

to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally

in current in vitro experimental designs, where inflammatory stimuli do not naturally clear

out with treatment as they do in vivo. While summarizing the broad knowledge of synovial

jakinib effects, our review uniquely challenges future study designs to better mimick the

jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium.

This can deepen our understanding of collective synovial activities of jakinibs and their

therapeutic limitations, thereby fostering jakinib development in arthritis.
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JAK-STAT SIGNALING PATHWAY AND JAK INHIBITORS

The Janus kinase (JAK)—Signal transducer and activator of transcription (STAT) signaling pathway
is a central signaling hub in human immune responses and cancer. This pathway transmits signals
from a plethora of growth factors [e.g., epidermal growth factor (EGF), platelet-derived growth
factor (PDGF)] and cytokines [e.g., interleukin-6 (IL-6), type I and II interferons (IFN), IL-7,
IL-15]. Cytokines and growth factors, their membrane-bound/soluble receptors and downstream
signaling events in the JAK-STAT pathway have been extensively covered elsewhere (1–3). Briefly,
the canonical JAK-STAT signaling pathway is initiated upon receptor ligation (with a cytokine
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or a growth factor) and dimerization followed by auto-
phosphorylation and activation of the receptor-associated JAKs.
Auto-phosphorylated JAKs phosphorylate cytoplasmic receptor
tails, which serve as docking sites for cytoplasmic STATs.
Upon phosphorylation by JAKs, STAT dimers translocate
to the nucleus, bind to specific promoter sequences, and
induce gene transcription. In mammals, different JAKs [JAK1-
3, Tyrosine kinase 2 (TYK2)] associate with distinct receptors
and preferentially phosphorylate different STATs. There are
seven STATs encoded in the human genome, including STAT1-
4, STAT5a, STAT5b, and STAT6. STATs form specific homo-
or hetero-dimers, thereby inducing different effector genes.
Individual STATs can be activated with multiple ligands
(heterogeneous signaling) and individual cytokines can activate
multiple STATs, albeit exhibiting a preference for a specific subset
of STATs. IL-6 (4) and oncostatin M (OSM) (5) prototypically
activate STAT3, whereas type I interferons primarily activate
STAT1 and STAT2 with a weaker activation of STAT4 (6). IFNγ

potently activates STAT1 with a weaker activation of STAT3 (7).
The activation of the JAK-STAT pathway is tightly controlled

at multiple steps of the signaling cascade. Diverse phosphatases,
including SHP1, SHP2, and DUSP2 remove phosphate groups
from phosphorylated receptors, JAKs and STATs (8, 9). The
protein inhibitors of activated STAT (PIAS) inhibit STAT
binding to target DNA sequences, control subcellular location
of STATs and facilitate post-translational modifications of STATs
(10). Additionally, suppressors of cytokine signaling (SOCS)
competitively inhibit binding of STATs to cytokine receptors
but act also as ubiquitin ligases, targeting the components
of the JAK-STAT pathway for proteosomal degradation (11).
The human genome encodes eight different SOCS proteins,
including SOCS1-7 and cytokine inducible regulator (CIS)
proteins (12). STATs positively regulate transcription of SOCS
genes, which creates a negative feedback loop in the JAK-
STAT signaling cascade, thereby enabling the fine-tuning of the
pathway outputs (13).

JAK-STAT pathway has been intensively studied in diverse
mouse models [as reviewed in (14, 15)] and human studies
(16). These studies showed that exaggerated or protracted JAK-
STAT signaling leads to aberrant development of hematopoietic
stem cells, hematological malignancies, and immunodeficiency
syndromes. Specifically, loss-of-function mutations in the JAK-
STAT pathway, e.g., in JAK3 gene, led to immunodeficiency
disorders (17, 18), whereas gain-of-function mutations, e.g., in
JAK2 gene, caused human lymphoproliferative diseases (19–21).
Additionally, the JAK-STAT pathway has been closely linked with
antiviral (22, 23) inflammatory and autoimmune responses in a
variety of human tissues and diseases (24–26).

The fundamental position of the JAK-STAT pathway at the
crossroad of inflammatory, autoimmune and cancer pathologies
has driven the discovery and therapeutic success of JAK
inhibiting drugs (jakinibs). In November 2011, ruxolitinib, the
potent inhibitor of JAK1 and JAK2, became the first approved
jakinib by the US Food and Drug Administration (FDA).
Ruxolitinib was authorized for the treatment of intermediate
and high-risk myelofibrosis and polycythemia vera in patients
with inadequate response or intolerance for hydroxyurea (27).

TABLE 1 | FDA-approved jakinibs for the treatment of autoimmune inflammatory

arthritis.

Jakinib Approved indications in patients

with inflammatory arthritis

Approval

status

Tofacitinib

JAK1,3 less JAK2

selective

5mg bi-daily

Adult patients with

moderately-to-severely active RA who

inadequately respond or are intolerant

to MTX. Tofacitinib may be used as

monotherapy or in combination with

MTX or other non-biologic DMARDs

Adult patients with active PsA who

inadequately respond/are intolerant to

MTX or other DMARDs

FDA approved

November 2012

FDA approved

November 2016

Baricitinib

JAK1,2 selective

2–4mg once daily

Moderately-to-severely active RA with

inadequate response to TNF

inhibitors, as monotherapy or in

combination with non-biologic

DMARDs

FDA approved

June 2018

Upadacitinib

JAK1 selective

15–30mg once daily

Moderately to severely active RA with

inadequate response/intolerance for

MTX

FDA approved

August 2019

Peficitinib

JAK pan-inhibitor

150mg once daily

RA (including prevention of structural

joint damage) in patients with

inadequate response to conventional

DMARDs

Approved in

Japan

March 2019

JAK1-3, Janus kinase 1-3; MTX, methotrexate; DMARDs, disease modifying

antirheumatic drugs; FDA, US Food and Drug Administration; RA, Rheumatoid arthritis;

PsA, Psoriatic arthritis.

In 2012, tofacitinib, the pan-JAK inhibitor that primarily inhibits
JAK1 and JAK3, and to a lesser extent JAK2, followed as the
second FDA-approved jakinib, and the first jakinib approved for
the treatment of RA (28) (Table 1). Since then, several other
jakinibs have entered clinical trials in patients with inflammatory
arthritis and other inflammatory diseases (e.g., ulcerative colitis,
psoriasis), as reviewed in Winthrop (29) and O’Shea and Gadina
(30). Tofacitinib has been FDA-approved for psoriatic arthritis
(PsA), whereas baricitinib (31) (the JAK1 and JAK2 inhibitor)
and upadacitinib (32) (the selective JAK1 inhibitor) have been
FDA-approved for RA (Table 1). Increased selectivity of the
second generation jakinibs like upadacitinib toward inhibiting a
single JAK can be beneficial, decreasing the possibility of jakinib-
driven side effects.

THE EFFECTS OF JAKINIBS ON
STRUCTURAL JOINT DAMAGE AND
SYNOVITIS IN RA CLINICAL TRIALS

The effects of jakinibs in inflammatory arthritis have been
tested in 100 registered clinical trials, of which 52 have been
completed. In these trials different jakinibs have been evaluated,
including tofacitinib (n = 48 clinical trials), baricitinib (n = 17),
upadacitinib (n = 16), filgotinib (n = 11), and peficitinib (n =

9) in combination with other disease modifying antirheumatic
drugs (DMARDs) or as monotherapy.

Here we reviewed the currently registered clinical trials on
jakinibs in RA (clinicaltrials.gov database), in which structural
joint changes or synovitis were assessed as an outcome using
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different imaging modalities. In the search, we used the
following keywords: tofacitinib, CP-690550, tasocitinib, CKD374,
baricitinib, INCB028050, LY3009104, upadacitinib, peficitinib,
ASP015K, filgotinib, GLPG0634, rheumatoid arthritis. We
identified four trials (Table 2), investigating the effects of
tofacitinib on structural joint damage in patients with RA.
Radiographic joint changes at baseline and during the study
were assessed using X-ray, ultrasound, or magnetic resonance
imaging (MRI).

The structural joint damage in ORAL Start (NCT01039688)
(33), ORAL Scan (NCT00847613) (34) and the NCT01164579
phase 2 study was assessed using the X-ray imaging and
the modified Total Sharp Scoring system (mTSS, range 0–
488). TSS is a sum of erosion and joint space narrowing
scores on 16 joints of the hand and six joints of the foot.
In ORAL Scan trial (NCT00847613), patients with RA, who
had inadequate response to methotrexate (MTX) monotherapy,
received tofacitinib 5 or 10mg BID (bi-daily) on background
MTX. Tofacitinib 10mg BID significantly improved mTSS at
month 6 compared to MTX only (p < 0.05). In the ORAL
Start (NCT01039688), mean changes in mTSS at month 6 were
significantly smaller in MTX-naïve patients with RA who were
receiving tofacitinib 5 and 10mg BID compared with MTX
only group (p < 0.001). The phase 2 NCT01164579 study used
MRI and x-ray imaging to evaluate the effects of tofacitinib on
structural joint damage in MTX-naïve patients with an early
active RA (35). Treatment of these patients with tofacitinib
(10mg BID monotherapy or combined with MTX) improved
the Rheumatoid Arthritis Magnetic Resonance Imaging Score
(RAMRIS) bone marrow oedema at month 6, the automated
RAMRIS (RAMRIQ) synovitis score at month 3 as well as
RAMRIS and RAMRIQ erosive damage scores at month 6 and
12 when compared to MTX monotherapy. Numerical changes in
mTSS, joint space narrowing and erosions at month 6 and 12 as
compared to baseline were small in all three patient groups.

