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Cholestatic liver diseases are a significant cause of morbidity and mortality and

the leading indication for pediatric liver transplant. These include diseases such as

biliary atresia, Alagille syndrome, progressive intrahepatic cholestasis entities, ductal

plate abnormalities including Caroli syndrome and congenital hepatic fibrosis, primary

sclerosing cholangitis, bile acid synthesis defects, and certain metabolic disease. Medical

management of these patients typically includes supportive care for complications of

chronic cholestasis including malnutrition, pruritus, and portal hypertension. However,

there are limited effective interventions to prevent progressive liver damage in these

diseases, leaving clinicians to ultimately rely on liver transplantation in many cases.

Agents such as ursodeoxycholic acid, bile acid sequestrants, and rifampicin have been

mainstays of treatment for years with the understanding that they may decrease or alter

the composition of the bile acid pool, though clinical response to these medications is

frequently insufficient and their effects on disease progression remain limited. Recently,

animal and human studies have identified potential new therapeutic targets which may

disrupt the enterohepatic circulation of bile acids, alter the expression of bile acid

transporters or decrease the production of bile acids. In this article, we will review bile

formation, bile acid signaling, and the relevance for current and newer therapies for

pediatric cholestasis. We will also highlight further areas of potential targets for medical

intervention for pediatric cholestatic liver diseases.

Keywords: pediatric, cholestasis, bile acid, bile acid receptor, treatments

INTRODUCTION

Causes of chronic liver injury in children include a wide variety of congenital and acquired
diseases. The primary cholestatic diseases of infancy and childhood are frequently symptomatic
and often rapidly progressive. These chronic cholestatic diseases that present in childhood include
biliary atresia (the most common cause of cholestatic liver disease in children), Alagille syndrome,
progressive familial intrahepatic cholestasis diseases (PFIC), bile acid synthesis defects, cystic
fibrosis related liver disease, ductal plate abnormalities including Caroli syndrome and congenital
hepatic fibrosis, primary sclerosing cholangitis (PSC), and certain metabolic diseases.
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Many patients ultimately require liver transplantation and
within the pediatric population, cholestatic liver diseases remains
the leading indication for pediatric liver transplant in the U.S,
accounting for nearly half of all pediatric patients listed for liver
transplant (1). For this article, we will review the formation
and secretion of bile and bile acid signaling with a highlight
on disease causing mutations, and review current and emerging
treatments that may potentially decrease cholestatic injury
and alter disease progression within pediatric cholestatic liver
diseases. A comprehensive review of supportive management
for cholestatic patients such as management of nutritional
deficiencies and symptomatic management of pruritus is beyond
the scope of this manuscript, though these are important to
patient outcomes.

CHOLESTASIS

Cholestasis describes an impairment in bile flow resulting in the
accumulation of the components of bile (bile acids, bilirubin,
cholesterol, and phospholipids) which often leads to clinical
symptoms and serum laboratory abnormalities. The production
of bile is influenced greatly by the enterohepatic circulation and
recycling of bile acids. The impediment to bile flow in cholestasis
may be due to obstructive causes (e.g., biliary atresia, obstructive
choledochal cysts, common bile duct obstruction) or secondary
to any impairment of appropriate synthesis or secretion of the
components of bile from the hepatocytes and cholangiocytes. The
formation of bile and its flow into the intestinal lumen serves both
as an excretory function of the liver within its role to metabolize
and detoxify substances, and as an aid in digestion of fat and
fat-soluble vitamins. When bile acids are retained within cells,
their detergent nature and induced signaling pathways can lead
to significant cell damage. The exact mechanism of injury in
human and animal models of cholestasis is likely multifactorial
(i.e., altered inflammatory responses, increased fibrinogenesis,
induction of apoptosis or autophagy) and may be different
depending on the precise nature of the injury, the setting of injury
(in vivo vs. in vitro) and the species incurring the injury; and these
detailed mechanisms of cholestatic injury have been reviewed
in detail elsewhere (2). Since bile acid synthesis and transport
occurs primarily within the hepatocytes and cholangiocytes, with
potentially high intracellular concentrations of bile acids, the liver
is the primary site of damage in settings of cholestasis.

BILE SYNTHESIS

Cholesterol is the precursor for the synthesis of bile acids.
Within the hepatocyte, cholesterol is converted into the primary
bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA)
in humans by a complex biochemical pathway involving a
number of different hepatic enzymes within the “neutral”
(classic) pathway or the “acidic” bile acid synthesis pathways.
In the initial and rate limiting step within the neutral pathway,
cholesterol is modified with the addition of a hydroxyl group
at the C-7 position by the microsomal cytochrome P450
liver-specific enzyme cholesterol 7α-hydroxylase (CYP7A1) (3,

4). In the acidic pathway, which contributes significantly to
the production of chenodeoxycholic acid, a mitochondrial
cytochrome P450 enzyme (sterol 27-hydroxylase, CYP27A1),
leads to an initial side-chain oxidation of cholesterol (5).
After these initial steps within the neutral or acidic pathway,
continued modifications occur culminating in the end products
of cholic acid or chenodeoxycholic acid. In the neutral
pathway, 12α-hydroxylation of products (by a liver specific
microsomal cytochrome P450 12α-hydroxylase, CYP8b1) directs
intermediates to the production of cholic acid, and therefore
is important in determining the ratio of the production of
cholic acid to chenodeoxycholic acid (6). Interestingly, the ratio
of cholic acid to chenodeoxycholic acid varies during human
development. Specifically, fetal bile has a predominance of
chenodeoxycholic acid with a ratio of cholic:chenodeoxycholic
acid of reportedly ∼0.85 suggesting altered activity of the
12a-hydroxylase enzyme, or alternative pathways of bile acid
production during fetal life (7). Neonates and adults have a
predominance of cholic acid but notably different ratios of
cholic:chenodeoxycholic acid of ∼2.5 and 1.6, respectively (7,
8).

