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Breast cancer is the most commonly diagnosed cancer among women worldwide,

and early detection remains a principal factor for improved patient outcomes

and reduced mortality. Clinically, magnetic resonance imaging (MRI) techniques are

routinely used in determining benign and malignant tumor phenotypes and for

monitoring treatment outcomes. Static MRI techniques enable superior structural

contrast between adipose and fibroglandular tissues, while dynamic MRI techniques

can elucidate functional characteristics of malignant tumors. The preferred clinical

procedure—dynamic contrast-enhanced MRI—illuminates the hypervascularity of breast

tumors through a gadolinium-based contrast agent; however, accumulation of

the potentially toxic contrast agent remains a major limitation of the technique,

propelling MRI research toward finding an alternative, noninvasive method. Three

such techniques are magnetic resonance spectroscopy, chemical exchange saturation

transfer, and non-contrast diffusion weighted imaging. These methods shed light on

underlying chemical composition, provide snapshots of tissue metabolism, and more

pronouncedly characterize microstructural heterogeneity. This review article outlines

the present state of clinical MRI for breast cancer and examines several research

techniques that demonstrate capacity for clinical translation. Ultimately, multi-parametric

MRI—incorporating one or more of these emerging methods—presently holds the best

potential to afford improved specificity and deliver excellent accuracy to clinics for the

prediction, detection, and monitoring of breast cancer.
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INTRODUCTION

The American Cancer Society has estimated that within the United States in 2020, a total of
276,480 females will be diagnosed with breast cancer and 42,170 are likely to die from the
disease (1). While breast cancer treatment has advanced, early detection remains a principal factor
for improved patient outcomes and reduced mortality. Although, mammography has been the
standard method of breast cancer screening since the 1960s, magnetic resonance (MR) imaging
(MRI) offers superior sensitivity, particularly within denser breasts, and an annual MRI exam
is recommended for high-risk women (e.g., women with familial history, genetic predisposition,
significant chest radiation history, or lobular cancer) (2).
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Amongst the existing and routinely practiced modalities to
screen breast cancer, MRI has the highest sensitivity. In a recent
study conducted over a period of eight years, Kuhl et al. reported
a 95% confidence interval of 96.5–97.6% for specificity with
a positive predictive value of 35.7% in diagnosing high grade
breast tumors of sizes as small as 8mm (3). A major limitation
of clinical MRI lies in its wide range of specificity (37–97%)
manifested as failures in differentiating malignant breast tumors
vs benign lesions (4–6). However, false positive results fromMRI
observed in high risk lesions differ significantly from the low risk
lesions associated false positive results through radiographs (7).
These inherent biological differences with significant prognostic
implications cannot be overlooked as we compare the results
between MRI and other radiographic screening modalities.
The advancements in MRI techniques and future research
summarized in this paper are aimed at overcoming the specificity
associated limitation of MRI to differentiate benign lesions from
aggressive breast tumors with improved accuracy.

At present, secondary breast cancer prevention for males is
not emphasized as widely as in females owing to the low male
breast cancer incidence rate of 1% (8, 9). Studies demonstrating
the use of MRI in screening male breast cancer patients are
few, yet not uncommon (10–12). Survival outcomes of male
breast cancer patients have worsened in recent years (12–14).
The present treatment options for male breast cancer patients
are derived from the clinical outcomes on female patients, which
could be a potential limiting factor (14). Thus, more studies
highlighting the impact of secondary breast cancer prevention on
males, particularly given improved risk assessment from genetic
testing, e.g., BRCA2-associated phenotype (15), are needed.

Advances in MRI and MR spectroscopy (MRS) have enabled
clinicians to detect numerous biomarkers of breast cancer and
to monitor the patient’s response to chemotherapy. Studies have
shown a correlation between these MR-based biomarkers and
histopathological features of tumors. This linkage could provide a
powerful technique for monitoring the progression of the disease
and the patient’s response to chemotherapy (16–21).

Image contrast based on tissue T1 and T2 are common
MRI sequences exploiting the differences in the relaxation times
of protons within the tissue under examination. T1 provides
longitudinal relaxation time while T2 provides transverse
relaxation time for a set of protons. By exploiting the
distinct T1 and T2 relaxation properties of various tissues,
static MRI provides superior structural contrast between
adipose and fibroglandular tissues and remains a mainstay
for risk analysis, tumor detection, and treatment monitoring.
Dynamic MRI techniques go one step further, elucidating
functional characteristics of malignant tumors. Dynamic contrast
enhanced (DCE) MRI detects T1 changes in tissues over time
immediately following bolus administration of a gadolinium-
based contrast agent; the hypervascularity of breast tumors
results in altered uptake and washout rates, and the unique time-
intensity curve can distinguish malignant from benign tumors.
Recent concerns regarding lasting gadolinium accumulation and
toxicity, however, have impacted patient’s assent to undergo
techniques requiring gadolinium-based contrast agent, including
DCE MRI, and research efforts have renewed to design

alternative, noninvasive methods. One leading contender is
diffusion weighted imaging (DWI), which already has proven
valuable as an adjunct to DCE by improving combined
sensitivity. DWI can elucidate tissue properties based on the
Brownian motion of water. Since diffusivity differs inside and
outside cells, the pattern of tissue morphology can be established
based on the restriction of motion of water molecules in
densely packed cells (22). Emerging techniques including MRS
and chemical exchange saturation transfer can shed light on
underlying chemical composition, providing snapshots of tissue
metabolism and characterizing microstructural heterogeneity.
Furthermore, non-compartmentalized, non-Gaussian diffusion
models have the potential to derive micrometer-scale diffusion
metrics that may reflect tumor heterogeneity andmicrostructural
dimensions. This review article outlines the various MRI
techniques currently used for breast cancer and examines
several research techniques that demonstrate capacity for clinical
translation or potential to facilitate discoveries in basic research.