In a pilot, open-label, phase IV study (NCT02321930),
synovitis was assessed in patients with RA, who were treated with
tofacitinib 5mg BID, using ultrasound assessment of 30 joints.
The power Doppler synovitis score (PDUS, on 30 joints) and
the gray scale synovial hypertrophy score (GSUS, on 30 joints)
showed significant improvement from baseline (p < 0.0001) at
12 weeks of tofacitinib therapy.

A randomized, double blind, placebo-controlled, phase II
study (A3921073, NCT00976599) (36) involved patients with
active RA who inadequately responded to MTX and started
the treatment with tofacitinib 10mg BID on background MTX.
Synovial biopsies taken at 28 days of tofacitinib therapy showed
significant decrease in the expression of matrix metalloproteinase
1 (MMP1), MMP3 and interferon-regulated genes such as C-
C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine
(CXCL10), C-X-C chemokine 13 (CXCL13). Meanwhile, the
expression of interleukin 6 (IL-6), interferon-stimulated gene
15 (ISG15), and tumor necrosis factor (TNF) mRNAs was not
altered in comparison with their expression in the baseline
biopsies (taken 4–10 days before starting tofacitinib). Total
inflammation score and the abundances of CD3+, CD20+,
and CD68+ sublining macrophages did not change with 28

days of therapy. Clinical improvement as defined by disease
activity score 28 (DAS28) at 4 months of therapy (NCT00413699)
correlated strongly with the change in synovial pSTAT1 and
pSTAT3 amounts at day 28 vs. baseline.

Overall, these studies demonstrated that tofacitinib—
in combination with MTX or as monotherapy—decreased
the progression of structural damage in patients with RA.
Tofacitinib led to an early reduction in synovitis and inhibited
the progression of structural joint damage in patients with
early active RA. Early synovial responses to tofacitinib
appeared to be transcriptional and not cellular (=not altering
abundancy of major cell types) (36), and early blockade of
STAT phosphorylation could contribute importantly to clinical
improvement at 4 months of tofacitinib therapy.

JAKINIB EFFECTS ON SYNOVIAL
EXPLANTS FROM PATIENTS WITH
INFLAMMATORY ARTHRITIS

Synovial explants maintain synovial architecture and cell-to-
cell contacts, closely mimicking synovial cellular networks
in the inflamed joints (37). Treatment of synovial explants
from RA patients with tofacitinib (1,000 nM, 72 h) inhibited
the production of IL-6, IL-8, IL-1β, intercellular adhesion
molecule 1 (ICAM1), vascular endothelial growth factor (VEGF),
tyrosine kinase with Ig and EGF (epidermal growth factor)
homology domains (TIE-2) and MMP1 as well as decreased
invasion and outgrowth of synovial fibroblasts from synovial
explants (37). Additionally, tofacitinib (1,000 nM, 72 h) showed
beneficial effects on synovial explants from PsA patients. Synovial
biopsies from PsA patients exhibited increased pSTAT1 and
pSTAT3 (38) and 1,000 nM tofacitinib blocked phosphorylation
of STAT3 and STAT1. This was accompanied by an increase
in the JAK-STAT pathway inhibitors (SOCS3, PIAS3) and
a decrease in IL-6, IL-8, and monocyte chemoattractant
protein 1 (MCP1), but not IL-10 nor interferon gamma-
induced protein 10 (IP-10). Additionally, tofacitinib partially
inhibited NF-kBp65 and decreased MMP2, MMP9 and MMP3
proteins without affecting tissue inhibitor of metalloproteinases
3 (TIMP3). Similar tofacitinib effects on pSTAT3, pSTAT1,
PIAS3, and SOCS3 proteins were observed in PsA synovial
fibroblasts, with concomitant attenuation of migration and
invasion (48 h) of synovial fibroblasts (38). These results
suggested that tofacitinib might exhibit synergistic inhibitory
effects on synovial pathology in RA by directly inhibiting
JAKs and upregulating the endogenous inhibitors of the
JAK-STAT pathways.

JAKINIB EFFECTS IN SYNOVIAL
FIBROBLASTS

Inflamed Synovial Microenvironment
Activates the JAK-STAT Signaling in
Synovial Fibroblasts
Synovial fibroblasts, stimulated with TNF, IL-1α, or Poly(I:C)
secreted a pattern of cytokines which correlated significantly
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TABLE 2 | Clinical trials in which jakinib effects were assessed on structural joint changes and synovitis.

Study Treatment arms (Background therapy) Number of participants, study duration

Imaging modality

Structural endpoints

Oral Scan (NCT00847613)

Interventional, double-blind,

parallel-group, placebo-controlled,

phase 3

tofacitinib 5mg BID

tofacitinib 10mg BID

Placebo to tofacitinib 5mg

Placebo to tofacitinib 10mg (MTX)

797 participants, 98.7% with structural data, 24 months

X-ray

mTSS at month 6, 12, and 24

Change from baseline in mTSS at month 6

Oral Start (NCT01039688)

Interventional, phase 3

tofacitinib 5mg BID

tofacitinib 10mg BID

MTX

956 participants (93.0% with structural data), 6 months

X-ray

mTSS at month 6

Changes from baseline in mTSS at month 6

Effects of tofacitinib on magnetic

resonance imaging-assessed joint

structure in early RA (NCT01164579)

Interventional, open-label, phase 4

tofacitinib 10mg BID + MTX

tofacitinib 10mg BID + placebo MTX

Placebo tofacitinib + MTX

109 participants, 12 months

X-ray, MRI

Change from Baseline to Month 1, 3, 6, 12 in OMERACT RAMRIS Synovitis,

Bone Marrow Oedema, Erosions (Wrist, MCP)

mTSS, erosion score, joint space narrowing at month 6, 12.

Change from baseline in mTSS, erosion score, joint space narrowing at

month 6, 12

Musculoskeletal ultrasound

assessment of therapeutic response

of tofacitinib in RA patients

(NCT02321930)

Interventional, open-label, phase 4

tofacitinib 5 mg BID

(DMARDs/prednisone <10 mg)

37 participants, 3 months

Ultrasound

Baseline PDUS and GSUS,

Change (week 2, month 3) in PDUS, GSUS

BID, bi-daily; DMARDs, disease modifying antirheumatic drugs; MTX, methotrexate; PDUS, The power Doppler synovitis score; GSUS, gray scale synovial hypertrophy score; MRI,

magnetic resonance imaging; OMERACT, The Outcome Measures in Rheumatology Clinical Trials; RAMRIS, Rheumatoid Arthritis Magnetic Resonance Imaging Score; mTSS, modified

Total Sharp Scoring system; MCP, metacarpophalangeal; RA, rheumatoid arthritis.

with the cytokine profile in synovial fluid from RA patients
(39). This suggested that synovial fibroblasts have a substantial
role in shaping the inflamed microenvironment in RA joints
(39). Specifically, the top six induced cytokines, the so called
six cytokine set [IL-6, regulated upon activation, normal T cell
expressed and presumably secreted (RANTES), growth regulated
oncogene-alpha (GRO-α), MCP-1, IL-8, and IP-10] were among
the 25% most abundant cytokines in RA synovial fluid (out of
48 measured) (39). Most of these molecules, in particularly IL-6,
RANTES, MCP-1, and IP-10 closely associate with the JAK-STAT
signaling in synovial fibroblasts (Figure 1). Synovial fibroblasts
activated the JAK-STAT signaling pathways upon exposure to
RA synovial fluid (40, 41), immune/inflammatory cell-derived
cytokines [OSM (42), TNF, IFNγ] as well as autocrinally-
produced IL-6 and type I interferons (Figure 1).

This indicates that synovial fibroblasts represent a prominent
synovial source of the JAK-STAT pathway-associated cytokines
and that a complex JAK-STAT pathway-guided crosstalk between
synovial fibroblasts and immune cells can aggravate synovial
pathology in RA. Thus, the efficacy of jakinibs in RA could

reflect their concomitant actions on individual synovial cell types

as well as their networks in RA. Jakinib actions on immune
cells in inflammatory arthritis have been extensively studied and

reviewed elsewhere (43). Here we focused on reviewing jakinib
actions on synovial fibroblasts, exposed to a diversity of pro-
inflammatory stimuli, as well as on their crosstalk with immune
cells (Figure 1, Supplementary Table 1). Collective activities of
jakinibs on synovial cellular networks, however, remain to
be explored.