After primary bile acids are produced, they are conjugated to
either glycine or taurine largely within peroxisomes (9). Several
congenital deficiencies in enzymes involved in the pathways
of bile acid synthesis have been described, broadly termed
bile acid synthesis defects (BASD). BASD include diseases that
are characterized by single enzyme defects (SED) in bile acid
synthesis pathway proteins, or diseases of peroxisome formation,
such as Zellweger spectrum disorders which can lead to the
accumulation of toxic bile acid intermediates and may present as
significant cholestasis in the newborn period (10). The newborn
infant has a predominance of taurine conjugated bile acids,
whereas older infants and adults have a predominance of glycine
conjugated bile acids (8, 11, 12). Additionally, significant species
variation exists with regards to specific bile acid biosynthesis,
metabolism, and the proportion of glycine or taurine conjugation
of primary bile acids which is important when evaluating effects
of potential bile acid altering drugs in animal models. For
example, humans produce primarily CA and CDCA as described
above, however mice predominantly produce muricholic acids;
and humans primarily form glycine conjugated bile acids (but
have the ability to form taurine conjugates), however, mice form
nearly exclusively taurine conjugates (12, 13). These differences
leads to a far less hydrophobic bile acid pool in mice (14). The
reader is referred to the excellent reviews of bile acid metabolism
in different species for more in depth review (2, 15).

Once conjugated, bile acids must be secreted into the
canalicular lumen to become a component of the bile that will
ultimately be excreted into the intestinal lumen. Bile acids are
secreted across the canalicular membrane via an ATP cassette
transporter known as the bile salt export pump (BSEP) which
is encoded by the gene ABCB11. Mutations in ABCB11 lead to
the disease PFIC type 2 in humans (16). After being secreted,
bile acids may undergo “cholehepatic” circulation, whereby bile
acids may be reabsorbed back across the cholangiocyte border
and transported back to hepatocytes or the portal circulation.
This proposed mechanism of “cholehepatic shunting” is likely
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particularly relevant for specific bile acid derivatives including
nor-ursodeoxycholic acid (17–20).

In addition to BSEP, there are several other specific
transporters at the canalicular membrane that are responsible for
excreting the other components of bile across this membrane.
Phospholipids, primarily phosphatidylcholine (PC), are secreted
via the multidrug resistance P-glycoprotein 3 in humans (MDR3,
gene ABCB4) which is known as mdr2 in mice (21, 22). While
homozygous mutations within ABCB4 may lead to PFIC type
3, patients with a mild phenotype or who are heterozygous for
mutations in ABCB4 have been found in increasing numbers
in several cholestatic conditions of adulthood including low
phospholipid-associated cholelithiasis syndrome (LPAC) and
intrahepatic cholestasis of pregnancy (ICP) (23, 24). PFIC type
1 disease in humans is caused by homozygous mutations with
the FIC1 protein (encoded by the ATPase member ATP8B1 gene)
which is located at the hepatocyte canalicular membrane, and
apical membrane of cholangiocytes and enterocytes (25). The
exact mechanism resulting in cholestasis secondary to ATP8B1
mutations remains unclear, however evidence suggests FIC1 is an
aminophospholipid transporter which regulates inner and outer
lipid content of the plasma membrane and if mutated may alter
the canalicular membrane integrity; additionally FIC1 mutations
may lead to alterations in the activity of the farnesoid X receptor
(FXR), a nuclear receptor critical to bile acid homeostasis (26, 27).
Additional mutations recently discovered in the tight junction
protein 2 (TJP2, gene TJP2), also known as zona-occludens 2,
can lead to progressive intrahepatic cholestasis and has been
referred to as PFIC4, however as more newly discovered causes
of inherited progressive cholestasis are discovered, naming of
the intrahepatic cholestasis diseases based on the mutated gene
rather than a numbering system initially developed at a time prior
to identification of the responsible mutations is superior.

Cholesterol is secreted via the heterodimer transporter
ABCG5/ABCG8 (genes ABCG5/ABCG8) also called sterolin, and
mutations in ABCG5/ABCG8 genes can cause sitosterolemia,
which has a varied clinical presentation including associated liver
disease (28, 29). Conjugated bilirubin and other glucoronidated
molecules are secreted via the multidrug resistance-related
protein 2 (MRP2, gene ABCC2), and mutations in ABCC2
lead to Dubin-Johnson syndrome (30). Rotor syndrome is
another disease characterized by a benign increase in conjugated
bilirubin, caused by simultaneous mutations in two members
of the OATP family (OATP1B1, gene SLCO1A2 and OATP1B3,
gene SLCO1B3) located on the hepatocyte sinusoidal membrane
which serve to reabsorb conjugated bilirubin (31).

Other components of bile such as water, bicarbonate,
chloride, and other electrolytes have an important role in bile
homeostasis and are regulated within cholangiocytes (32). The
membrane protein cystic fibrosis transmembrane conductance
regulator (CFTR, gene CFTR), a chloride channel important for
bicarbonate secretion into bile, is located on the apical membrane
of cholangiocytes, and the chloride/bicarbonate exchanger AE2
(gene SLC4A2) is on the apical membrane of cholangiocytes
and on the canalicular membrane surface (33). Mutations within
CFTR lead to cystic fibrosis and cystic fibrosis related liver
disease (CFRLD). AE2 knock-out mice develop a phenotype

TABLE 1 | Cholestatic diseases associated with bile transport and signaling.

Disease

(inheritance)

Protein involved Gene(s)

PFIC 1 (AR) FIC1 ATP8B1

PFIC 2 (AR) BSEP ABCB11

PFIC 3 (AR) MDR3 ABCB4

PFIC disease due to TJP2

mutations (PFIC4) (AR)

TJP2 TJP2

PFIC disease due to FXR

mutations (PFIC5) (AR)

FXR NR1H4

Bile acid synthesis defects

(BASD) (AR)

*varies (single enzymes,

peroxisome proteins)

*varies based on

disease

Sitosterolemia (AR) Sterolin

(ABCG5/ABCG8)

ABCG5/G8

Dubin-Johnson syndrome (AR) MRP2 ABCC2

Rotor syndrome (AR) OATP1B1/ OATP1B3 SLCO1A2,

SLCO1B3

Cystic fibrosis related liver

disease (AR)

CFTR CFTR

Alagille syndrome (AD) *Notch signaling

pathway

JAG1, NOTCH2

Caroli syndrome/congenital

hepatic fibrosis (associated with

ARPKD) (AR)

fibrocystin PKHD1

AR, autosomal recessive; AD, autosomal dominant. *Multiple.

similar to the adult cholestatic liver disease primary biliary
cholanigitis (PBC) (34). Bile flow and water composition is aided
by water channels or aquaporins (AQP) within the cholangiocyte
membranes as well (33).