CURRENT MR-BASED TECHNIQUES

Structural Imaging
Among the clinical imaging modalities, MRI yields superior
sensitivity of breast tumors and, notably among dense breasts,
provides excellent contrast between tumor, adipose, and
fibroglandular tissues (23, 24). A typical structural breast
imaging protocol includes a T2-weighted sequence and a T1-
weighted sequence, with and without fat suppression (25).
Bilateral imaging is performed in order to evaluate asymmetries.
High breast density is a known risk factor of developing
malignant breast tumors (26), and specialized sequences have
been developed for breast density measurement (27). The
American College of Radiology Breast Imaging Reporting and
Data System (BI-RADS) provides guidance for the succinct
classification of overall breast composition, with emphasis on
the proportion of fibroglandular tissues (25). As illustrated
in Figure 1, fibroglandular tissues are readily differentiated
from adipose tissues when using a T1-weighted sequence with
fat suppression.

Contrast-Enhanced Perfusion MRI
Standard clinical breast MRI protocols also include a gadolinium
dynamic contrast enhanced scan for distinguishing malignant
from benign tumors. A fat-suppressed T1-weighted sequence
is run before and up to 15 minutes after an intravenous
bolus injection of gadolinium-based contrast agent followed by
a saline flush. The rate of gadolinium washout is indicative
of the microvascular properties and hyperintensity within
malignant tumors is very sensitive and specific to malignant
tumors (5). Notably, hormonal fluctuations can affect the uptake
of gadolinium in healthy breast tissue, so dynamic contrast
enhancement is only recommended to be performed during the
first half of the menstrual cycle (29, 30). Representative dynamic
contrast enhanced MRI are shown in Figure 2A.

In contrast to conventional dynamic contrast enhancement
techniques, whole breast area (normal parenchymal breast
tissues) can be enhanced utilizing the background parenchymal
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B

FIGURE 1 | Fat-suppressed T1-weighted MRI of the same subject at (A) 7T and (B) 3T. The water signal uniformity (uw) is similar across 3T and 7T, while the fat-water

contrast (c) is markedly improved at 7T. Reprinted with permission from Brown et al. (28); ©2013 Wiley Periodicals, Inc.

enhancement (BPE) technique. This technique can identify
specific regions of differences within normal mammary tissues
over others which facilitates a wider prediction of the
tumor microenvironment and its possible changes. These
features augment the specificity and sensitivity of MRI and is
advantageous in reducing false positive results. BPE is assessed
by four qualitative BI-RADS categories: minimal (<25% of
glandular tissue demonstrating enhancement), mild (25-50%
enhancement), moderate (50-75% enhancement), or marked (>
75% enhancement). In 2011, King et al. concluded that increased
BPE is strongly predictive of breast cancer odds (32), however
more recent studies have found no correlation with positive
biopsy rate, sensitivity, or specificity (33).

Clinical MR Scanners
Clinical 1.5 tesla (T) and 3T scanners typically include a built-
in body coil for transmitting radiofrequency (RF) pulses, i.e.,
the B1 field. Given the off-center positioning of the breasts
within the body coil, and the asymmetric loading presented by
the torso, transmit B1 inhomogeneity is prone to worsen at
higher magnetic fields. At 3T, the body coil has been reported
to produce up to 50% error in tip angle (34), which significantly
confounds the accuracy of quantitative image-derived measures
including DCE enhancement ratio (35) and T1 mapping (36).
These issues may be mitigated using advanced quantification
techniques and accompanying pulse sequences, e.g., saturation-
recovery snapshot-fast low angle shot (37).

Irrespective of the scanner’s magnetic field strength, receive
array coils improve signal-to-noise ratio (SNR) throughout
the breast compared to utilizing the body coil to receive the
RF signal (38). A variety of commercial breast receive array
coils are available (39, 40) and custom 3T array coils have
been reported to further improve performance for specific
applications (41, 42).

EMERGING MR-BASED TECHNIQUES

Diffusion-Weighted MRI
Gaussian Models

Diffusion weighted imaging
As a noninvasive MRI technique, diffusion weighted imaging
(DWI) detects the bulk diffusion of water within tissue and
offers substantial advantages in visualizing and differentiating
tumors based on their vascularization patterns. The amount
of diffusion weighting applied to the MRI signal is set by
the operator-defined b-value, with zero indicating no diffusion
weighting (Figure 3A) and commonly employed b-values for
breast DWI being on the order of 1,000 s/mm2. DWI encodes
water diffusion in one to three orthogonal directions (each
direction corresponding to a gradient direction) and assumes
unrestricted isotropic diffusion. The resulting apparent diffusion
coefficient (ADC) quantifies the mean bulk diffusion per pixel
and is an established quantitative surrogate for tissue cellularity.
While the cell membranes and vascularity within tumors
preclude unrestricted water motion, the simple DWI model
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FIGURE 2 | High-resolution 1.5T DCE MRI of four subjects from the American College of Radiology Imaging Network (ACRIN) 6657 repository (31) (A) unmodified

and (B) with the segmented breast fibroglandular tissue overlaid in green.

accurately represents voxels (single data-specific locations on
a 3D tissue construct) with high water content and low cell
density and the resulting hypo intensity within breast tumors
remains informative. This effect is illustrated in Figure 3B.
Moreover, a technique known as automated DWI, which
retrospectively computes higher b-value images from the typical
DWI acquisitions, has been shown to improve lesion detection,
particularly when calculations are performed on a voxel-wise
basis (44).