Jakinibs Reduce the Pro-Inflammatory
Responses of Synovial Fibroblasts to IL-6
Family of Cytokines
OSM, a member of the IL-6 family of cytokines, has been
implicated in the pathogenesis of RA synovitis (44). In
synovial fibroblasts, OSM activated the JAK-STAT (45) signaling
pathway with early phosphorylation of JAK1 (Y1022/1023), JAK2
(Y1007/1008), JAK3 (Y980), STAT1 (Y701), STAT3 [Y705 (37,
45, 46)] and STAT5 (Y694) (45, 46) and concomitant increase in
MCP1 protein secretion, IL-6 mRNA expression and IL-6 protein
secretion (37) (Figure 1). Whereas, JAK1 and JAK2 are known to
associate with OSM receptor complex, JAK3 interacts specifically
with the common γ chain of the receptors for interleukins 2, 4, 7,
9, and 15 (47) but can be phosphorylated also by T-cell receptor
independently of γ chain receptors (48). A specific mechanism
of the early JAK3 activation in the OSM-stimulated synovial
fibroblasts requires further investigation.

Tofacitinib efficiently decreased the OSM-induced production
of IL-6 and MCP1, pointing to a pivotal involvement of the
JAK-STAT pathway (37, 45) in the expression of these cytokines
in synovial fibroblasts (Figure 1). Given the abundancy of IL-
6 and MCP1 in RA synovial fluid and the role of synovial
fibroblasts in their production (39), jakinibs might importantly
diminish the pro-inflammatory cytokine content in synovial
fluid in RA. Overall, baricitinib and tofacitinib exhibited similar
pan-JAK inhibitory effects in the OSM-stimulated synovial
fibroblasts with inhibition of pJAK1-3 and pSTAT1, 3 and 5
(45, 46). Distinct JAKs and STATs, however, exhibited differential
baricitinib/tofacitinib sensitivity in the OSM-stimulated synovial
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FIGURE 1 | Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) signaling pathway and its inhibition with jakinibs in synovial fibroblasts. The

figure shows direct and indirect signaling pathways, involved in the JAK-STAT signaling and their targeting with jakinibs in synovial fibroblasts. Only pathways with

mechanistic evidence and jakinibs with experimental evidence in synovial fibroblasts are included in the figure. Upadacitinib has not yet been experimentally explored

in synovial fibroblasts and is therefore not shown in the figure. Direct signaling through the JAK-STAT pathway can be induced with type I and type II interferons (IFN)

and interleukin-6 (IL-6) family cytokines [oncostatin M (OSM), IL-6] upon ligating their respective receptors. This is followed by auto-phosphorylation of distinct JAKs

that phosphorylate specific subsets of STATs. Tumor necrosis factor (TNF) indirectly activates the JAK-STAT pathway by increasing the release of IL-6 and IFN beta

(IFNβ) from synovial fibroblasts with subsequent autocrine activation of IL-6 family and IFN Type I receptor complexes, respectively. sIL-6R: soluble IL-6 receptor;

TNFR1: TNF receptor 1; IFNα: interferon alpha; NF-κB: nuclear factor-kappa B; AP-1: activator protein 1; TAK1: transforming growth factor beta-activated kinase 1;

IKK: inhibitory kappa B kinase; SOCS3: suppressor of cytokine signaling 3; IRF1: interferon response factor 1; CXCL8-11: chemokine (C-X-C motif) ligand 8–11;

IP-10: IFN-γ-inducible protein 10; TNFSF13B: tumor necrosis factor ligand superfamily member 13B, also known as BAFF, BAFF: B-cell activating factor; PIAS3:

protein inhibitor of activated STAT3; CCL2: chemokine (C-C motif) ligand 2; MCP-1: monocyte chemoattractant protein 1; SAA: serum amyloid A; MMP 1,3: matrix

metalloproteinase 1,3; ECM: extracellular matrix; INCBO28050: baricitinib. The figure was created with BioRender.

fibroblasts. Specifically, a prominent decrease in pJAK3 and
pSTAT5 was achieved at 100 nM tofacitinib/baricitinib and of
JAK2 at 300 nM tofacitinib/baricitinib, whereas inhibition of
pJAK1 and pSTAT3 required high tofactinib/baricitinib doses
(500, 1,000 nM) (45, 46). These concentrations were higher than
the maximal plasma drug concentrations (<200 nM) in patients
with RA, who received therapeutic baricitinib/tofacitinib doses.
This implicated that the inhibition of OSM release from immune
cells in vivomight be required for a complete blockade of STAT3
phosphorylation in synovial fibroblasts.

In contrast to pan-JAK effects of tofacitinib and baricitinib,
the JAK3-specific inhibitor PF956980 selectively blocked the
OSM-induced pJAK3, pSTAT1, and pSTAT5, but had no effect
on pJAK1, pJAK2, and pSTAT3 (46). This suggested that

the blockade of pJAK1 and pJAK2 is needed for a successful
inhibition of the OSM-induced STAT3 phosphorylation
(Figure 1). While tofacitinib and baricitinib decreased the
OSM-induced MCP1 and serum amyloid 1, 2 (SAA1, 2)
mRNAs in synovial fibroblasts, PF956980 reduced MCP1
only, corroborating the central role of pSTAT3 in the OSM-
driven induction of SAA mRNAs in synovial fibroblasts (46).
While synovial pJAK3 predominantly localized to CD3+ T
cells, vimentin-expressing synovial fibroblasts were also JAK3
positive (46), supporting the role of JAK3 inihbition in synovial
fibroblasts in RA.

IL-6 is a major pro-inflammatory cytokine in the pathogenesis
of RA and IL-6 targeting biologicals represent an important
pillar in the treatment of RA. Synovial fibroblasts do not express
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membrane IL-6 receptor but transmit the pro-inflammatory IL-
6 signaling primarily via ligation of IL-6 with its soluble IL-
6 receptor (sIL-6R), which is abundantly present in RA joints
(Figure 1). Stimulation of synovial fibroblasts with IL-6/sIL-
6R led to an early phosphorylation of JAK2 (Y1007/8) and
STAT3 (Y705) with concomitant increase in SAA1, 2 mRNAs;
and tofacitinib (100, 500 nM) efficiently blocked these responses
(49). Likewise, JAK2 inhibitor AG490 decreased the IL-6/sIL-6R-
induced phosphorylation of STAT3 and the expression of SAA1,
2 mRNA. These experiments pointed to a key role of the IL-6/sIL-
6R-JAK2-STAT3 axis in induction of SAA mRNA in synovial
fibroblasts (Figure 1).

Like OSM, inhibition of the IL-6-induced pSTAT1, pSTAT3,
and MPC1 was dose dependent in synovial fibroblasts and
pSTAT1 (IC50 = 23 nM) and pSTAT3 (IC50 = 77 nM)
(50) exhibited differential sensitivity to tofacitinib in synovial
fibroblasts. Nonetheless, strong inhibitory effects on IL-6
responses were observed at 100 nM tofacitinib, indicating that the
IL-6-driven, and the OSM-induced responses are differentially
responsive to JAK inhibition in synovial fibroblasts. Other
factors, like the stimulating concentration of IL-6 and OSM,
could also contribute to these differential effects. In line with this,
10-fold higher concentrations of tofactinib and baricitinib (1,000,
5,000 nM) were required for decreasing the OSM-induced IL-6
release from synovial fibroblasts when synovial fibroblasts were
stimulated with 100 ng/ml of OSM (51), compared to 20 ng/ml
OSM (45).

A variety of stimuli, including TNF, can potently induce
IL-6 production in synovial fibroblasts, and jakinibs could
indirectly interfere with the TNF-induced autocrine IL-6
responses by blocking the IL-6/sIL-6R-JAK1, 2-STAT3 signaling
axis (Figure 1).

Jakinibs Target the TNF-Induced Interferon
Responses in Synovial Fibroblasts
TNF plays a principal role in the pathogenesis of RA. Stimulation
of synovial fibroblasts with TNF activates signaling through
a variety of interconnected intracellular networks, leading to
abundant release of pro-inflammatory mediators and matrix
remodeling enzymes. Many pathways, including mitogen-
activated protein kinase [MAPK – p38, c-JUN] and NF-κB
pathways are rapidly activated in the TNF-stimulated synovial
fibroblasts (at 1 h after stimulation) (39). The TNF-associated
cytokine signature in supernatants of synovial fibroblast cultures
significantly correlated with cytokine composition of RA synovial
fluid (39), implicating a prominent role of the TNF-stimulated
synovial fibroblasts in shaping the pro-inflammatory joint milieu
in RA.