Additionally, mutations leading to abnormalities in the
normal development of the biliary system can lead to
cholestasis as occurs in Alagille syndrome and ductal plate
malformations. Alagille syndrome is an autosomal dominant,
multisystem disorder that frequently involves the liver, classically
characterized by bile duct paucity on pathology, and is caused
by mutations in Jagged1 (JAG1) or Notch2. Ductal plate
malformations refer to cholangiopathies associated with the lack
of normal development and remodeling of the intrahepatic
bile ducts that occurs along the branches of the developing
portal vein. These include entities such as Caroli syndrome and
congenital hepatic fibrosis which are most commonly associated
with autosomal recessive polycystic kidney disease (ARPKD),
secondary to mutations in the gene PKHD1 which encodes
fibrocystin (35). A list of these discussed cholestatic diseases
associated with bile transport and signaling can be found in
Table 1.

ENTEROHEPATIC CIRCULATION

After the production and conjugation of primary bile acids
within the hepatocytes, these compounds are then secreted
along with the other components of bile into the intestine
where they are ultimately metabolized by bacterial enzymes into
secondary bile acids. Cholic acid and chenodeoxycholic acid are
deconjugated and then may be dehydroxylated into deoxycholic
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FIGURE 1 | Enterohepatic circulation of the components of bile.

(DCA) and lithocholic acid (LCA), respectively, which constitute
the majority of bile acids excreted into the feces in humans
(33, 36, 37). Ursodeoxycholic acid (UDCA)may also be produced
from the epimerization of CDCA, but generally is found at low
concentrations in humans (38, 39). While 3–5% of bile acids
are excreted in the feces, the majority of primary and secondary
bile acids are reabsorbed in the terminal ileum and return to
the liver via the portal vein where they are again excreted
via the process known as enterohepatic circulation (40). The
hydrophobicity of bile acids affects their solubilization properties
(detergent effects) and therefore their deleterious effects on cell
membranes, cell signaling, as well as their influence on choleresis
(41). The hydrophilic bile acid UDCA and its taurine conjugate,
tauroursodeoxycholic acid (TUDCA), are weaker detergents and
do not cause significant membrane/cellular toxicity whereas LCA
is very hydrophobic and cytotoxic (42).

Bile acid uptake occurs at the enterocyte via the apical
sodium-dependent bile salt transporter (ASBT) also known as
the ileal bile acid transporter (IBAT) encoded by the gene
SLC10A2 (43, 44). ASBT is also found on the luminal membrane

of large bile ducts and the gallbladder (33). ASBT transports
conjugated bile salts into the enterocyte, which interact with
ileal bile acid-binding protein (I-BABP) within the cytosol (45).
Bile acids are then exported across the basolateral membrane
via a heteromeric transporter, organic solute transporter alpha
and beta (OSTα-OSTβ). In addition to the enterocytes of
the terminal ileum, OSTα-OSTβ is located on the basolateral
membrane of hepatocytes and cholangiocytes as well as several
other tissues and can function to export bile acids from
the hepatocyte back to the sinusoidal blood if necessary (33,
46). At the hepatocyte basolateral membrane, bile acids are
then transported from the sinusoidal blood into the cell via
the sodium-taurocholate cotransporting polypeptide (NTCP)
primarily in humans, but also by members of the anion
transporting polypeptide family (OATP) in mice (47, 48). They
are then excreted once more into bile, thus completing the
enterohepatic circuit (Figure 1). During cholestatic conditions,
the hepatocyte basolateral membrane also has pumps that serve
to efflux bile acids back into the sinusoidal blood including
MRP3 (encoded by gene ABCC3) and MRP4 (encoded by gene

Frontiers in Medicine | www.frontiersin.org 4 May 2020 | Volume 7 | Article 149

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kriegermeier and Green Pediatric Cholestasis Current and Emerging Therapies

ABCC4), in addition to OSTα-OSTβ as mentioned above (49).
A in depth review of bile acid enterohepatic circulation with a
significant focus on intestinal metabolism of bile acids can be
found elsewhere (50).

BILE ACID-ACTIVATED RECEPTORS AND
REGULATION OF BILE ACID SYNTHESIS
AND FLUX

In addition to the greater understanding of the recirculation of
bile acids, over the past 20 years there have been several receptors
identified as bile acid activated receptors (BAR) that are activated
by bile acids and that have significant effects on the regulation of
bile acid synthesis and metabolism. Most notably, the discovery
of the first BAR, farnesoid X receptor (FXR), has led to dramatic
reshaping of the understanding of the tight regulation of this
process. FXR (encoded by the NR1H4 gene—nuclear receptor
subfamily 1, group H, member 4) is a nuclear hormone receptor
that influences bile acid synthesis by forming a heterodimer with
retinoid X receptor (RXR) and binding directly to the regulatory
elements (FXR-responsive elements, FXR-RE) of its target genes,
as well as by regulating the downstream transcription factor small
heterodimer partner (SHP) (51–54). Mutations in NR1H4 may
lead to another phenotype of progressive intrahepatic cholestasis
in children that has been referenced as PFIC5 previously,
but are better described as cholestasis secondary to NR1H4
mutations (55).

After activation by bile acids, FXR regulates several aspects of
bile acid trafficking and production. FXR induces the expression
of SHP which binds another receptor, LRH-1 (liver receptor
homolog 1), preventing it from interacting with promotor
regions on both CYP7A1 and CYP8B1, therefore negatively
regulating bile acid synthesis within the hepatocyte (56). FXR
also regulates the release of fibroblast growth factor-19 (FGF-
19) (FGF-15 in mice) from ileal enterocytes which travels via the
portal circulation to the hepatocytes and binds the FGF receptor
FGFR4 and β-Klotho (KLB), another transmembrane protein
that functions as a co-receptor required for FGF-19 binding in the
liver (57). Within the liver, FGF19 signaling suppresses bile acid
synthesis by repressing CYP7A1 expression (58). In the presence
of bile acid-mediated FXR activation in the ileum, SHP activation
leads to decreased expression of ASBT, through repression of
LRH-1 resulting in decreased bile acid update by the ileum (59).

