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Recent studies have shown that deep learning is capable of classifying dermatoscopic

images at least as well as dermatologists. However, many studies in skin cancer

classification utilize non-biopsy-verified training images. This imperfect ground truth

introduces a systematic error, but the effects on classifier performance are currently

unknown. Here, we systematically examine the effects of label noise by training and

evaluating convolutional neural networks (CNN) with 804 images of melanoma and nevi

labeled either by dermatologists or by biopsy. The CNNs are evaluated on a test set

of 384 images by means of 4-fold cross validation comparing the outputs with either

the corresponding dermatological or the biopsy-verified diagnosis. With identical ground

truths of training and test labels, high accuracies with 75.03% (95% CI: 74.39–75.66%)

for dermatological and 73.80% (95% CI: 73.10–74.51%) for biopsy-verified labels can be

achieved. However, if the CNN is trained and tested with different ground truths, accuracy

drops significantly to 64.53% (95%CI: 63.12–65.94%, p< 0.01) on a non-biopsy-verified

and to 64.24% (95% CI: 62.66–65.83%, p < 0.01) on a biopsy-verified test set. In

conclusion, deep learning methods for skin cancer classification are highly sensitive

to label noise and future work should use biopsy-verified training images to mitigate

this problem.
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INTRODUCTION

Deep learning (DL) has revolutionized non-medical image
analysis and is starting to change clinical workflows. DL can
detect cancer in radiological images (1), can predict molecular
changes from histology of cancer (2) and can be used to classify
dermatoscopic images (3–6). Based on a large amount of input
data and the corresponding class labels, the parameters of a
neural network are optimized during the training phase in such
a way that for an unknown input the predicted output ideally
corresponds to the true class label. Both the input and the class
labels are generally noisy, whereby the so-called feature noise has
less dramatic effects on the classification quality than the label
noise (7).

This is particularly the case in medical applications, since the
available medical data sets are normally small and cost-intensive
knowledge of experts is required for labeling to be as noise
free as possible. Furthermore, there are high inter- and intra-
rater variabilities in many medical classification tasks, which
additionally increase label noise.

For example in dermatology, the visual inspection of a skin
lesion show a significant error rate with respect to the gold
standard pathology. In the binary classification task melanoma
vs. nevi an average sensitivity and specificity of 82 and 59% is
reported in Marchetti et al. (8). The same classification task is
also investigated in Haenssle et al. (4), where the dermatologists
achieved an average sensitivity and specificity of 86.6 and
71.3%, respectively.

In this paper, the effect of label noise on the performance of
convolutional neural networks (CNNs) is to be investigated using
the binary classification task between melanoma and nevus. In
contrast to many existing studies, label noise is not generated
artificially by random noise processes (9, 10), but rather by real-
world labels that are either from: (a) several dermatologists or (b)
the histopathological diagnosis of a biopsy. The latter diagnostic
method has a statistically lower error rate and, therefore, most
existing work in digital skin diagnosis attaches great importance
to a biopsy-verified test set. However, due to the low availability
and the high costs of acquiring biopsy-verified images a large
amount of non-biopsy-verified images are often included in the
training set whose diagnosis are based solely on a consensus
decision of several dermatologists or on the lack of temporal
lesion changes over several skin examinations (3, 8, 11–13). In
doing so, high label noise is introduced in the modeling process.
The hypothesis of this paper is that although the CNN learns
the diagnostic performance of dermatologists through such a
procedure, the performance for skin cancer classification with
respect to the gold standard biopsy is severely limited.

This paper utilizes results of a previous reader study (6)
where a total of 804 biopsy-verified images (402 melanoma and
402 nevi) were classified by several German dermatologists. For
training and evaluating the CNN model two different ground
truths are applied. As a first ground truth, the majority decision
(MD) of the dermatologists involved in the reader study is
considered for each image without taking the biopsy result into
account. This means that both biopsy-verified melanoma can
be labeled as nevi as well as biopsy-verified nevi can be labeled

as melanoma. Furthermore, the result of a histopathological
examination of a biopsy (BIO) is used as a second ground truth,
which is the gold standard for skin cancer. In order to investigate
the influence of label noise on the skin classification task, all
combinations of these two different ground truths are applied
for training and test set, so that a total of four scenarios can be
distinguished: [1] training with MD and testing with MD, [2]
training withMD and testing with BIO, [3] training with BIO and
testing with MD, and [4] training with BIO and testing with BIO.
For each scenario in this setting, we can evaluate the influence of
label noise independent of the image selection for training and
test set, since for each image both ground truths are available.

RESULTS

To obtain the labels based on the majority decision of
several dermatologists, we sent six electronic questionnaires
each containing 134 images of nevi and melanoma to nine
German university hospitals. In total, the six questionnaires
were completed 144 times (19,296 images were evaluated); 52
questionnaires were filled out by board-certified dermatologists
(evaluation of 6,968 images), and 92 by junior dermatologists
(evaluation of 12,328 images). Each of the 804 individual images
was evaluated by an average of 21.3 dermatologists (median= 21;
standard deviation= 4.8; range= 4–31).