In contrast to early activation of the JAK-STAT pathway
with IL-6 cytokine family, TNF induced a delayed (at 3–
4 h) phosphorylation of STAT1(Y705), but not STAT3 (50,
52), in synovial fibroblasts with accompanying increase in the
production of IP-10, MCP1, and RANTES mRNAs and proteins
(50) (Figure 1). The TNF-induced gene expression signature
in synovial fibroblasts contained more than 50% interferon
response genes (53), including many genes with a key role

in the pathogenesis of RA [STAT1, CXCL9, CXCL10, B-cell
activating factor/tumor necrosis factor superfamily member
13B (BAFF/TNFSF13B)] (Figure 1). Interferon signature genes
were shown to be overexpressed in up to 65% patients
with RA (54). Additionally, interferon gene signature was
associated with an increased risk of developing RA (55) as
well as with therapeutic response of RA patients to biological
DMARDs (56).

The TNF stimulation of synovial fibroblasts led to an early
induction of interferon response factor one (IRF1) protein
followed by a delayed phosphorylation of STAT1 (Figure 1).
Silencing of IRF1 or inhibition of de novo IRF1 synthesis
by cycloheximide blocked the phosphorylation of STAT1 and
reduced the TNF-driven expression of interferon response genes
in synovial fibroblasts, including CXCL9, CXCL10, CXCL11,
and BAFF (57). IRF1 was highly expressed in the synovium
(54, 57) of RA patients as well as TNF transgenic mice. IRF1
was upregulated in synovial fibroblasts, cultured within the
floating Matrigel microspheres, when treated with TNF (57).
Overall, these experiments identified TNF as a major driver
of synovial IRF1 expression, and the IRF1-pSTAT1 axis as a
key regulator of the TNF-induced interferon gene signature
in synovial fibroblasts (Figure 1). Specifically, TNF upregulated
IRF1, which induced the expression of IFNβ. IFNβ activated
STAT1 and the interferon response genes via human type I
interferon receptor (IFNAR)-dependent signaling (Figure 1). In
line with this, silencing or the antibody-based neutralization
of IFNβ significantly impaired the TNF-induced interferon
response in synovial fibroblasts (57). Additionally, the silencing
of IFNAR in synovial fibroblasts decreased pSTAT1 and reduced
the expression of interferon response genes in the TNF-
stimulated synovial fibroblasts (57). Neutralizing anti-IFNAR
antibodies prevented the TNF-induced production of IP-10 in
human synovial fibroblasts and synovial fibroblasts from ifnar–
/– mice did not upregulate IP-10 in response to TNF (50, 57).
Overall, these results provided strong evidence that TNF induces
a delayed activation of the JAK-STAT pathway, and turns on
interferon response genes in synovial fibroblasts via a secondary,
autocrine activation of the IRF1-IFNβ-IFNAR-STAT1 axis (50,
57) (Figure 1).

Baricitinib and tofacitinib (250 nM) suppressed the TNF-
induced pSTAT1 and the associated inflammatory interferon
response genes (CXCL9, CXCL10, CXCL11, BAFF) in synovial
fibroblasts and decreased BAFF expression in synovial fibroblasts
within the floating Matrigel microspheres (57). Likewise,
1,000 nM tofacitinib blocked the TNF-induced pSTAT1 in
synovial fibroblasts, significantly attenuated the production of
MCP1 and RANTES, and neutralized the TNF-driven production
in IP-10, but had no effect on IL-8 (50). Overall, this implicated
that jakinibs diminish the TNF-driven responses of synovial
fibroblasts by interfering with the IFNAR-JAK1/JAK2-driven
phosphorylation of STAT1 (Figure 1).

IP-10, RANTES, and MCP-1 were highly abundant in RA
synovial fluid, which corroborates the jakinib capacity in
diminishing the pro-inflammatory synovial microenvironment
in RA joints (39). Additionally, IP-10 promoted the invasiveness
of synovial fibroblasts in autocrine and paracrine manner (58)
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and its inhibition by jakinibsmight contribute to beneficial effects
of jakinibs on halting joint damage in RA.

Jakinib Exhibit Limited Effects on
Interleukin Beta-Induced Responses of
Synovial Fibroblasts
Thousand nanomolar tofacitinib reduced the IL-1β-induced
production of IP-10 in synovial fibroblasts (50), while the IL-
1β-driven secretion of IL-6, IL-8, and MMP3 was insensitive
to tofacitinib and baricitinib even at 5,000 nM concentration
(51, 59). In contrast, 5,000 nM peficitinib decreased the IL-1β-
induced release of MMP3, MMP1, IL-6, CXCL8, and CXCL1
and 5000 nM filgotinib decreased the IL-1β-stimulated secretion
of IL-6 and MCP1 from synovial fibroblasts. Additionally,
peficitinib (1,000, 5,000 nM) blocked basal migration of synovial
fibroblasts, while peficitinib and baricitinib (5,000 nM) inhibited
the IL-1β-induced proliferation of synovial fibroblasts. Overall,
high doses of jakinibs were required for the interference with
IL-1β responses in synovial fibroblasts, suggesting a JAK-STAT-
independentmechanism of action, e.g., by affecting other kinases.
This also inferred that high amounts of IL-1β in the inflamed
RA joints might contribute to unresponsiveness to jakinibs at
their therapeutic in vivo concentrations. These effects could be
less pronounced with filgotinib (Cmax 3,360 nM at 200mg once
daily) (60) which achieves a higher plasma concentration when
administered in therapeutic dose.

Jakinibs Impair Responses of Synovial
Fibroblasts to IFNγ

IFNγ increased migration and invasion of synovial fibroblasts,
accompanied with an early induction of pSTAT1 (Y701) and
an increase in phosphorylation of focal adhesion kinase (FAK)
at Y925 (61) (Figure 1). FAK controls cellular migration by
regulating the turnover of focal adhesions (62). Silencing of JAK2
but not JAK1 in synovial fibroblasts diminished phosphorylated
focal adhesion kinase (pFAK Y925) amounts (61). High dose
baricitinib (1,000 nM, 5,000 nM) abrogated the IFNγ-induced
pSTAT1 (Y701), decreased pFAK(Y925) and attenuated the
invasion of IFNγ-stimulated synovial fibroblasts (61). These
experiments suggested a potential regulatory effect of baricitinib
on the crosstalk between T cells and synovial fibroblasts
via blocking the IFNγ-JAK2-pFAKY925 signaling cascade in
synovial fibroblasts. Yet, high baricitinib concentrations were
needed for these effects, which are not reached in RA patients
treated with baricitinib. This indicated that blocking IFNγ release
from T cells could support the jakinib-driven inhibition of IFNγ

responses in synovial fibroblasts.

Jakinibs Influence Pro-Inflammatory
Outputs of IL-17-Induced Pathways in
Synovial Fibroblasts
Treatment of synovial fibroblasts from RA patients with IL-17
increased phosphorylation of STAT3, which was accompanied
with enhanced production of IL-6 (37). Tofacitinib (1,000 nM)
inhibited the IL-17-induced production of IL-6 in synovial
fibroblasts (Supplementary Table 1) (37). Since IL-17 does not

directly activate the JAK-STAT pathway, the mechanism of the
IL-17 driven STAT3 phosphorylation needs to be elucidated.
Several IL-17-induced pathways (63), including AP-1 and NF-κB
signaling are coupled to the JAK-STAT signaling. Inhibition of
these indirect responses may contribute to the observed effects of
tofacitinib in the IL-17-stimulated synovial fibroblasts.

Jakinibs Alter Synovial Bioenergetics in
Synovial Explants and Synovial Fibroblasts
Under pro-inflammatory and hypoxic condition synovial
fibroblasts switch from mitochondrial to glycolytic production
of ATP (37). Consequently, lactate and succinate accumulate
in RA synovial fluid and tissue (64–67). Increased amounts of
succinate induced the release of IL-1β from macrophages (68).
Meanwhile, the IL-1β-induced responses of synovial fibroblasts
were rather resistant to JAK inhibition (51), suggesting that
modulating the metabolism may facilitate the Jakinib-driven
inhibition of pro-inflammatory and matrix-degrading responses
of synovial fibroblasts.

Tofacitinib significantly modulated synovial bioenergetics
and decreased glycolytic environment in synovial fibroblasts,
which might potentiate its anti-arthritic effects (37). Specifically,
tofacitinib (1,000 nM) decreased mitochondrial membrane
potential, mitochondrial mass and reactive oxygen species
(ROS) production and regulated key mitochondrial genes
(37) in synovial fibroblasts from patients with RA. Oxidative
phosphorylation, production of ATP, the maximal respiratory
capacity, and the respiratory reserve significantly increased in
the tofacitinib-treated synovial fibroblasts, while glycolysis and
the expression of key glycolytic enzymes (hexokinase 2, glycogen
synthase 3 alpha, lactate dehydrogenase A and HIF-1α) were
suppressed. Similar changes in metabolic gene expression were
observed in RA synovial explants treated with tofacitinib (37).
Additionally, tofacitinib reversed the OSM-induced metabolic
switch in synovial fibroblasts, shifting the metabolism away from
glycolysis (37). This positioned the JAK-STAT signaling and its
inhibition with jakinibs at the crossroad of synovial metabolism
and inflammation in RA.