Traditional spin-echo DWI relies on a conventional single-
shot echo planar imaging readout prone to produce ghosting
artifacts that hinder image quality. Other readouts such as spatio-
temporal encoding mitigate ghosting artifacts at the expense of
added noise (45). Ultimately, readout-segmented (or multi-shot)
echo planar imaging has been established as a robust solution
with good sensitivity; ghosting artifacts are prevented since each
shot acquires the full extent of k-space in the phase-encode
direction but only traverses a segment in the readout direction
(46). The readout-segmented DWI sequence is prevalent and
frequently prescribed for bilateral breast DWI with 2-mm in-
plane resolution.

Higher-resolution DWI may be attained by reducing the field
of view, which focuses on a target region within the breast. With
this technique, 0.8-mm in-plane resolution can be resolved at 3T,
and the resulting ADC maps provide greater detail facilitating
the assessment of tumor morphology (47). Imaging time can be
reduced by combining the high-resolution reduced field of view
approach with multiband RF excitation (48).

Obtaining consistently high-quality breast DWI is one of
the challenges that current studies are targeting to overcome.
The American College of Radiology Imaging Network (ACRIN)

6698 clinical trial has shown that ADC can be measured with
excellent repeatability and reproducibility in a multi-institution
setting using a standardized protocol and QA procedure
(49). An MRI platform that can provide a clearer distinction
between tumors delivers more deterministic results to the
patients, thus restricting the number of unnecessary biopsies
performed on patients largely due to false positive results.
However, it is important to note DWI should not be
used as a stand-alone clinical protocol; rather, DWI hold
a compelling role within multi-parametric MRI (mpMRI)
protocols. For example, DWI detects significantly fewer cancers
compared to dynamic contrast enhancement technique, but
when incorporated as an adjunct it will yield superior sensitivity
(46). Similar improvements can be achieved when pairing
DWI with other complementary techniques such as MRS, as
discussed later.

Diffusion tensor imaging
Diffusion tensor imaging (DTI) builds on the DWI technique
by increasing the number of diffusion-encoding directions, thus
enabling the calculation of anisotropic diffusion. While DWI
characterizes isotropic diffusion within each voxel as a sphere,
DTI employs at least six gradient directions and geometrically
represents anisotropic diffusion within each voxel as an
ellipsoid. The diffusion tensor, a matrix of directional diffusion
coefficients, is established for each voxel based on the diffusion
rates detected concurrent with each gradient configuration.
Given the directionality of resulting diffusion information,
DTI can provide additional insight into tissue microstructure
through mean diffusivity—the DTI analogue to the ADC in
DWI—and various anisotropy measures which provide critical
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FIGURE 3 | A comparison of diffusion techniques and metrics from scanning a 57-year-old woman with left breast invasive ductal carcinoma (tumor indicated by the

arrow) at 3T. (A) The baseline b = 0 image acquired without diffusion gradients; (B) conventional DWI: apparent diffusion coefficient (ADC) map (scale bar 0-2.35

mm2/s), arrow indicating tumor ADC value of 1.090 mm2/s; (C) diffusion kurtosis imaging: mean kurtosis map (scale bar 0-3 mm2/s), arrow indicating tumor mean

kurtosis value of 1.154 mm2/s; (D) DTI: mean diffusivity map (scale bar 0-2.8 mm2/s), arrow indicating tumor mean diffusivity value of 0.808 mm2/s. Reprinted with

permission from Li et al. (43); ©2018 International Society for Magnetic Resonance in Medicine.

information such as a tissue’s vascularity, density, and cellular
features. Such anisotropic features include fractional anisotropy,
radial anisotropy, the individual diffusion coefficients, and the
maximal anisotropy index. A mean diffusivity map is shown
in Figure 3D.

While there is a consensus across studies that mean
diffusivity is significantly lower in malignant tumors compared
to benign lesions, there are conflicting results regarding the
diagnostic utility of the anisotropy indices (50). Some reports
suggest the standard DTI metrics of fractional anisotropy,
radial anisotropy, and mean diffusivity cannot differentiate
healthy tissue from cancer, while the diffusion coefficients and
absolute maximal anisotropy index can assist in differentiating
malignant tumors from both benign lesions and healthy
tissue (51, 52). A recent approach suggests modifying the
DTI model by compartmentalizing the diffusion signal as a
combination of an anisotropic diffusion tensor (stroma cells)
and a spectrum of highly-restricted (lymphocytes), restricted
(cancer cells), and hindered (edema) isotropic-diffusion tensors;
initial results with this modified diffusion basis spectrum
imaging technique indicate greater diagnostic sensitivity and
specificity distinguishing between malignant tumors and benign
lesions (53).

Remarkably, DTI metrics have been shown to have distinctive
correlations with breast cancer subtypes. Onaygil et al. found

statistical significance between several anisotropy indices in
estrogen receptor positive and negative (ER+ and ER-) breast
cancers, and separate correlations with the levels of Ki-
67, a biomarker for cellular proliferation, while Ozal et al.
reported identifying distinct correlations between various DTI
metrics and levels of breast cancer prognostic factors: ER,
progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), Ki-67, and lymphatic invasion in invasive
tumors (54, 55).