The majority decision of dermatologists correctly classified
261melanomas, 141melanomas were wrongly classified as nevus.
Among the biopsy-verified nevi, 266 were correctly identified by
the majority decision, 136 nevi were misclassified as malignant.
This results in an overall sensitivity and specificity of 64.9 and
66.2%, respectively. In the subset of 384 images representing
the test set, the dermatologists correctly recognize 135 of 188
melanomas, which corresponds to a sensitivity with respect to
the gold standard of 71.8%. Considering only the biopsy-verified
nevi in the test set, 115 of 196 nevi are correctly classified by
dermatologists resulting in an overall specificity of 58.7%.

Training and evaluating a CNN with identical ground truth
labels, high accuracies with 75.03% (95% CI: 74.39–75.66%) for
dermatological and 73.80% (95% CI: 73.10–74.51%) for biopsy-
verified labels can be achieved. However, if the CNN is trained
and tested with different ground truths, the accuracy drops
significantly. If the CNN is trained with biopsy-verified labels and
tested with dermatological labels, accuracy drops significantly to
64.53% (95%CI: 63.12–65.94%, p< 0.01). In the contrary case, an
accuracy of 64.24% (95% CI: 62.66–65.83%, p < 0.01) is achieved
on a biopsy-verified test set. Table 1 summarizes the results for
the primary and secondary study endpoints for all four scenarios.

In Figure 1, the boxplots for the primary endpoint accuracy
as well as the secondary endpoints sensitivity and specificity
are depicted for all four scenarios. The receiver operating
characteristic (ROC) curves illustrating the relationship between
sensitivity and specificity for different cut-off values are shown in
Figure 2.

Furthermore, Figure 3 shows on the left side the four
test images for which the outputs of the CNN trained with
dermatological labels and those trained with biopsy-verified
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TABLE 1 | Statistical evaluation of the primary study endpoint (accuracy) and the

secondary study endpoints (sensitivity and specificity) for the four different

scenarios (training with ground truth majority decision (MD)/testing with ground

truth biopsy (BIO), training with MD/testing with BIO, training with BIO/testing with

MD, and training with BIO/testing with BIO).

Ground truth

for training

MD BIO

Ground truth

for testing

MD BIO MD BIO

Mean

accuracy

75.03% 64.24% 64.53% 73.80%

95% CI

accuracy

74.39–75.66% 62.66–65.83% 63.12–65.94% 73.10–74.51%

Mean

sensitivity

76.76% 69.65% 64.31% 75.98%

95% CI

sensitivity

75.36–78.15% 67.92–71.37% 62.74–65.88% 74.69–77.26%

Mean

specificity

73.00% 59.05% 64.79% 71.85%

95% CI

specificity

71.10–74.90% 56.56–61.54% 63.20–66.38% 71.08–72.61%

labels differ the most. In the upper part of each image the
majority decision of the dermatologists (MD) and the result of
the biopsy (BIO) is given. On the right side, the boxplots of the
corresponding outputs over the 10 conducted simulation runs
are presented.

DISCUSSION

If a CNN is trained with the diagnosis of several dermatologists,
it achieves high-quality results on a test set whose labels have also
been created by dermatologists. Convolutional neural networks
are therefore able to identify the features in an image that
dermatologists are looking for and use them as basis for decision-
making. However, with this combination of ground truths it
also learns the sources of errors in the dermatological decision.
Comparing the achieved sensitivity and specificity with 76.76 and
73.0% with the performance of the dermatologists on the test set
(71.8 and 58.7%), the two metrics are substantially higher. This
difference may be caused by learning a systematic error of the
dermatological diagnosis.

If, however, a CNN trained with majority decisions is tested
on a test set with biopsy-verified ground truths, the statistical
metrics decrease significantly. In detail, the average accuracy
drops from 75.03 to 64.24%. Here it is particularly interesting
that the average sensitivity and specificity with 69.65 and 59.05%
are in similar orders of magnitude as the statistical metrics of the
dermatological diagnoses on the 384 test images regarding the
gold standard, i.e., the included.

If a CNN is trained with biopsy-verified images, the
accuracy of 73.80% in a test with biopsy-verified images is
a little bit lower than the results of a CNN trained and
evaluated with dermatological labels. Therefore, learning the
relationship between image and corresponding biopsy-verified

FIGURE 1 | Boxplot of the achieved accuracies, sensitivities, and specificities

over 10 simulation runs. 804 biopsy-verified images of nevi and melanoma are

labeled by both the majority decision of several dermatologists (MD) and by a

biopsy-verified ground truth (BIO). All combinations of these two different

ground truths are applied for training and test set, so that a total of four

scenarios can be distinguished (MD/MD, BIO/MD, BIO/BIO, MD/BIO). 4-fold

cross-validation is applied on a test set of 384 images to evaluate the

performance of the algorithm.
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FIGURE 2 | Receiver operating characteristic (ROC) curves of all four

scenarios. For calculating the ROC curves, the outputs of each image are

averaged over the conducted 10 simulation runs.

class labels seems to be a bit harder than learning to mimic the
dermatological diagnosis. However, in a test with images whose
labels were created by majority decisions of dermatologists, the
accuracy also drops to 64.53%. This is also within the range of the
label noise.