Jakinib Effects on Fibroblast-Immune Cell
Crosstalk
Intracellular signaling pathways are highly interconnected. A
systemic exploration and deeper understanding of crosstalk
between the JAK-STAT and other signaling pathways might
uncover synergistic therapeutic mechanisms of jakinibs.
Additionally, this could broaden the understanding of jakinib
adverse effects and foster drug discovery in RA. We have
highlighted above some of the JAK-STAT interacting hubs
in synovial fibroblasts, including TNF-IRF1-IFNβ-IFNAR-
STAT1 (50, 57) and IFNγ-JAK2-pFAKY925 (61) pathways.
Jakinibs blocked these pathways in synovial fibroblasts, albeit
with a different sensitivity. Targeting these pathways could
efficiently break vicious cycle of the stromal-immune cell
interactions in RA synovium. Specifically, suppression of the
TNF-IRF1-IFNβ-induced secretion of IP-10 and BAFF by
tofacitinib might decrease the IP-10-driven recruitment of T
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cells into the inflamed RA synovium and the BAFF-dependent
proliferation, differentiation and antibody production by
B cells. Neutralization of IP-10 effects with neutralizing
antibodies inhibited inflammation and bone destruction in
vivo in experimental models of RA (69, 70). Similar to synovial
fibroblasts, macrophages, and endothelial cells activated the
TNF-IRF-IFNβ-pSTAT1 inflammatory axis (71, 72). This
suggests that jakinibis might exhibit their anti-arthritic actions
across diverse synovial cell types and pathotypes in RA, which
could contribute to their efficacy in RA.

Jakinibs Interfere With Non-JAK-STAT
Signaling Pathways in Synovial Fibroblasts
IL-6 and IFNγ predominantly activate the JAK-STAT pathway;
MAPK signaling, however, can also be activated in the presence of
IL-6 and IFNγ (73). OSM increased phosphorylation of different
components in the MAPK pathway in synovial fibroblasts,
including extracellular regulated kinase (ERK), p38 and c-JUN
N-terminal kinase 1/2 (JNK1/2) (45). Tofacitinib attenuated
these OSM-induced effects (45). Additionally, treatment with
p38 inhibitor resulted in almost complete inhibition of the
OSM-induced IL-6 release, pointing toward an interplay between
the JAK-STAT and MAPK pathways in synovial fibroblasts.

In summary, jakinibs inhibited the JAK-STAT signaling in
synovial fibroblasts under various pro-inflammatory stimuli
in vitro by blocking the early as well as the delayed, secondary
activation of the JAK-STAT signaling. This enabled suppression
of a broad variety of cytokine-induced responses in synovial
fibroblasts in vitro which could terminate the cytokine-driven
vicious cycles between synovial fibroblasts and immune cells.
In synovial fibroblasts, jakinibs diminished the secretion of the
major pro-inflammatory components of RA synovial fluid, but
not IL-8. Contrarily, jakinibs effectively suppressed IL-8 release
from synovial explants, indicating the primary role for immune
cell effects in the jakinib-driven IL-8 attenuation. Jakinib effects
were context-dependent in synovial fibroblasts, as reflected in
their variable potency under different pro-inflammatory stimuli.
This might define the interpatient variability in responding
to jakinibs in RA. Additionally, jakinib-dependent suppression
of cytokine release from immune and inflammatory cells
might be required to curb pathogenic fibroblast activities in
vivo, particularly in settings where jakinib doses exceeded
therapeutic window.

IN VIVO EFFECTS OF JAKINIBS IN
EXPERIMENTAL MODELS OF RA

Rabbits with antigen-induced arthritis (AIA) were treated with
tofacitinib (10 mg/kg/day), starting at the second week after
induction of AIA. In this regimen, tofacitinib significantly
decreased global synovitis score (Krenn score: inflammatory
cell infiltration and stromal hypertrophy decreased) but did not
intervene with systemic inflammation (as measured by C reactive
protein) 4 weeks after initial antigen injection. Tofacitinib
normalized the expression of Tnf, Il-6, and Ifnγ mRNAs,

decreased Mmp1, 3, and 13 mRNAs but did not diminish
increased Il-1β mRNA in synovial tissue. These effects were
accompanied by the downregulation of synovial pStat1, whereas
pStat3 and NF-κB activities were not diminished. Tofacitinib
differentially affected intrinsic inhibitors of the Jak-Stat signaling,
decreasing synovial Socs1, but not synovial Socs3 protein. This
suggested that tofacitinib reduces chronic synovitis in AIA
primarily via blockade of pStat1.

In AIA rat model, tofacitinib (74) decreased the
histopathological inflammation score and Il-6 mRNA expression.
Tofacitinib suppressed the osteoclast-mediated bone resorption
by reducing synovial receptor activator of NF-κB Ligand (Rankl)
expression and production of Rankl by human T lymphocytes.
Likewise, tofacitinib (75) reduced joint inflammation (reduced
inflammatory cell infiltration), decreased cartilage damage and
bone erosions, while increasing cortical and trabecular bone
hardness. This was accompanied with reduced pStat1 and Socs1
protein amounts in bone of AIA rats. The amounts of Il-6,
Il-17, Rankl, and osteoprotegerin (but not Tnf, Il-1β) proteins
were attenuated and bone turnover markers (carboxy-terminal
telopeptide of type I collagen and procollagen type I propeptides)
were diminished in serum of AIA rats.

In mice with collagen induced arthritis (CIA), tofacitinib
(76) significantly improved arthritis score, inhibited
osteoclastogenesis and decreased joint destruction. In this
model, synovial tissues exhibited increased pStat3, but not Stat1
and Stat5. Tofacitinib efficiently decreased pStat3 in mouse
synovial joints with concomitant reduction in synovial Il-6
and Rankl mRNAs and serum Il-6 protein. This indicated that
tofacitinib has beneficial effects on inflammation as well as joint
destruction in CIA via blockade of the Stat3-Il-6-Rankl axis.

The therapeutic effects of upadacitinib and tofacitinib were
compared in AIA rats (77). Rats were treated between day 7 and
17 after induction of AIA and drugs were administered twice
daily. Upadacitinib decreased synovial inflammation, synovial
hypertrophy, cartilage damage and bone erosion. Tofacitinib
was similarly effective; however, the total efficacious exposure
to drug was much smaller for upadacitinib compared to
tofacitinib. This increased in vivo potency of upadacitinib could
reflect an increased cellular potency of upadacitinib for Jak1
compared to tofacitinib. In naïve rats, 14 day-tofacitinib, but
not upadacitinib, suppressed natural killer (NK) cell counts
and reticulocyte deployment. This suggested that at in vivo
therapeutic doses, upadacitinib exhibits an improved benefit:
risk profile, highlighting the role of Jak3 inhibition in the
tofacitinib-induced side effects (74, 75). Several other in vivo
models (78) showed beneficial anti-arthritic effects of different
jakinibs, including baricitinib (79), peficitinib (80), ruxolitinib
(81), filgotinib (82), and decernotinib (83).

Dual kinase inhibition with tofacitinib and spleen tyrosine
kinase (Syk) inhibitor PRT062607 was shown as advantageous
strategy when compared to a single kinase inhibition in
preventing as well as ameliorating chronic G6PI-induced
arthritis (84). Dual kinase inhibition blocked several arthritis-
relevant pathways and cell functions, specifically Th1/Th17
cytokine cascade, osteoclastogenesis and invasiveness of
synovial fibroblasts.
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Results from experimental in vivo models are in line with the
observed efficacy of jakinibs in patients with RA. These models
provided important insights intomechanistic role of the activated
Jak-Stat pathways in inflammation and joint damage in arthritis
in vivo. Additionally, new strategies for therapeutic targeting of
arthritis have been opened as exemplified by dual kinase targeting
approach (84).

CONCLUSIONS

In this review, we explored the effects of jakinibs on
synovial pathology in inflammatory arthritis, primarily focusing
on jakinib actions on synovial fibroblast-dependent disease
mechanisms.We compiled published data fromRA clinical trials,
experimental in vivo models as well as ex vivo and in vitro
studies on human synovial explants and cultured human synovial
fibroblasts. We discussed the effects of tofacitinib on halting
structural joint damage and synovitis in RA clinical trials. By
summarizing experimental findings from animal models of RA,
we further delved into molecular mechanisms and therapeutic
benefits of jakinibs on synovial pathology in vivo. Finally,

we highlighted the cytokine-based activation and the jakinib-
driven inhibition of the JAK-STAT pathways in cultured synovial
fibroblasts under diverse experimental designs and conditions.
We stressed the pathways, through which jakinibs could interfere
with the crosstalk between synovial fibroblasts and immune
cells, thereby terminating vicious cycles of joint inflammation
and damage in RA. Overall, this review highlights the current
knowledge on jakinib effects on synovial pathology, challenges
current experimental designs and opens new perspectives for
jakinib discovery and development in future.