The challenge of achieving excellent repeatability and
reproducibility across sites remains ongoing with breast DTI.
Studies indicate the ADC can be reproduced with more
accuracy compared to DTI anisotropy metrics such as fractional
anisotropy (56, 57).

Notably, the technical development that drove substantial
improvements into the DTI technique was largely motivated
by the quest to map neuronal tracks of white matter in the
brain. Preliminary studies reconsidering the utility of DTI
for breast cancer have investigated utilizing DTI for breast
tractography (58). Given the stark difference between the two-
point connections of neuronal tracks and the branching ductal
tree, Degani and colleagues proposed a novel computational
methodology of post-processing DTI data using vector maps
and clustering to infer the detailed structure of the mammary
tree (59, 60).
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Non-gaussian Models

Diffusion kurtosis imaging
While a Gaussian distribution of diffusion indeed applies to pure
liquids and gels, barriers from complex tissue structures in effect
modify the probability distribution of diffusion. Accordingly,
the statistical metric for quantifying the actual probability
distribution within tissue is designated as kurtosis. By acquiring
additional, higher b-value images (where b value is an operator-
defined parameter correlating with the strength and time for
diffusion in imaged tissues), on the order of b = 1000–3000
s/mm2, and at least 15 diffusion gradient directions, the diffusion
kurtosis imaging technique can map multiple structures within a
single voxel, e.g., crossing white matter fibers in the brain. In the
context of breast imaging, diffusion kurtosis imaging is sensitive
to intracellular structures such as membranes and organelles (61)
and, in addition to a mean kurtosis map, can provide a diffusion
heterogeneity index sensitive to the tumor microstructure (62).
Importantly, diffusion kurtosis analysis of the breast improves
with correction for unsuppressed fat signal (63). A mean kurtosis
map is shown in Figure 3C.

Intravoxel incoherent motion
While technically also a perfusion imaging method, the
intravoxel incoherent motion model adds additional quantitative
terms to account for microvascularity. Accordingly, intravoxel
incoherent motion has the potential to discern both tissue
diffusivity and microcapillary perfusion without the need for
contrast agents (64). Additional quantitative metrics include the
perfusion fraction (or blood volume fraction of vasculature)
and a pseudodiffusion coefficient corresponding to water
movement within microvasculature. For breast cancer imaging,
the intravoxel incoherent motion model is more often added to
non-Gaussian diffusion methods (65). A combination of high
perfusion fraction, high kurtosis, and low diffusion coefficient is
often observed at the periphery of tumors, while the opposite
pattern is apparent in the necrotic core as well as within
fibroadenomas (66). Accordingly, the intravoxel incoherent
motion model shows promise for differentiating between
malignant and benign breast lesions (67, 68). Furthermore, a
recent report also indicates histogram analysis can accurately
predict neoadjuvant chemotherapy (NAC) response (69).

Other Diffusion Models
Many other advanced diffusion methods have been proposed
with the goal of probing intravoxel heterogeneity and cellularity;
a review of several such methods and their suitability for
cancer imaging was recently published by Tang and Zhou (62).
Generally, these methods require additional acquisitions with b-
values up to 4000 s/mm2, presenting a challenge given the lower
SNR inherent with high b-value acquisition.

Magnetic Resonance Spectroscopy
Proton Spectroscopy
Magnetic resonance spectroscopy (MRS) provides a localized
snapshot of the biochemical makeup of tissue (70). Proton (1H)
MRS offers the greatest sensitivity and simplest data acquisition.
Elevated levels of choline-containing compounds indicate cell

membrane turnover and are a biomarker for malignant breast
tumors (71). All choline-containing compounds are quantified as
total choline (tCho) and appear as a peak at 3.2 ppm on the 1H
MRS spectrum. A thorough 2013 meta-analysis of tCho studies
(n= 1193 patients) suggests this biomarker offers 73% sensitivity
and 88% specificity (72). Moreover, high levels of glutathione
measured with 1H MRS have been associated with increased
resistance of cancer cells to radiation-induced cell death (73).

The recent ACRIN 6657 MRS clinical trial aimed to predict
response to NAC with tCho single-voxel MRS; the results were
inclusive, with only 29/119 subjects providing useable data (74).
A primary limitation of the protocol was the manual placement
of the MRS voxel within or encompassing the tumor, leading
to issues with reproducibility across clinical sites. In the future
this limitation can be addressed by running a full 3D magnetic
resonance spectroscopic imaging sequence, allowing localized
analysis to be performed retrospectively.

The high specificity of tCho studies suggests 1H MRS could
be an effective addition to a mpMRI protocol (75). For superior
differentiation of benign tumors from normal physiology, ADC
values from DWI in combination with tCho peaks can provide a
comprehensive result (76).

Proton MRS also facilitates lipid analysis, i.e., proportions
of mono- and poly-unsaturated fats, fatty acid chain length,
and mean saturation, all measures that are sensitive to past
dietary intake. Specific lipid signatures have been reported
to be significantly lower in malignant versus benign tumors,
and luminal cancers can be differentiated via lipid MRS (77–
79). Acquisition issues stemming from water-lipid susceptibility
boundaries can be avoided by running a zero-quantum-
coherence 2D MRS sequence (80).