In all considered scenarios, the accuracies achieved by
dermatologists are lower than the reported performance from
clinical routine. This is probably due to the selection bias. As all
lesions in the study were biopsied, they represent edge cases in
general and are naturally difficult to classify. It can be assumed
that the accuracy will increase if simpler cases are added to the
test set.

There are some limitations of the study. While claiming that
deep learning models for skin cancer classification are strongly
affected by label noise, only one specific CNN architecture,
namely ResNet50, is investigated, thus questioning whether
this is truly representative of deep learning models in general.
However, the performance of the most common architectures
(ResNet, AlexNet, VGGNet, Inception) have been shown to be
comparable for most classification tasks.

Furthermore, the overall number of 804 test and training
images is very small and as a result the achieved accuracy,
sensitivity, and specificity on a biopsy-verified test set are
marginally lower than in our previous studies. However, it can
be reasonably expected that the relations between the results of
the individual scenarios will be comparable for a larger number
of images.

MATERIALS AND METHODS

The reader study (6) included 804 images with biopsy-verified
labels (402 melanoma and 402 nevi), all of which randomly
selected from the publicly available database HAM10000
and the ISIC archive (14). These images were sent to
dermatologists from nine German university hospitals via six
randomly assigned electronic questionnaires, each containing

134 images of either melanoma or nevi. In addition to
the classification, the dermatologists were also asked to
assess the quality of the images. Only images with at least
“sufficient” image quality (“excellent,” “good,” “sufficient”), as
rated by the participating dermatologists were included in
this study.

To train a CNNwith the small number of 804 available images
we apply cross-validation which partitions a sample of data into
complementary subsets. Since some of the databases in the ISIC
archive contain multiple images of the same lesion and the
identification of these duplicates is not generally reliably possible
with the metadata provided, we restrict the test set to images of
HAM10000, where duplicates can be identified by the provided
attribute “lesion_id.” This results in 384 images remaining for
the evaluation of the algorithm, which are splitted into 4 folds
for cross-validation. When testing with one of these splits, all
images from the ISIC archive as well as all images with different
lesions IDs from HAM10000 from the reader study are used
for training.

We conducted 10 simulation runs with a pre-
defined training procedure and fixed hyperparameter,
in each of which a random process generates a
mutually disjoint training and test set according to the
above-mentioned rules.

Training of the CNNs
A ResNet-50 pre-trained on the ImageNet database was selected
for the classification of melanoma and nevi. A complete training
run consisted of 14 epochs.

During training, the network was first trained in a frozen state,
where only fully-connected layers were trained at a high learning
rate. This was followed by a step where the complete network
was trained using differential learning rates. Earlier layers,
which were already pre-trained and fine-tuned to detect general
features, such as basic shapes and color gradients, were trained
on low values. The further the layer is from the input, the larger
the learning rate becomes until a pre-set maximum is reached.
Differential learning rates allow for a stronger modification
of the later layers, which represent application-specific
features, and therefore need more adjustment than pre-trained
earlier layers.

All work was carried out in Python 3.7.3 and fastai 1.0
for model.

Statistical Evaluation
The results of the 10 simulation runs are statistically evaluated
by the python modules scikit-learn (version 0.21) and scipy
(version 1.3). Throughout the paper, the cut-off value is
set to 0.5, i.e., if the output of the CNN is higher than
0.5 or equal, the corresponding input image is classified as
melanoma, otherwise as nevi. Since the test set is nearly
balanced with respect to the two considered classes, accuracy
as a scalar measure of classification quality is a suitable
choice and therefore represents the primary endpoint of this
study. In order to evaluate the influence of the label noise
as a function of the two considered classes, sensitivity and
specificity are additionally calculated as the secondary study
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FIGURE 3 | On the left side, the 4 test images are shown for which the outputs of the CNN trained with dermatological labels and those trained with biopsy-verified

labels differ the most. In the upper part of each image the majority decision of the dermatologists (MD) and the result of the biopsy (BIO) is given. On the right side, the

boxplots of the corresponding outputs of the two CNNs over the 10 conducted simulation runs are presented.
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endpoints. The primary and secondary endpoints are reported
by means and confidence intervals calculated based on the
corresponding metrics over the four splits of cross validation.
In order to illustrate the relationship between sensitivity and
specificity the receiver operating characteristic (ROC) curve
is calculated for each CNN based on the averaged outputs
of each image over the conducted 10 simulation runs. For
statistical testing, we use the Wilcoxon test, which is a non-
parametric statistical hypothesis test and compares two related
samples. Throughout the paper, the significance level is set
to 0.05.
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