AUTHOR CONTRIBUTIONS

BB and MF-B critically evaluated the literature and wrote the
paper. TM reviewed the clinical trials and co-wrote the paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2020.00124/full#supplementary-material

REFERENCES

1. AaronsonDS, Horvath CM. A roadmap for those who don’t know JAK-STAT.

Science. (2002) 296:1653–5. doi: 10.1126/science.1071545

2. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system.Nat

Rev Immunol. (2003) 3:900–11. doi: 10.1038/nri1226

3. O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002:

new surprises in the Jak/Stat pathway. Cell. (2002) 109(Suppl):121–

31. doi: 10.1016/S0092-8674(02)00701-8

4. O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses.

Immunity. (2008) 28:477–87. doi: 10.1016/j.immuni.2008.03.002

5. Zhang F, Li C, Halfter H, Liu J. Delineating an oncostatin M-activated STAT3

signaling pathway that coordinates the expression of genes involved in cell

cycle regulation and extracellular matrix deposition of MCF-7 cells.Oncogene.

(2003) 22:894–905. doi: 10.1038/sj.onc.1206158

6. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu

A, et al. Critical role for STAT4 activation by type 1 interferons in the

interferon-gamma response to viral infection. Science. (2002) 297:2063–

6. doi: 10.1126/science.1074900

7. Qing Y, Stark GR. Alternative activation of STAT1 and STAT3 in

response to interferon-gamma. J Biol Chem. (2004) 279:41679–

85. doi: 10.1074/jbc.M406413200

8. Böhmer FD, Friedrich K. Protein tyrosine phosphatases as wardens of STAT

signaling. JAKSTAT. (2014) 3:e28087. doi: 10.4161/jkst.28087

9. Lu D, Liu L, Ji X, Gao Y, Chen X, Liu Y, et al. The phosphatase DUSP2

controls the activity of the transcription activator STAT3 and regulates TH17

differentiation. Nat Immunol. (2015) 16:1263–73. doi: 10.1038/ni.3278

10. Niu GJ, Xu JD, Yuan WJ, Sun JJ, Yang MC, He ZH, et al. Protein Inhibitor

of Activated STAT (PIAS) Negatively regulates the JAK/STAT pathway by

inhibiting STAT phosphorylation and translocation. Front Immunol. (2018)

9:2392. doi: 10.3389/fimmu.2018.02392

11. Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, et al.

The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. (2018)

9:1558. doi: 10.1038/s41467-018-04013-1

12. Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS,

et al. Twenty proteins containing a C-terminal SOCS box form five structural

classes. Proc Natl Acad Sci USA. (1998) 95:114–9. doi: 10.1073/pnas.95.1.114

13. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J

Cell Sci. (2004) 117:1281–3. doi: 10.1242/jcs.00963

14. Igaz P, Tóth S, Falus A. Biological and clinical significance of the JAK-

STAT pathway; lessons from knockout mice. Inflamm Res. (2001) 50:435–

41. doi: 10.1007/PL00000267

15. Bartalucci N, Bogani C, Vannucchi AM. Preclinical models for drug selection

in myeloproliferative neoplasms. Curr Hematol Malig Rep. (2013) 8:317–

24. doi: 10.1007/s11899-013-0182-1

16. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-

STAT signaling in the immune system. Nat Immunol. (2017) 18:374–

84. doi: 10.1038/ni.3691

17. Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, et al. Mutations

of Jak-3 gene in patients with autosomal severe combined immune deficiency

(SCID). Nature. (1995) 377:65–8. doi: 10.1038/377065a0

18. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, et al.

Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid

development. Science. (1995) 270:797–800. doi: 10.1126/science.270.5237.797

19. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-

of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med.

(2005) 352:1779–90. doi: 10.1056/NEJMoa051113

20. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al.

A unique clonal JAK2 mutation leading to constitutive signalling causes

polycythaemia vera. Nature. (2005) 434:1144–8. doi: 10.1038/nature03546

21. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al.

Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative

disorders. Lancet. (2005) 365:1054–61. doi: 10.1016/S0140-6736(05)

71142-9

22. Czerkies M, Korwek Z, Prus W, Kochanczyk M, Jaruszewicz-Błonska

J, Tudelska K, et al. Cell fate in antiviral response arises in the

crosstalk of IRF, NF-κB and JAK/STAT pathways. Nat Commun. (2018)

9:493. doi: 10.1038/s41467-017-02640-8

23. Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal

transducer and activator of transcription signaling activated by

Type I interferons and viral antagonism. Front Immunol. (2017)

8:1758. doi: 10.3389/fimmu.2017.01758

24. Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P.

JAK inhibitors for the treatment of autoimmune and inflammatory diseases.

Autoimmun Rev. (2019) 18:102390. doi: 10.1016/j.autrev.2019.102390

25. Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and

epigenomic signatures in health and disease. Nat Immunol. (2019) 20:1574–

83. doi: 10.1038/s41590-019-0466-2

Frontiers in Medicine | www.frontiersin.org 9 May 2020 | Volume 7 | Article 124

https://www.frontiersin.org/articles/10.3389/fmed.2020.00124/full#supplementary-material
https://doi.org/10.1126/science.1071545
https://doi.org/10.1038/nri1226
https://doi.org/10.1016/S0092-8674(02)00701-8
https://doi.org/10.1016/j.immuni.2008.03.002
https://doi.org/10.1038/sj.onc.1206158
https://doi.org/10.1126/science.1074900
https://doi.org/10.1074/jbc.M406413200
https://doi.org/10.4161/jkst.28087
https://doi.org/10.1038/ni.3278
https://doi.org/10.3389/fimmu.2018.02392
https://doi.org/10.1038/s41467-018-04013-1
https://doi.org/10.1073/pnas.95.1.114
https://doi.org/10.1242/jcs.00963
https://doi.org/10.1007/PL00000267
https://doi.org/10.1007/s11899-013-0182-1
https://doi.org/10.1038/ni.3691
https://doi.org/10.1038/377065a0
https://doi.org/10.1126/science.270.5237.797
https://doi.org/10.1056/NEJMoa051113
https://doi.org/10.1038/nature03546
https://doi.org/10.1016/S0140-6736(05)71142-9
https://doi.org/10.1038/s41467-017-02640-8
https://doi.org/10.3389/fimmu.2017.01758
https://doi.org/10.1016/j.autrev.2019.102390
https://doi.org/10.1038/s41590-019-0466-2
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Burja et al. Hi-JAKi-ng Synovial Fibroblasts

26. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK

inhibition as a therapeutic strategy for immune and inflammatory diseases.

Nat Rev Drug Discov. (2017) 17:78. doi: 10.1038/nrd.2017.267

27. Wolfe L. Ruxolitinib in myelofibrosis and polycythemia vera. J Adv Pract

Oncol. (2016) 7:436–44. doi: 10.6004/jadpro.2016.7.4.6

28. Traynor K. FDA approves tofacitinib for rheumatoid arthritis. Am J Health

Syst Pharm. (2012) 69:2120. doi: 10.2146/news120088

29. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic

disease. Nat Rev Rheumatol. (2017) 13:320. doi: 10.1038/nrrheum.2017.51

30. O’Shea JJ, Gadina M. Selective Janus kinase inhibitors come of age. Nat Rev

Rheumatol. (2019) 15:74–5. doi: 10.1038/s41584-018-0155-9

31. Mogul A, Corsi K, McAuliffe L. Baricitinib: The second FDA-Approved JAK

inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. (2019)

53:947–53. doi: 10.1177/1060028019839650

32. Serhal L, Edwards CJ. Upadacitinib for the treatment of

rheumatoid arthritis. Expert Rev Clin Immunol. (2019) 15:13–

25. doi: 10.1080/1744666X.2019.1544892

33. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al.

Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. (2014)

370:2377–86. doi: 10.1056/NEJMoa1310476

34. van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J,

Zerbini C, et al. Tofacitinib (CP-690,550) in patients with rheumatoid

arthritis receiving methotrexate: twelve-month data from a twenty-four-

month phase III randomized radiographic study. Arthritis Rheum. (2013)

65:559–70. doi: 10.1002/art.37816

35. Conaghan PG, Østergaard M, Bowes MA, Wu C, Fuerst T, van der Heijde D,

et al. Comparing the effects of tofacitinib, methotrexate and the combination,

on bone marrow oedema, synovitis and bone erosion in methotrexate-

naive, early active rheumatoid arthritis: results of an exploratory randomised

MRI study incorporating semiquantitative and quantitative techniques. Ann

Rheum Dis. (2016) 75:1024–33. doi: 10.1136/annrheumdis-2015-208267

36. Boyle DL, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P,

et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT

signalling in rheumatoid arthritis. Ann Rheum Dis. (2015) 74:1311–

6. doi: 10.1136/annrheumdis-2014-206028

37. McGarry T, Orr C, Wade S, Biniecka M, Gallagher L, Low C, et al.

JAK/STAT Blockade alters synovial bioenergetics, mitochondrial function,

and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol.