Multinuclear Spectroscopy
With 1H MRS, many spectral peaks overlap and potentially
mask lower-concentration metabolites. While multinuclear MRS
suffers upfront from reduced sensitivity—an inherent deficit in
SNR that is somewhat mitigated at higher fields—they provide
a window into breast cancer metabolism with information
inaccessible to 1HMRS (81). Phosphorus-31 (31P)MRS separates
distinct choline compounds, specifically phosphorylcholine and
glycerophosphocholine, otherwise overlapped as tCho on the
1H spectrum. The role of phosphocholines in breast cancer
metabolism is of broad interest (82–85), with the ratio
of phosphocholine to glycerophosphocholine hypothesized to
switch from low to high during malignant transformation (86),
and to increase further with tumor progression (87). The ratio
of phosphomonoesters to phosphodiesters has been shown to
decrease after successful NAC (88). An example 31P spectrum
from an ER+, PR+, HER2- tumor is presented in Figure 4.

Carbon-13 (13C) MRS can provide additional information
such as the composition of breast fat and correlations that
may predispose to cancer. Performing in vivo 13C MRS is
difficult for many reasons, including low natural abundance,
low (in comparison to 1H) sensitivity, J-coupling bonds between
1H and 13C atoms that obfuscate spectral peaks, and unique
hardware instrumentation requirements. The preferred 13CMRS
experiment, applying broadband proton decoupling, requires
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A B

FIGURE 4 | Example 7T data of a patient with an ER+, PR+, HER2- tumor. (A) T1-weighted image with indicated voxel selection (blue square), (B) 31P MRS

spectrum of nine fitted metabolites. Adapted from Krikken et al. (88), used under CC BY.

RF coils operating at both the 1H and 13C frequencies; the
1H channel is used for scout imaging as well as to transmit
proton-decoupling pulses across the J-coupled chemical shift
band (89). By employing proton decoupling at 7T, natural
abundance 13C lipid analysis from the breast was demonstrated
(90). Enriched or hyperpolarized 13C studies boost the SNR
and facilitate additional studies, including using 13C-labeled
choline to distinguish between catabolic and anabolic pathways
in choline metabolism (91), and gauging glucose metabolism in
the breast using [U-13C] glucose bolus injection (92).

Magnetization Transfer
Magnetization transfer (MT) was first introduced by Wolff and
Balaban (93); the MT image contrast reflects the exchange of
magnetization between protons in free water and protons bound
to macromolecules due to chemical exchange and dipole-dipole
interactions. After image acquisition with a specialized off-
resonance RF pulse, the MT effect among voxels of interest is
quantified using either the so-called z-spectrum or a histogram
of the MT ratio. The repeatability of quantitative breast MT
measurements among cohorts of healthy volunteers has recently
been demonstrated (94, 95). MT images can provide important
information of tumor response to NAC (96). Chemical exchange
saturation transfer extends the capabilities of MRS by indirectly
detecting low-concentration chemicals through their proton
exchange with water, including protein aggregates in malignant
tumors. For example, amide proton transfer imaging detects
the protein and peptide concentration by saturating the amide
protons within peptide bonds. Dula et al. defined an integrated
voxel-wise metric assumed to reflect the cellular protein and
peptide content, designated amide proton transfer residual,
and calculated this measure before and after neoadjuvant
chemotherapy for two women with ER- breast cancer who
experienced contradictory outcomes (95). As illustrated in
Figure 5, they found a decrease in amide proton transfer residual

from the woman with a complete response, while the metric from
the woman with progressive response increased (95). Moreover,
chemical exchange saturation transfer can discriminate between
nonmalignant and aggressive human breast cancer cells, as it
can characterize the metabolites altered by breast cancer cell
aggressiveness and chemotherapy response (97). For example,
the amide proton transfer signal in triple negative tumors is
distinct and may result from the unique microenvironment of
the tumor subtype (98). In addition, amide proton transfer
asymmetry is observed in patients with breast cancer treatment-
related lymphedema (99). Notably, high quality amide proton
transfer images can be readily obtained at 7T, because both
the chemical exchange saturation transfer effect and SNR are
enhanced at higher field strengths (100).

Other Techniques
Sodium MRI
Sodium (23Na) is abundant in the body and, unlike other non-
proton nuclei that yield spectra for chemical quantification,
sodium has no chemical shift dispersion and instead produces
images (101). Malignant tumors are thought to increase sodium
content due to disruption of the sodium-potassium pump in
cell membranes. Elevated tissue sodium concentration has been
confirmed in malignant lesions (102), and sodium concentration
correlates well with the ADC of DWI (103).

Susceptibility Weighted Imaging
Historically recognized as the cause of frequent MRI artifacts,
particularly near air-tissue interfaces or in the vicinity of
metal implants, differences in magnetic susceptibility can also
produce contrast between diamagnetic and paramagnetic tissues.
Ductal carcinoma in situ (DCIS) is frequently missed by DCE
MRI and has been shown to associate with certain patterns
of breast calcifications (104). Calcium is more diamagnetic
than tissue water, and the susceptibility effects are intensified
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B

FIGURE 5 | Amide proton transfer maps overlaying anatomical T1-weighted

images acquired at 3T. The top row shows data acquired prior to neoadjuvant

chemotherapy (NAC); the bottom row shows data acquired after one cycle of

NAC. (A) Patient who had complete response (i.e., no residual tumor) and (B)

patient who had progressive disease. Reprinted with permission from Chan

et al. (95); ©2012 Wiley Periodicals, Inc.

at higher magnetic fields. Figure 6 illustrates the ability of
7T susceptibility-weighted MRI to identify microcalcifications
otherwise only visible using mammography (105).