FXR, through SHP, represses the expression of NTCP and
OATP which consequently reduces the reuptake of bile acids
from the portal circulation back into the hepatocytes (60).
Additionally, FXR increases the transcription of the BSEP gene
ABCB11 (61, 62). The net effect of FXR activation is therefore
to promote bile acid excretion and reduce bile acid update,
helping to maintain homeostasis within the hepatocyte. On the
hepatocyte basolateral side, FXR activation leads to increased
expression of OSTα/β, MRP3, and MRP4 which in the setting of
cholestasis can efflux bile salts from the basolateral surface of the
hepatocyte to reduce intracellular bile acid concentrations and
therefore mitigate the toxic effects of bile acids to the cell (46, 63).

In addition to FXR, there are several other bile-acid activated
receptors including the liver X receptor (LXR), the pregnenolone
X receptor (PXR; known as steroid and xenobiotic receptor
or SXR in humans), the vitamin D receptor (VDR), and the
constitutive androstane receptor (CAR). PXR is activated by LCA
and likely serves to reduce bile acid toxicity via its regulation
of CYP7a1 and other cytochrome p450 enzymes, OATP2, and
MRP2 (64–66).

An alternative family of receptors known as the G-protein-
coupled receptor family, the most notable of which is GPBAR1
also known as TGR5 (previously also referred to as M-BAR),
are also able to bind bile acids (specifically secondary bile
acids) (67–69). TGR5 (GPBAR1) has several cell-signaling and
immunoregulatory effects within liver disease due to its presence
on Kupffer cells and natural killer (NK) cells. Additionally,
through its expression on sensory nerves, TGR5 (GPBAR1) may
have a role in regulating pruritus (70–72).

The structure and conjugation of each bile acid affects its
hydrophobicity which influences the ability to activate the
different receptors discussed above. CDCA is the most potent
naturally occurring ligand of FXR followed in strength by DCA
= LCA > CA (69, 73, 74). Secondary bile acids (LCA and DCA)
are potent activators TGR5 (GPBAR1) (68, 69).

In addition to bile acid receptor regulation of bile acid
synthesis, other pathways regulating bile acid synthesis have been
discovered recently. The unfolded protein response (UPR) is
an adaptive cellular response pathway to endoplasmic reticulum
(ER) stress that functions to regulate protein homeostasis, but
can also trigger apoptosis. Activation of the UPR has been
described in several liver diseases including fatty liver disease,
viral hepatitis, and cholestasis (75, 76). However, more recently
animal and in vitro data has shown that the UPR pathways
function to reduce ER stress and hepatic injury as well as
regulate bile acid synthesis and transport, and that activation
of FXR in turn also influences the UPR (77). ER stress has
been demonstrated to suppress CYP7A1-dependent production
of bile acids independently of FXR regulated pathways, and
to alter the expression of the bile acid transporters BSEP and
MRP3 (78, 79).

MEDICAL MANAGEMENT OF PEDIATRIC
CHOLESTASIS

Historically, pediatric chronic cholestasis due to all causes has
primarily been managed symptomatically. Pediatric patients
with cholestatic liver diseases frequently suffer from significant
symptoms and complications including poor growth secondary
to fat malabsorption, fat soluble vitamin deficiencies, hepatic
osteodystrophy, and complications related to progressive portal
hypertension such as ascites and gastrointestinal bleeding.
Significant chronic pruritus is common in several of the
genetic syndromes and a significant cause of major morbidity.
Agents such as ursodeoxycholic acid, bile acid sequestrants,
and rifampicin have been the mainstays of treatment for years
with the understanding that they may promote choleresis
or alter the composition of the bile acid pool. However,
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TABLE 2 | Current and potential medical therapies in pediatric cholestatic liver diseases.

Therapy Proposed mechanisms of action Pediatric disease with a favorable outcome reported

in animal models (*or human subjects)

UDCA More favorable bile composition, increased expression of BA

transporters, reduced apoptosis

*PSC at standard doses, *PFIC3

Nor-UDCA Increased choleresis, cholehepatic shunting, and bicarbonate

secretion

PSC and PFIC3 (mdr2−/− mouse), CFRLD, A1AT

Cholic acid Decrease synthesis of toxic bile acid intermediates *BASD (approved for use in BASD 2015)

Rifampin PXR agonist, altered gut flora

Bile acid sequestrants Increased fecal BA secretion; increased hydrophilic BA,

decreased inflammation and fibrosis; increased biliary

proliferation

PSC and PFIC3 (mdr2−/− mouse)

Chemical chaperones Improved trafficking of transport proteins to membrane

surface

*PFIC1, *PFIC2, A1AT, CFRLD

ASBT inhibitors Increased fecal BA secretion PSC and PFIC3 (mdr2−/− mouse), *PSC, *PBC, *ALGS

FXR and TGR5 agonists Suppressed BA synthesis, increased BA secretion across

canalicular membrane

PSC and PFIC3 (MDR2–/– mouse) *PBC

FGF19 analogs Suppressed BA synthesis *PSC

Anti-inflammatory/Anti-fibrotic therapies,

hepatocyte or stem-cell transplants

CCR2/CCR5 inhibition, multiple anti-inflammatory/anti-fibrotic

pathways

Rat fibrosis model, PFIC3 (mdr2−/− mouse), Biliary atresia

(RRV mouse model)

patient response to these medications is frequently insufficient
and data to show that they alter disease progression in
most conditions remains lacking. Patients frequently require
high calorie supplemental formulas to improve malnutrition
secondary to fat malabsorption and antihistamines and other
medications to aid in pruritus management and sleep. Fat soluble
vitamin levels should be monitored closely and repleted if
required, though deficiencies may be difficult to correct (80, 81).
However, in light of the improved understanding of the intricate
signaling pathways involved in BA metabolism, newer strategies
are being developed and considered for treatment that hope to
alter disease progression. It is also likely that with amore nuanced
understanding of the underlying etiologies of patients with
cholestasis, combination therapies tailored to specific patients
may be employed. The following paragraphs and Table 2 will
highlight the current, and potential future medical therapies for
pediatric cholestatic liver diseases.