(2018) 70:1959–70. doi: 10.1002/art.40569

38. Gao W, McGarry T, Orr C, McCormick J, Veale DJ, Fearon U. Tofacitinib

regulates synovial inflammation in psoriatic arthritis, inhibiting STAT

activation and induction of negative feedback inhibitors. Ann Rheum Dis.

(2016) 75:311–5. doi: 10.1136/annrheumdis-2014-207201

39. Jones DS, Jenney AP, Swantek JL, Burke JM, Lauffenburger DA, Sorger

PK. Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast

activation. Nat Chem Biol. (2017) 13:38–45. doi: 10.1038/nchembio.2211

40. Yokota A, Narazaki M, Shima Y, Murata N, Tanaka T, Suemura M, et al.

Preferential and persistent activation of the STAT1 pathway in rheumatoid

synovial fluid cells. J Rheumatol. (2001) 28:1952–9.

41. Jones DS, Jenney AP, Joughin BA, Sorger PK, Lauffenburger DA.

Inflammatory but not mitogenic contexts prime synovial fibroblasts for

compensatory signaling responses to p38 inhibition. Sci Signal. (2018)

11:eaal1601. doi: 10.1126/scisignal.aal1601

42. Hui W, Rowan AD, Richards CD, Cawston TE. Oncostatin M in combination

with tumor necrosis factor alpha induces cartilage damage and matrix

metalloproteinase expression in vitro and in vivo. Arthritis Rheum. (2003)

48:3404–18. doi: 10.1002/art.11333

43. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME,

et al. Themechanism of action of tofacitinib - an oral Janus kinase inhibitor for

the treatment of rheumatoid arthritis. Clin Exp Rheumatol. (2016) 34:318–28.

44. Cawston TE, Curry VA, Summers CA, Clark IM, Riley GP,

Life PF, et al. The role of oncostatin M in animal and

human connective tissue collagen turnover and its localization

within the rheumatoid joint. Arthritis Rheum. (1998) 41:1760–

71. doi: 10.1002/1529-0131(199810)41:10<1760::AID-ART8>3.0.CO;2-M

45. Migita K, Komori A, Torigoshi T, Maeda Y, Izumi Y, Jiuchi Y, et al. CP690,550

inhibits oncostatin M-induced JAK/STAT signaling pathway in rheumatoid

synoviocytes. Arthritis Res Ther. (2011) 13:R72. doi: 10.1186/ar3333

46. Migita K, Izumi Y, Torigoshi T, Satomura K, Izumi M, Nishino Y,

et al. Inhibition of Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signalling pathway in rheumatoid synovial

fibroblasts using small molecule compounds. Clin Exp Immunol. (2013)

174:356–63. doi: 10.1111/cei.12190

47. Leonard WJ, Lin JX, O’Shea JJ. The γc family of cytokines:

basic biology to therapeutic ramification. Immunity. (2019)

50:832–50. doi: 10.1016/j.immuni.2019.03.028

48. Tomita K, Saijo K, Yamasaki S, Iida T, Nakatsu F, Arase H, et al. Cytokine-

independent Jak3 activation upon T cell receptor (TCR) stimulation through

direct association of Jak3 and the TCR complex. J Biol Chem. (2001)

276:25378–85. doi: 10.1074/jbc.M011363200

49. Migita K, Koga T, Komori A, Torigoshi T, Maeda Y, Izumi Y, et al. Influence of

Janus kinase inhibition on interleukin 6-mediated induction of acute-phase

serum amyloid A in rheumatoid synovium. J Rheumatol. (2011) 38:2309–

17. doi: 10.3899/jrheum.101362

50. Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550

(tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like

synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. (2012)

71:440–7. doi: 10.1136/ard.2011.150284

51. Diller M, Hasseli R, Hülser ML, Aykara I, Frommer K, Rehart S, et al.

Targeting activated synovial fibroblasts in rheumatoid arthritis by peficitinib.

Front Immunol. (2019) 10:541. doi: 10.3389/fimmu.2019.00541

52. Kawaguchi Y, Waguri-Nagaya Y, Tatematsu N, Oguri Y, Kobayashi M, Nozaki

M, et al. The Janus kinase inhibitor tofacitinib inhibits TNF-α-induced

gliostatin expression in rheumatoid fibroblast-like synoviocytes. Clin Exp

Rheumatol. (2018) 36:559–67.

53. Karonitsch T, Kandasamy RK, Kartnig F, Herdy B, Dalwigk K, Niederreiter

B, et al. mTOR senses environmental cues to shape the fibroblast-

like synoviocyte response to inflammation. Cell Rep. (2018) 23:2157–

67. doi: 10.1016/j.celrep.2018.04.044

54. Rodríguez-Carrio J, López P, Suárez A. Type I IFNs as biomarkers in

rheumatoid arthritis: towards disease profiling and personalized medicine.

Clin Sci. (2015) 128:449–64. doi: 10.1042/CS20140554

55. Wright HL, Thomas HB, Moots RJ, Edwards SW. Interferon gene

expression signature in rheumatoid arthritis neutrophils correlates

with a good response to TNFi therapy. Rheumatology. (2015)

54:188–93. doi: 10.1093/rheumatology/keu299

56. Mavragani CP, La DT, Stohl W, Crow MK. Association of the response

to tumor necrosis factor antagonists with plasma type I interferon activity

and interferon-beta/alpha ratios in rheumatoid arthritis patients: a post hoc

analysis of a predominantly Hispanic cohort. Arthritis Rheum. (2010) 62:392–

401. doi: 10.1002/art.27226

57. Bonelli M, Dalwigk K, Platzer A, Olmos Calvo I, Hayer S, Niederreiter B,

et al. IRF1 is critical for the TNF-driven interferon response in rheumatoid

fibroblast-like synoviocytes : JAKinibs suppress the interferon response in

RA-FLSs. Exp Mol Med. (2019) 51:75. doi: 10.1038/s12276-019-0267-6

58. Lee EY, Lee ZH, Song YW. The interaction between CXCL10 and

cytokines in chronic inflammatory arthritis. Autoimmun Rev. (2013) 12:554–

7. doi: 10.1016/j.autrev.2012.10.001

59. Maeshima K, Yamaoka K, Kubo S, Nakano K, Iwata S, Saito K, et al. The JAK

inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and

interleukin-17 production by human CD4+ T cells. Arthritis Rheum. (2012)

64:1790–8. doi: 10.1002/art.34329

60. Vanhoutte F, Mazur M, Voloshyn O, Stanislavchuk M, Van der Aa A,

Namour F, et al. Efficacy, safety, pharmacokinetics, and pharmacodynamics

of filgotinib, a selective JAK-1 inhibitor, after short-term treatment of

rheumatoid arthritis: results of two randomized Phase IIa trials. Arthritis

Rheumatol. (2017) 69:1949–59. doi: 10.1002/art.40186

61. Karonitsch T, Beckmann D, Dalwigk K, Niederreiter B, Studenic P, Byrne

RA, et al. Targeted inhibition of Janus kinases abates interfon gamma-

induced invasive behaviour of fibroblast-like synoviocytes. Rheumatology.

(2018) 57:572–7. doi: 10.1093/rheumatology/kex426

62. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command

and control of cell motility. Nat Rev Mol Cell Biol. (2005) 6:56–

68. doi: 10.1038/nrm1549

63. Kim HR, Cho ML, Kim KW, Juhn JY, Hwang SY, Yoon CH,

et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis

Frontiers in Medicine | www.frontiersin.org 10 May 2020 | Volume 7 | Article 124

https://doi.org/10.1038/nrd.2017.267
https://doi.org/10.6004/jadpro.2016.7.4.6
https://doi.org/10.2146/news120088
https://doi.org/10.1038/nrrheum.2017.51
https://doi.org/10.1038/s41584-018-0155-9
https://doi.org/10.1177/1060028019839650
https://doi.org/10.1080/1744666X.2019.1544892
https://doi.org/10.1056/NEJMoa1310476
https://doi.org/10.1002/art.37816
https://doi.org/10.1136/annrheumdis-2015-208267
https://doi.org/10.1136/annrheumdis-2014-206028
https://doi.org/10.1002/art.40569
https://doi.org/10.1136/annrheumdis-2014-207201
https://doi.org/10.1038/nchembio.2211
https://doi.org/10.1126/scisignal.aal1601
https://doi.org/10.1002/art.11333
https://doi.org/10.1002/1529-0131(199810)41:10<1760::AID-ART8>3.0.CO;2-M
https://doi.org/10.1186/ar3333
https://doi.org/10.1111/cei.12190
https://doi.org/10.1016/j.immuni.2019.03.028
https://doi.org/10.1074/jbc.M011363200
https://doi.org/10.3899/jrheum.101362
https://doi.org/10.1136/ard.2011.150284
https://doi.org/10.3389/fimmu.2019.00541
https://doi.org/10.1016/j.celrep.2018.04.044
https://doi.org/10.1042/CS20140554
https://doi.org/10.1093/rheumatology/keu299
https://doi.org/10.1002/art.27226
https://doi.org/10.1038/s12276-019-0267-6
https://doi.org/10.1016/j.autrev.2012.10.001
https://doi.org/10.1002/art.34329
https://doi.org/10.1002/art.40186
https://doi.org/10.1093/rheumatology/kex426
https://doi.org/10.1038/nrm1549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Burja et al. Hi-JAKi-ng Synovial Fibroblasts

synovial fibroblasts by IL-17 through PI3-kinase-, NF-kappaB- and

p38 MAPK-dependent signalling pathways. Rheumatology. (2007)