MR Elastography
MR elastography (MRE) images a low-frequency acoustic wave as
it propagates throughout tissue. By calculating the local complex

A

B

C

FIGURE 6 | Comparison of (A) mammogram and (B,C) susceptibility

weighted phase images acquired at 7T with a 0.35-mm isotropic resolution

T*2-weighted 3D gradient echo sequence (105). Diamagnetic

microcalcifications are indicated by yellow arrows and are hypointense in the

susceptibility weighted phase images.

sheer modulus, MRE can characterize biomechanical properties
of breast tissue including differences in stiffness. The initial aim
of employing MRE for breast cancer was to differentiate benign
lesions from malignant tumors; the more liquid-like behavior of
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A

B

FIGURE 7 | Example MR fingerprinting of the breast. Representative (A) T1
and (B) T2 MR fingerprinting color maps from one subject. Reprinted with

permission from Chen et al. (109); ©2019 International Society for Magnetic

Resonance in Medicine.

malignant tumors provided sufficient MRE contrast to achieve
this aim (106). More recently, MRE is being combined with
3D strain imaging, the latter altering the stress-load relation of
tumors; ongoing studies are investigating the potential of MRE to
determine mechanical forces to estimate the metastatic potential
of tumors (107).

MR Fingerprinting
A relatively new technique known as MR fingerprinting utilizes
a pseudorandom RF excitation and pattern recognition to
produce quantitative maps of tissue properties (108). Results
from preliminary breast MR fingerprinting studies illustrate
the simultaneous quantitative mapping of T1 and T2 in a
bilateral configuration (109, 110). Representative T1 and T2 MR
fingerprinting maps are shown in Figure 7.

MR Electrical Properties Tomography
MR electrical properties tomography exploits typically
undesirable distortions in the RF transmit field (B1) to
reconstruct the conductivity and electrical permittivity
of tissue (111). A preliminary breast MR electrical
property tomography study by Shin et al. found malignant
cancers have higher conductivity than benign lesions, and
invasive cancers showed higher conductivity compared to
DCIS (112).

Novel Contrast Agents
Recent discoveries of gadolinium retention within the body have
raised questions regarding the long-term toxicity of gadolinium-
based contrast agents and propelled the quest for novel contrast
agents that are both safe and equally effective (113). Recent
studies have begun reevaluating alternative contrast agents for
breast cancer, including manganese (114, 115) and iron chelates
(116). Even so, research continues on gadolinium-based contrast
agent’s improvements, and agents can be designed to target
specific molecular peptides. A preclinical study utilized one
such contrast agent to bind to fibrin-fibronectin complexes
abundant in malignant cancer, including micro metastases
(117). While human trials have not commenced, these novel
contrast agents have potential to improve the early detection and
characterization of high-risk breast tumors.

Machine Learning
Machine learning is a branch of data science that “trains”
computers to learn data without preprograming the computers
to perform specific tasks. There are two types of machine
learning models: unsupervised learning and supervised learning.
Unsupervised learning aims to classify data that have not been
assigned labels or categories; examples include neural networks
and clustering to map input data (e.g., breast images) into output
categories that share similar contents (e.g., tumor assessments).
On the other hand, supervised learning aims to classify data that
have been assigned with ground truth labels (e.g., radiological
assessments); example models include regression methods and
support-vector machines (SVM).

As an artificial intelligence tool, machine learning may best
be introduced to the clinic through structured use cases; in
the case of breast cancer, these may include the application of
artificial intelligence to identify suspicious microcalcifications
(118) and, given the variability of visual density assessments
(119), the quantification of breast fibroglandular tissue volume
(25). The American college of radiology recommend using
the BI-RADS categories for characterizing breast lesions. This
method relies on the radiologist’s experience and is limited by
inter-observer variance.

Neural networks are machine learning models that consist
of multiple interconnected layers. The study of neural networks
is termed deep learning. Lately, deep learning has surpassed
traditional image processing models in the segmentation and
detection of novel imaging biomarkers (120). Convolutional
neural networks are a type of neural network that has
convolutional layers and hidden layers, and they have profound
diagnostic performance. For example, a 3D deep convolution
neural network can be used to identify and localize malignant
breast lesions in DCE images, previously demonstrating 90.8%
sensitivity and 69.3% specificity (121, 122). Another potential
application is fibroglandular tissue and BPE assessment; while
BI-RADS defines relevant categories, it does not establish
percentage values for their quantification. A large proportion of
fibroglandular tissue in the breast correlates with breast cancer
risk (23, 26, 119, 123). Robust fibroglandular tissue quantification
can be an efficient tool for clinicians to process large amount
of breast MRI data and support more accurate breast cancer

Frontiers in Medicine | www.frontiersin.org 9 May 2020 | Volume 7 | Article 175

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chhetri et al. Magnetic Resonance of Breast Cancer

risk assessments (124). Independent of fibroglandular tissue
quantification, computer-aided BPE quantification in DCE
images has shown potential to be an imaging biomarker
of breast cancer (125). For breast image segmentation and
tumor volume quantification, several algorithmic routines have
been demonstrated, e.g., (123, 124, 126–128); however, deep
computational neural networks (i.e., U-nets) have shown
particular promise for improving robustness and accuracy of
results (129–131). Figure 2B shows the segmented fibroglandular
tissue overlaid on anatomical DCE breast images. Based on fully
automated computerized approaches, BPE DCE-MRI recently
has been reported applicable in screening potential risk factors
of breast cancer to regionalize the parenchymal tissues and their
vasculature (125).