URSODEOXYCHOLIC ACID (UDCA)

Ursodeoxycholic acid, a hydrophilic bile acid, has been used
for decades for intra-hepatic and extra-hepatic cholestatic
diseases in childhood. Although originally approved for gallstone
dissolution, it is considered first-line therapy for the adult disease
primary biliary cholangitis (PBC) and has been shown to improve
long term outcomes including reduction in the risk of death
or need for liver transplant for PBC patients (82). However,
strong data showing long term improvement in outcomes in
pediatric chronic cholestatic diseases is lacking. By enriching the
BA pool with hydrophilic UDCA, this treatment was originally

thought to decrease the toxic effects that hydrophobic bile acids
may exert on cells in the setting of cholestasis, however it has
been proven that the size of the hydrophobic bile acid pool
remains the same with UDCA treatment despite improvements

in cholestasis (83). UDCA has been shown to promote choleresis,

and alter the expression of the BA transporter BSEP and also
MDR3 (84, 85). Part of the choleretic effect of UDCA may be
secondary to increased chloride and bicarbonate secretion from
the cholangiocytes (86, 87). UDCA may also function to reduce
apoptosis via its beneficial effects on mitochondrial membrane
stabilization (88, 89). Taurine conjugated UDCA (TUDCA) has
been demonstrated to reduce ER stress in obese mice and may
also impact the bile acid pool (90). Finally, UDCA may function
to reduce immunoglobulin and cytokine production, making it
potentially beneficial in decreasing inflammatory consequences
of cholestasis (91, 92). Notably, much of this work has been
performed in vitro and in rodent models and the full range
of effects in human disease are still uncertain. In adults with
PSC, there were several studies that showed improvement in
biochemical markers on UDCA (on doses between 10 and
15 mg/kg/day), but failed to show improvement in long term
outcomes (93–96). Additionally a trial using high dose UDCA
(28–30 mg/kg/day) for the treatment of adult PSC lead to
improved liver biochemical markers, but significantly increased
the risk of serious events including portal hypertension, death
and liver transplantation compared to placebo (97). The current
AASLD guidelines for adults recommend against the use of
UDCA in PSC as a medical therapy (98). However, pediatric
patients with PSC are not the same population as adult patients
and it is important to evaluate the use of UDCA in these
patients separately. Retrospective studies in children with PSC
have shown improved biochemical markers after treatment with
more standard dosing of UDCA, and while no improvement in
long term outcomes specific to UDCA has been found in any
of these studies, patients who are treated with UDCA are more
likely to have normalization of biochemical markers which is a
predictor of improved long term outcomes (99–102). A recent
pilot trial (NCT01088607) investigating withdrawal and then
reinstitution of UDCA in pediatric PSC was completed in 2017,
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which showed approximately 1/3 of patients had no significant
change in labs with withdrawal of UDCA, while 1/3 of patients
met criteria for a disease flare with withdrawal of UDCA, though
long term differences in these 2 subsets were not reported (103).
This suggests that there may be a subset of patients who have
biochemical evidence of UDCA response, and that those patients
may have improved outcomes arguing for continuation of UDCA
in these patients. For patients with PFIC, particularly PFIC3,
UDCA may be effective at improving pruritus and laboratory
values in a majority of patients, however there are no proven long
term benefits on disease progression (104). A recent Cochrane
review of the use of UDCA in cystic fibrosis related liver disease
found that there was no evidence regarding its effects on long
term outcomes, and no strong evidence of its effectiveness in this
disease (105).

Despite this lack of strong evidence in favor of its use,
given the low side effect risk profile of standard dose UDCA
(10–20 mg/kg/day), it is often employed in cases of pediatric
chronic cholestasis.

24-NORURSODEOXYCHOLIC ACID
(NorUDCA)

NorUDCA is similar to UDCA but has a shortened side chain
and is a potent choleretic agent (18, 106). It strongly induces
bicarbonate secretion into bile, and is relatively resistant to
amidation (conjugation) (unlike UCDA which is conjugated to
glycine or taurine). It decreases the amount of phospholipid and
cholesterol secretion relative to bile acids in bile (18). Given
that NorUDCA is resistant to amidation, it undergoes extensive
“cholehepatic” circulation, the proposed process where bile acids
are absorbed across the cholangiocyte canalicular boarder and
transported back to the portal circulation and hepatocytes where
they can be re-secreted. This likely contributes to the significant
induction of bicarbonate secretion and cholangiocyte choleresis
seen with NorUDCA (17). In several rodent models of liver
disease, including the mdr2(−/−) mouse model of PSC and
PFIC3, NorUDCA has been shown to be more effective than
UDCA in preventing liver disease progression, and there is
some evidence that NorUDCA may have anti-fibrotic effects
(107, 108). In the CFTR knockout mice mouse model of
cystic fibrosis, NorUDCA leads to increased biliary bicarbonate
and fluid secretion (20). In a study using a mouse model of
A1AT deficiency, NorUDCA lead to decreased accumulation
of misfolded protein, and improvement in liver disease likely
through increased autophagy mechanisms (109, 110). A study of
NorUDCA in adult patients with PSC demonstrated significant
reduction in alkaline phosphatase levels and an excellent safety
profile, and there is a phase 3 clinical trial currently enrolling
patients as young as 16 years of age (NCT03872921) (111). Given
these features, NorUDCA may prove to have increased utility
in several pediatric liver diseases including cystic-fibrosis related
liver disease, A1AT deficiency, and PSC, however, future studies
are needed.

CHOLIC ACID

Bile acid synthesis disorders (BASD) are a group of raremetabolic
diseases that are characterized by single enzyme defects (SED)
in bile acid synthesis pathway proteins or Zellweger spectrum
disorders (ZSDs). Oral cholic acid was approved for use in
BASD in 2015 and has been shown to decrease synthesis of
toxic bile acid intermediates, and improve histologic features on
liver biopsy in certain patients with BASD (112, 113). Though
some patients treated with cholic acid in an open label study
continued to have disease progression, it is proposed that these
patients had advanced liver disease prior to starting treatment
and that for patients newly diagnosed with these rare diseases,
if therapy is initiated promptly, disease progression can be halted
and liver transplantationmay be avoided (112). This is in contrast
to UDCA which does not satisfactorily reduce atypical bile acid
intermediates in BASD, and when given in combination therapy
with cholic acid did not provide additional benefit and may have
decreased cholic acid efficacy (113). Given these outcomes, cholic
acid is one of the few effective medical therapies for a pediatric
chronic cholestatic disease shown to alter disease progression and
should be considered for BASD.