46:57–64. doi: 10.1093/rheumatology/kel159

64. Weyand CM, Goronzy JJ. Immunometabolism in early and

late stages of rheumatoid arthritis. Nat Rev Rheumatol. (2017)

13:291–301. doi: 10.1038/nrrheum.2017.49

65. Fearon U, Canavan M, Biniecka M, Veale DJ. Hypoxia, mitochondrial

dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev

Rheumatol. (2016) 12:385–97. doi: 10.1038/nrrheum.2016.69

66. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-

like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis.

Arthritis Res Ther. (2017) 19:110. doi: 10.1186/s13075-017-1303-3

67. Kim S, Hwang J, Xuan J, Jung YH, Cha HS, Kim KH. Global

metabolite profiling of synovial fluid for the specific diagnosis of

rheumatoid arthritis from other inflammatory arthritis. PLoS ONE. (2014)

9:e97501. doi: 10.1371/journal.pone.0097501

68. Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J,

et al. GPR91 senses extracellular succinate released from inflammatory

macrophages and exacerbates rheumatoid arthritis. J Exp Med. (2016)

213:1655–62. doi: 10.1084/jem.20160061

69. Salomon I, Netzer N, Wildbaum G, Schif-Zuck S, Maor G, Karin N. Targeting

the function of IFN-gamma-inducible protein 10 suppresses ongoing adjuvant

arthritis. J Immunol. (2002) 169:2685–93. doi: 10.4049/jimmunol.169.5.2685

70. Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S, et al. Reciprocal cross-talk

between RANKL and interferon-gamma-inducible protein 10 is responsible

for bone-erosive experimental arthritis. Arthritis Rheum. (2008) 58:1332–

42. doi: 10.1002/art.23372

71. Venkatesh D, Ernandez T, Rosetti F, Batal I, Cullere X, Luscinskas

FW, et al. Endothelial TNF receptor 2 induces IRF1 transcription

factor-dependent interferon-β autocrine signaling to promote monocyte

recruitment. Immunity. (2013) 38:1025–37. doi: 10.1016/j.immuni.2013.

01.012

72. Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB. TNF activates

an IRF1-dependent autocrine loop leading to sustained expression of

chemokines and STAT1-dependent type I interferon-response genes. Nat

Immunol. (2008) 9:378–87. doi: 10.1038/ni1576

73. Malemud CJ. The role of the JAK/STAT signal pathway

in rheumatoid arthritis. Ther Adv Musculoskelet Dis. (2018)

10:117–27. doi: 10.1177/1759720X18776224

74. LaBranche TP, Jesson MI, Radi ZA, Storer CE, Guzova JA, Bonar SL, et al.

JAK inhibition with tofacitinib suppresses arthritic joint structural damage

through decreased RANKL production. Arthritis Rheum. (2012) 64:3531–

42. doi: 10.1002/art.34649

75. Vidal B, Cascão R, Finnilä MAJ, Lopes IP, da Glória VG, Saarakkala

S, et al. Effects of tofacitinib in early arthritis-induced bone loss in

an adjuvant-induced arthritis rat model. Rheumatology. (2018) 57:1461–

71. doi: 10.1093/rheumatology/kex258

76. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T,

et al. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating

inflammatory cytokines and RANKL expression in inflammatory arthritis. Int

Immunol. (2011) 23:701–12. doi: 10.1093/intimm/dxr077

77. Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, et al.

In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib

(ABT-494). BMC Rheumatol. (2018) 2:23. doi: 10.1186/s41927-018-0031-x

78. Nishimura K, Saegusa J, Matsuki F, Akashi K, Kageyama G, Morinobu

A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells

and ameliorates arthritis in SKG mice. Arthritis Rheumatol. (2015) 67:893–

902. doi: 10.1002/art.39007

79. Yaekura A (editor). Chronotherapy Using Baricitinib Attenuates Collagen-

induced Arthritis in mice. In: 2019 ACR/ARP Annual Meeting. Atlanta, GA

(2019).

80. Ito M, Yamazaki S, Yamagami K, Kuno M, Morita Y, Okuma K, et al.

A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a

rat adjuvant-induced arthritis model. J Pharmacol Sci. (2017) 133:25–

33. doi: 10.1016/j.jphs.2016.12.001

81. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective

inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis:

preclinical characterization of INCB028050. J Immunol. (2010) 184:5298–

307. doi: 10.4049/jimmunol.0902819

82. Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P,

Nelles L, Smets B, et al. Preclinical characterization of GLPG0634,

a selective inhibitor of JAK1, for the treatment of inflammatory

diseases. J Immunol. (2013) 191:3568–77. doi: 10.4049/jimmunol.12

01348

83. Mahajan S, Hogan JK, Shlyakhter D, Oh L, Salituro FG, Farmer L, et al.

VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor

that attenuates inflammation in animal models of autoimmune disease. J

Pharmacol Exp Ther. (2015) 353:405–14. doi: 10.1124/jpet.114.221176

84. Llop-Guevara A, Porras M, Cendón C, Di Ceglie I, Siracusa F, Madarena

F, et al. Simultaneous inhibition of JAK and SYK kinases ameliorates

chronic and destructive arthritis in mice. Arthritis Res Ther. (2015)

17:356. doi: 10.1186/s13075-015-0866-0

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Burja, Mertelj and Frank-Bertoncelj. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 11 May 2020 | Volume 7 | Article 124

https://doi.org/10.1093/rheumatology/kel159
https://doi.org/10.1038/nrrheum.2017.49
https://doi.org/10.1038/nrrheum.2016.69
https://doi.org/10.1186/s13075-017-1303-3
https://doi.org/10.1371/journal.pone.0097501
https://doi.org/10.1084/jem.20160061
https://doi.org/10.4049/jimmunol.169.5.2685
https://doi.org/10.1002/art.23372
https://doi.org/10.1016/j.immuni.2013.01.012
https://doi.org/10.1038/ni1576
https://doi.org/10.1177/1759720X18776224
https://doi.org/10.1002/art.34649
https://doi.org/10.1093/rheumatology/kex258
https://doi.org/10.1093/intimm/dxr077
https://doi.org/10.1186/s41927-018-0031-x
https://doi.org/10.1002/art.39007
https://doi.org/10.1016/j.jphs.2016.12.001
https://doi.org/10.4049/jimmunol.0902819
https://doi.org/10.4049/jimmunol.1201348
https://doi.org/10.1124/jpet.114.221176
https://doi.org/10.1186/s13075-015-0866-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Hi-JAKi-ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors
	JAK-Stat Signaling Pathway and JAK Inhibitors
	The Effects of Jakinibs on Structural Joint Damage and Synovitis In RA Clinical Trials
	JAKINIB Effects on Synovial Explants From Patients With Inflammatory Arthritis
	JAKINIB Effects In Synovial Fibroblasts
	Inflamed Synovial Microenvironment Activates the JAK-STAT Signaling in Synovial Fibroblasts
	Jakinibs Reduce the Pro-Inflammatory Responses of Synovial Fibroblasts to IL-6 Family of Cytokines
	Jakinibs Target the TNF-Induced Interferon Responses in Synovial Fibroblasts
	Jakinib Exhibit Limited Effects on Interleukin Beta-Induced Responses of Synovial Fibroblasts
	Jakinibs Impair Responses of Synovial Fibroblasts to IFNγ
	Jakinibs Influence Pro-Inflammatory Outputs of IL-17-Induced Pathways in Synovial Fibroblasts
	Jakinibs Alter Synovial Bioenergetics in Synovial Explants and Synovial Fibroblasts
	Jakinib Effects on Fibroblast-Immune Cell Crosstalk
	Jakinibs Interfere With Non-JAK-STAT Signaling Pathways in Synovial Fibroblasts

	In vivo Effects of Jakinibs in Experimental Models of RA
	Conclusions
	Author Contributions
	Supplementary Material
	References