Radiomics involves extracting quantitative features from
medical images, such as tumor size, shape, and textures, and
patient-level data, such as the genetic data, to determine the
underlying relationship between these features and pathologies
(121, 132–136). A radiomics study of BPE DCE-MRI was able
to differentiate subtypes of triple negative breast cancer (137).
Another study combining BPE and T2-weighted breast MRI
predicted NAC response with high accuracy (138). Texture
parameters used as features in the support-vector machine
learning approach show accurate prediction of benign and
malignant breast lesions (133, 138–142). Texture parameters
can consist of statistical and grey-level metrics in the sub-1cm
region of interest in DCE images (139), the ADC map histogram
combined withDCE-derived parametricmaps (140, 141), and the
parenchymal texture analysis (133). Finally, radiogenomics aims
to identify imaging biomarkers and incorporates with phenotypic
and genotypic metrics to support the execution of radiomics
studies (142).

Machine learning has applications in breast lesion detection
and classification, as well as predicting NAC response. Machine
learning can bring together data from many studies and reduce
the variability of radiologists’ annotation methods on breast
lesions. The current limitations of machine learning are the
training requirement of large datasets and lack of standardized
machine learning models to extract features from these datasets.
Lastly, the decision-making process of machine learning can
be considered a “black box”; it is difficult to intuitively explain
how and why a certain answer is produced by machine
learning models.

Ultra-High Field MR Scanners
7 Tesla
As indicated by the improved fat-water contrast visible in
Figure 1, the positive predictive value and cancer detection
rates of MRI increase at higher magnetic fields (143). However,
the issue of transmit B1 inhomogeneity is greater at ultra-
high fields, and it becomes necessary to utilize a local transmit
coil for breast MRI at 7T (144). Given the proximity to
the breasts and the greater net magnetization inherent at
higher static magnetic fields, a local RF coil may be used
for both transmit and receive (28). However, owing to the
asymmetric dielectric load presented by the torso, transmit
B1 inhomogeneity can still be pronounced throughout the

breasts, leading to a linear signal drop-off toward the chest
wall. In response, adiabatic pulse sequences have been developed
to compensate for B1 inhomogeneity and improve tip angle
uniformity (145). Alternatively, transmit coil designs exploiting
transmission line techniques, e.g., forced current excitation (90,
146), have been shown to produce excellent B1 homogeneity
throughout the breast to the chest wall [7.2% B1 coefficient
of variation reported in (147)] and facilitate the use of
standardized pulse sequences. As with lower static fields, the
received SNR is further improved by utilizing a 7T array coil
insert (148–151).

Ultra-High Field Safety
The potential for RF power deposition to cause localized tissue
heating is more apparent at higher fields. The amount of power
dissipated in a given mass of tissue is quantified as specific
absorption rate, and operational safety limits are stipulated by
the International Electrotechnical Commission (152). The safety
of local transmit coils must be validated, typically through
thermometry measurements and electromagnetic simulation of
the specific coil design. While higher specific absorption rate
is expected for women with greater breast tissue density, their
resulting levels for routine 7T pulse sequences are generally
well within safety limits (153, 154). Furthermore, a preliminary
simulation study indicates the presence of breast implants
has no significant effects on specific absorption rate or tissue
heating (155).

CONCLUSIONS AND FUTURE
DIRECTIONS

The current and emerging MRI techniques discussed in
this paper are summarized in Table 1. For a multifaceted
disease such as cancer, multi-parametric approach through
which both structural and functional information can be
elucidated simultaneously is a necessity to overcome the
limitations of current MR based clinical modalities. In
comparison to the stand-alone modalities, mpMRI enables
both visualization and quantification. Quantifying varied
cancer traits, including but not limited to, tumor architecture,
tumor microenvironment, vascularization and angiogenesis,
tumor heterogeneity, cellularity, metabolite concentration,
and receptor status in parallel with image reconstruction
through the combination of modalities would inevitably
improve the status quo in detecting and treating breast
cancer (156). Furthermore, individual modalities that appear
far-removed from standalone efficacy may be ideal adjuncts
for an mpMRI approach; for example, Weiss et al. recently
demonstrated a promising approach to predict personalized
response to NAC using a combination of DCE and DWI;
however, the accuracy of their mathematical model would be
strengthened by personalized measurements of elastic properties
of the breast, potentially through MRE (157). Ultimately,
mpMRI incorporating one or more emerging methods has the
potential to afford improved specificity and deliver excellent
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TABLE 1 | Comparison of current and emerging MRI techniques.

Imaging techniques Clinical applications Features and strengths Limitations

Current MRI techniques Structural imaging T1 and T2 weighted bilateral fat

suppression imaging

Superior sensitivity for breast tumors;

preferable for dense breast imaging

Low tumoral contrast, as tumor is

surrounded by breast fat and

fibroglandular tissue

Contrast Enhanced

Perfusion MRI

Dynamic Contrast

Enhanced (DCE) MRI

Routinely utilized for distinguishing

malignant vs benign cancers

Microvasculature and hypersensitivity in

malignant tumors

Affected by hormones (menstrual cycle)

Background

Parenchymal

Enhancement (BPE)

MRI

Breast cancer predicting odds for

patients at risk (32)

Whole breast area enhancement; tissue

specific differences in normal tissues

Recent studies fail to correlate positive

biopsy rate with specificity or sensitivity

(33)

Emerging MRI techniques Diffusion Weighted MRI

(Gaussian)

Diffusion Weighted

Imaging (DWI)

Potential tissue cellularity-based

approach

Improved lesion detection for

voxel-wise calculation (47, 48); higher

resolution achievable (e.g., 0.8mm)