RIFAMPICIN

Rifampicin is an antibiotic frequently used off-label in pediatric
and adult patients with cholestatic pruritus (114, 115).
Rifampicin is a strong agonist of the nuclear receptor PXR,
which induces hepatic transport proteins and metabolic
enzymes including “detoxifying” cytochrome P450s. This may
explain some of its efficacy in the pruritus associated with
cholestasis, although the exact pruritogenic agents remain
unclear. Activation of PXR may mitigate bile acid toxicity via
its suppression of CYP7a1, and induction of OATP2 and MRP2
expression, and by increasing CYP3A enzyme activity which
functions to further detoxify bile acids via hydroxylation and
urinary excretion (85). Though some studies have actually
shown increased CYP7a1 activity in humans with treatment of
rifampicin (contrary to the in vitro data), these studies have also
shown a decrease in secondary, hydrophobic bile acids (LCA
and DCA). Therefore, alternative explanations for a reduction in
pruritus may include alterations of intestinal flora which alters
production of secondary bile acids, or additional excretion of
other possibly pruritogenic compounds via increased expression
of MRP2 or other liver canalicular membrane transporters
(85, 116, 117). Rifampicin has been associated with drug-
induced hepatitis, however, and therefore pediatric patients with
cholestatic liver disease should be monitored routinely if this
medication is prescribed (118). However, as it is generally well-
tolerated it is still frequently employed for pruritus management
in pediatric patients but additional studies may be helpful to
elucidate any disease modifying benefits.

BILE ACID SEQUESTRANTS

Cholestyramine and colesevelam are bile acid sequestrants that
are also frequently used off label for the treatment of pediatric
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cholestatic pruritus but are also lacking strong data that they
influence any long term outcomes related to chronic liver disease
in pediatric patients (119). Although these drugs were initially
developed for treatment of hypercholesterolemia, by binding
bile acids they can enhance fecal bile acid secretion, and can
be effective for some patients with pruritus (120). Notably,
treatment with colesevelam significantly reduced inflammation
and fibrosis in in an animal model of PSC and PFIC 3 (mdr2−/−

mice) through several proposed mechanisms including increased
hydrophilic hepatic/biliary bile acids, and increasing colonic
resin bound BA which are more abundant TGR5 ligands, which
raises the possibility of specific benefits of bile acid sequestrants
in PSC and PFIC3 outside of simply treating pruritus (121). This
study also proposed a possible benefit of improved appropriate
cholangiocyte proliferation in the setting of injury which may
prevent progression to ductopenia, raising the possibility that
it may potentially be beneficial in other ductopenic diseases
including Alagille syndrome. Further well-controlled pediatric
studies in specific cholestatic diseases are required. As bile acid
sequestrants have been used off label for decades in pediatrics,
they are generally considered safe but are not uncommonly
associated with GI side effects including constipation, bloating,
and abdominal discomfort. Additionally, their poor palatability
often makes compliance an issue within the pediatric population
and long term use of bile acid sequestrants can lead to fat
malabsorption and fat soluble vitamin deficiencies so these need
to be monitored in patients while on therapy.

CHEMICAL CHAPERONES AND
ENDOPLASMIC RETICULUM (ER) STRESS
MODULATORS

For pediatric cholestatic liver diseases secondary to genetic
mutations that alter the functionality of the canalicular transport
proteins, chemical chaperones that may aide in protein folding
and increase functional protein delivery to membranes are
potentially therapeutic. 4-phenyl butyrate (4-PBA), has been
used for treatment of hyperammonemia secondary to urea cycle
defects given its nitrogen scavenging properties. However, it is
also a chemical chaperone that may bind to areas of misfolded
protein, preventing aggregation, enhance proper protein folding,
and therefore increasing delivery of such proteins to their
target locations (122). 4-PBA has been shown to decrease
markers of endoplasmic reticulum stress and reduce cell death
in animal models of several diseases and as such its benefits
may be multifactorial (123–125). Case reports in patients with
PFIC 1 and 2 have suggested improvement in symptomatic
pruritus after 4-PBA treatment and have even demonstrated
increased trafficking of the BSEP and FIC1 protein to the
canalicular membrane in other studies (126–130). 4-PBA in
cell and mouse models of A1AT deficiency have demonstrated
improved secretion of A1AT mutant protein from cells, however
a preliminary small human study did not show increased
serum levels of A1AT after 14 days of oral 4-PBA therapy
(131, 132). Treatment also lead to side effects in several
patients including nausea, vomiting and elevated uric acid
levels. Chemical compounds developed to enhance CFTR folding

may also improve trafficking of FIC1 to canalicular membrane
surfaces and therefore may be a potential therapeutic option for
multiple hepatic diseases (133). Rodent disease models of type
2 diabetes have shown that treatment with TUDCA reduced ER
stress and likely improves protein folding capacity (90). It should
be noted, that there are case reports of potential significant side
effects of 4-PBA including severe hepatotoxicity and psychiatric
disease (134, 135). Additionally, patients who have mutations
other than missense mutations that lead to decreased protein
trafficking may not benefit from these types of drugs. However,
the prospect of chaperone and ER stress modulators is an
area of potential new therapeutic targets and further studies
are warranted.

APICAL SODIUM DEPENDENT BILE ACID
TRANSPORTER (ASBT) INHIBITION

Given its essential role in the enterohepatic circulation of
bile acids, the ASBT is a potential therapeutic target for
cholestatic diseases. Animal work has previously demonstrated
that treatment with ASBT inhibitors reduced total bile acid
composition, and improved liver chemistries and fibrosis in
mdr2−/− mice (136, 137). There have been several studies
looking at the ASBT inhibitor maralixibat (LUM001) or
linerixibat (GSK2330672) in adults with both PSC and PBC
(NCT02061540, NCT01904058) (138). Diarrhea and other GI
symptoms were commonly reported with these drugs, and
while some studies showed improvements in itching, others
lacked significant differences in itching scores. Several studies
demonstrated improvement in bile acids, and one study
demonstrated modest improvement in biochemical features of
disease such as bilirubin and alkaline phosphatase, though this
changes were not clearly clinically meaningful and there is no
evidence that these ASBT inhibitors altered the long-term natural
history of PBC or PSC in these trials.