(47); yields superior quality when used

in combination with MRS or other

multiparametric modalities (46)

Inconsistency in obtaining high-quality

breast DWI but can be solved with

protocol standardization and QA

procedure (see (49) for more details)

Diffusion Tensor

Imaging (DTI)

Potentially differentiating breast cancer

subtypes (54, 55)

Distinction of malignant vs benign

lesions

Reproducible results with higher

accuracy remain a challenge

Diffusion Weighted MRI

(Non-Gaussian)

Diffusion Kurtosis

Imaging

Potential to differentiate heterogenous

tumor microstructures (62)

Applicable for intracellular structures,

e.g., membranes and organelles (61);

improved unsuppressed fat signal (63)

Low SNR; longer scanning time and

higher magnetic gradient strength for

high b-value acquisition

Intravoxel Incoherent

Motion

Promising results in differentiating

malignant vs benign lesions;

neoadjuvant chemotherapy (NAC)

prediction

Tissue diffusion and microcapillary

perfusion based; contrast Agents are

not required;

Low SNR; longer scanning time and

higher magnetic gradient strength for

high b-value acquisition

Magnetic Resonance

Spectroscopy (MRS)

Proton Spectroscopy Potential biomarker for malignant breast

cancer

Highest sensitivity and simplest data

acquisition

Issues related to reproducibility across

clinical sites (74)

Multinuclear

Spectroscopy

Potential in identifying ‘at risk’

population by monitoring

metabolism-based results

Tumor malignancy transformation study Low SNR

Magnetization Transfer Potential in monitoring response to

NAC; differentiating malignant tumors

vs benign lesions

Facilitates detection of low

concentration chemicals

Low SNR, benefits from higher

magnetic field strength (7T)

Other techniques Sodium MRI Potentially differentiating malignant

tumors based on sodium concentration

(101)

No chemical or spectral shift observed;

based on sodium/potassium ion

channels in the body

Could be overlapped with other

sodium/potassium ion channel related

disorder

Susceptibility-

Weighted

MRI

Potential microcalcifications in breast

tissues (otherwise only visible using

mammography)

Potential to determine ductal carcinoma

in situ that are often missed

Possibility for MRI related artifacts in

images

MR Elastography Applicable for differentiating malignant

vs benign lesions

Characterization of biomechanical

tissue properties (microenvironmental

stiffness)

Requires breast in contact with soft

sternal driver

Electrical Properties

Tomography

Differentiate malignant vs benign

lesions; invasive ductal carcinoma vs

ductal carcinoma in situ (112)

Utilizes undesirable distortions in

transmit field

Poor spatial resolution

Machine Learning Lesion detection, lesion classification,

and predicting response after NAC

Brings together data from a large

number of studies, and reduces

inter-reader variability caused by

readers’ different annotations in breast

tumor masks

Lack of standardization: no standard

method for segmentation and feature

extraction. Requires large datasets for

training. The decision-making process

is a ‘black box,’ hard to understand
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accuracy for the prediction, detection, and monitoring of breast
cancer (158).

Both DWI and 1HMRS are considered important approaches
to pursue the analysis of tumor growth and treatment response
in vivo (159). Advanced DWI methods that have the potential
to distinguish tumors, given distinct signatures of cellularity
and intravoxel heterogeneity, hold great potential in the
noninvasive differentiation of tumor subtypes. Specifically, the
fractional order calculus model (160) can derive micrometer-
scale diffusion metrics that may reflect nuclear morphometry. To
elicit sensitivity to shorter-scale diffusion, this method requires
acquisitions with at least five b-values in the high range of b =

3000–4000 s/mm2. While one retrospective study failed to show
improved utility of fractional order calculus model parameters
as compared to DWI ADC, the maximum b-value acquisitions
included in the study (b = 1500 s/mm2) were insufficient to
properly evaluate the fractional order calculus model (161).
Regarding 1H MRS, current issues surrounding inter-site
reproducibility of single-voxel MRS may be mitigated through
automated voxel placement or full 3D magnetic resonance
spectroscopic imaging (74), particularly if following standardized
process for acquisition, post-processing, and analysis (162).
Continued development of MT techniques, including amide
proton transfer, also show promise for differentiating tumor
subtypes and predicting treatment outcome. DWI, MRS, and
amide proton transfer all will benefit from the growing footprint
of 7T MR scanners and continued progress toward U.S. Food
and Drug Administration approval of clinical breast cancer
applications at 7T. Positron emission tomography (PET) as
a stand-alone imaging technique is known to have a high
diagnostic ability for metastasis through imaging of the breast
and adjacent lymph nodes. The diagnosis and characterization
of primary tumors using PET has been shown to be improved
when used simultaneously in conjugation withMRI, owing to the
strengths of the individual modalities (163), but more research
on combined PET/MRI modality is required to provide enough

supportive evidence of their higher sensitivities. Radiation
associated with the tracer in PET could be another concern;
however, Melsaether et al. have demonstrated 50% reduction
in total radiation dose when switching from PET/computed
tomography to PET/MRI in a population of breast cancer
patients, implying a safer mode of imaging and diagnosis in
comparison to the former (164).

Finally, the rapidly advancing field of machine learning
will facilitate more impactful applications for breast cancer
detection and management, likely improving specificity, positive
predictive value, and differentiation of tumor subtypes through
MRI. Moreover, simultaneous assessments of biomarkers and
their genomics data through radiogenomics is likely to prove
instrumental in the future as we advance toward precision health
or personalized medicine and simultaneously decrease the MRI
associated false positive rates.
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