A double-blind, placebo-controlled phase 2b study of
pediatric patients with Alagille syndrome reported no significant
differences in adverse events between maralixibat and placebo
and no significant changes in serum bile acids or liver chemistries
compared to patients who received placebo, which suggests
this drug appears safe for use in pediatric patients (139).
While this study failed to show a significant decrease in itch
measurements between all drug doses and placebo, there was a
significant decrease in the subset of patients taking the 2 lower
doses of the drug (139). Notably, this study was only able to
randomize 6 patients to the arm with the highest maralixibat
dosing, and the limited patient size may have contributed to
the negative results. Phase 2, 3, and long term safety/efficacy
studies of the ASBT inhibitor maralixibat (LUM001) are
ongoing at different centers internationally in pediatric patients
with cholestatic liver diseases including but not limited to
PFIC and Alagille syndrome (NCT02057718, NCT02047318,
NCT02117713, NCT02160782, NCT04168385, NCT03905330,
NCT04185363). Another ASBT inhibitor, odevixibat (A4250) is
currently undergoing a phase 3 study in pediatric patients with
PFIC type 1 and 2 (NCT03566238, NCT03659916).
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Most of these studies are primarily evaluating improvement
in clinical symptoms such as pruritus or improvement in serum
laboratory values including serum bile acids, but they may
help determine if patients also have some long term benefit
such as decreased rate of transplant or increased survival with
native liver.

FXR AND TGR5 (GPBAR1) AGONISTS

Given its extensive influence on the regulation of bile acids, FXR
agonists have been developed for the treatment of cholestasis.
The first synthetic FXR ligand GW4064 was extensively studied
in animals, but had low bioavailability and was not pursued for
human drug development. However, a semisynthetic derivative
of CDCA (6-ethyl-CDCA), now commonly referred to as
obeticholic acid (OCA), was developed and has an FXR agonist
potency that is 100-fold greater than CDCA (140, 141). OCA
has been studied in adults, primarily with primary biliary
cholangitis (PBC) and has been shown to improve serum alkaline
phosphatase levels in patients who did not tolerate or who did not
have an adequate response to UDCA, but also increased pruritus
in a high proportion of patients (142–144). In addition, OCA
may be potentially beneficial in non-alcoholic steatohepatitis,
although it can cause dyslipidemia and may worsened insulin
resistance. In adults, OCA is now approved for patients with PBC
with an inadequate response or intolerance to UDCA, but is also
being studied in adult patients with non-alcoholic steatohepatitis
(NASH), PSC and other liver disorders.

Additionally, a second generation FXR agonist (INT-767) has
been developed that is reported to be a 3-fold more potent FXR
ligand than OCA and is also a TGR5 (GPBAR1) ligand. In the
mdr2(−/−) mouse model of PSC and PFIC3, INT-767 treatment
lead to improved biliary fibrosis and hepatic inflammation as well
as induced bicarbonate rich bile production which was superior
to improvements seen in selective FXR and TGR5 (GPBAR1)
treatments alone (145). Given the presence of TGR5 (GPBAR1)
on Kuppfer and immune cells as described above, this may be an
additional pathway by which bile acid receptor ligands may serve
to mitigate the effects of chronic cholestasis.

Trials of additional non-bile acid FXR modulators (cilofexor
and tropifexor) are ongoing in adults with PBC, PSC, and
NASH and preliminary human trials indicate that they may
have potential therapeutic benefits with less side effects including
pruritus (146–148). Given these promising studies in adults,
particularly those that show improved fibrosis markers, future
trials in pediatric cholestatic liver diseases involving FXR
and TGR5 agonists and other bile acid receptor ligands may
be considered.

FGF19 ANALOGS

FXR activation promotes the release of ileal FGF19 (the
human homolog of murine FGF15) which suppresses bile acid
synthesis by repressing CYP7A1 expression and therefore FGF19
analogs may be a potential therapeutic target for pediatric
cholestatic liver diseases. However, there are concerns that
FGF19 over-expression in mice lead to hepatocellular carcinoma,

and concerns about a potential risk of the development
of cholangiocarcinoma in cholestatic biliary diseases (149).
However, an FGF19 analog which reportedly is not tumorigenic
has been developed prompting increased interest for human
use (150). This purportedly non-tumorigenic FGF19 analog
(NGM282) has been evaluated in adult PSC patients and reduced
serum BA levels as well as ALT/AST values, but did not decrease
alkaline phosphatase levels (151). Promisingly, there were also
decreased serum biomarkers of hepatic fibrosis, however the
study may not have been of sufficient duration to demonstrate
if there were any long term improvements in these patients.
Studies are ongoing with this treatment in patients with PBC
and also NASH and potential use in children may be considered
pending new safety and efficacy data. It is important to note that
FXR agonists can also induce endogenous FGF19 production.
In addition, since carcinogenetic stimuli may have a long
latency period prior to tumor formation, concerns regarding any
tumorigenic potential of FGF19 may require long-term safety
studies in order to more definitively demonstrate its safety.

ANTI-INFLAMMATORY AND
ANTIFIBROTIC AGENTS

Given the often rapidly progressive nature of fibrosis and fibro-
inflammatory liver damage inmany pediatric cholestatic diseases,
agents that specifically reduce inflammation and hepatic fibrosis
are desirable. Unfortunately, the limited number of clinical trials
that have attempted tomodulate fibro-inflammatory responses in
biliary atresia, specifically with corticosteroids and intravenous
immunoglobulin, have not demonstrated any improvement
in outcomes (152, 153). In adults, there are active clinical
studies looking at modulation of several fibrosis signaling
pathways. Cenicriviroc (CVC) aims to prevent recruitment
of monocytes, macrophages, lymphocytes, and hepatic stellate
cells via dual CCR2/CCR5 inhibition. CVC has previously
demonstrated improved inflammatory and fibrosis makers in a
rat thioacetamide-induced liver fibrosis model and a diet induced
NASH mouse model (154). Though this are not cholestatic
models of liver disease, the improvement in fibrosis may still
be relevant and current studies are ongoing in adults with liver
disease (NCT02217475). If effective, these agents can be studied
in pediatric cholestatic diseases with significant hepatic fibrosis,
particularly biliary atresia.

HEPATOCYTE TRANSPLANT, STEM CELL
INFUSIONS, AND GENE THERAPIES

Hepatocytes that could repopulate the liver with fully functional
cells would be helpful not only in pediatric cholestatic liver
diseases but also in several non-cholestatic and adult liver
diseases. In one study specifically related to pediatric cholestatic
liver disease, splenic injection of mdr2−/− mice with MDR3-
expressing hepatocytes while on a standard diet lead to modest
improvement in phospholipid excretion in mice, but did lead
to histologic improvement of disease and appeared to decrease
the development of hepatic tumors (155). A more recent study
with the mdr2−/− mouse infused via the portal vein with
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mdr2+/+ hepatocytes had improved engraftment rates with
concomitantly given glyceryl trinitrate (a vasodilator) (156).
Prior work with BSEP knout out mice (a model of human PFIC
2) had also demonstrated favorable outcomes after wild-type
hepatocyte transplantation (157). However, in most humans with
cholestatic diseases treated with hepatocyte transplantation the
effects have been less encouraging than in animal studies. A
review nearly 15 years ago reported the use of infused hepatocytes
in pediatric patients with PFIC 2 without improvement in
disease, though apparently no significant complications (158).
This study also summarized outcomes in several other liver-based
metabolic diseases (though not primarily cholestatic diseases)
with hepatocyte transplantation which had variable rates of
success and may be of interest to the reader (158). A follow-up
study to this one which reviewed outcomes in these same patients
that progressed to need liver transplantation months after
hepatocyte transplant demonstrated no evidence of engraftment
of donor hepatocytes into liver cell plates on explanted livers
(159). Though advances have been made over the years, the
field of human hepatocyte transplantation as a therapy for liver
diseases is still working to optimize cell quality/storage, increase
engraftment rates, and allow for long term monitoring of these
cells. A recent review of the current status of human hepatocyte
transplantation for liver diseases and cirrhosis can be found
elsewhere (160, 161).

Stem cell infusions for patients with liver disease has been
proposed to alter hepatic inflammation and fibrosis which makes
it a possible favorable treatment for pediatric cholestatic liver
diseases. Additionally, if autologous stem cells are used then
there would not be a requirement for immunosuppression
(unlike hepatocyte transplantation). In a mouse model of biliary
atresia, animals were given bone marrow-derived mesenchymal
stem cells via intraperitoneal injection and the authors reported
significantly improved AST, ALT, total and direct bilirubin along
with improved histologic features and markers of hepatic fibrosis
14 days later (162). There is a case report of human hepatic
progenitor cells being infused through the hepatic artery for a
1 year old patient with reported biliary atresia which reported
improvement in several lab values including bilirubin at 2
months post-infusion (163). They reported they had followed
the patient for at least 6 months after infusion, however no
further laboratory values after 2 months post infusion or long-
term patient outcome was reported in this case report. A study
out of India of 26 patients with biliary atresia gave 11 patients
an infusion of autologous mononuclear bone marrow stem cell
infusion via the hepatic artery or portal vein at the time of
their operative evaluation +/− Kasai surgery for biliary atresia
(2/11 patients did not receive Kasai surgery due to severity of
portal hypertension at time of diagnosis) while the remaining
15 patients received standard care (2/15 patients did not receive
Kasai due to severity of portal hypertension at time of diagnosis)
and then followed patients for at least 1 year or until death (164).
The authors report a significant decrease in post-operative serum
bilirubin with the use of stem cell infusion compared to the
group without stem cell infusion at 7 d post-operatively and 6
months post-operatively. However, it is notable that in the cohort
of patients that did not receive the stem cell infusions there were

significantly more episodes of cholangitis which may accelerate
the hepatic decline in biliary atresia and may be a confounding
factor in this study, and also there was a high mortality rate
in this series and no significant difference in median post-
operative survival time, though the authors proposed the stem
cell infusions may have prolonged life in early infancy. There
is also currently an open-label trial (NCT03468699) enrolling
patients 1–15 years old with cirrhosis secondary biliary atresia
after undergoing Kasai portoenterostomy where treatment
will include 2 administrations of autologous bone marrow
mononuclear cells infused via the hepatic artery. Excellent
reviews of the use of variable stem cell therapies for a variety
of pediatric and adult liver diseases are available elsewhere (165,
166).

Given the prevalence of diseases with known, single-gene
mutations within the field of chronic pediatric cholestasis, gene-
editing technologies are an attractive future therapeutic option.
There have been human subjects treated with CRISPR edited T
cells and hematopoietic stem and progenitor cells and clinical
trials are ongoing (NCT03399448, NCT03745287). While there
are no current studies underway with pediatric cholestasis,
CRISPR/Cas-9 gene-editing or and other prime editing tools may
offer promise for future gene editing therapies for patients with
single gene or other known mutations.

CONCLUSION

Chronic cholestatic liver diseases are a significant cause of
morbidity and mortality within the pediatric population and
there is a notable lack of specific medical therapies that
improve outcomes in these patients. However, the past few
decades a new understanding of the intricate signaling pathways
involved in bile acid metabolism and transport has led to novel
targets for treating these diseases in pediatric patients. These
include strategies to limit cytotoxicity by changing the bile
pool hydrophobicity, enhancing protein folding, altering the
expression of bile acid and other liver and ileal transporters
to promote choleresis, enhancing hepatic detoxifying enzymes,
disrupting the enterohepatic circulation of bile acids and
decreasing the production of bile acids. Other strategies can
target signaling pathways to decrease inflammation and fibrosis
in liver diseases, and potential future gene editing therapies may
be promising for identified gene defects. Based on our ever
increasing and more nuanced understanding of the underlying
etiologies of specific patient genotypes and phenotypes with
pediatric cholestasis, combination therapies tailored to specific
patients may be employed in the future. However, additional
studies are warranted to elucidate potential therapeutic agents in
humans that are effective, and also have favorable tolerability and
low risk of long-term side effects.
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