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Superoxide dismutase is widespread in the human body, including skin and its

appendages. Here, we focus on human skin copper/zinc superoxide dismutase, the

enzyme that protects skin and its appendages against reactive oxygen species. Human

skin copper/zinc superoxide dismutase resides in the cytoplasm of keratinocytes, where

up to 90% of cellular reactive oxygen species is produced. Factors other than cell type,

such as gender, age and diseased state influence its location in skin tissues. We review

current knowledge of skin copper/zinc superoxide dismutase including recent studies in

an attempt to contribute to solving the question of its remaining unexplained functions.

The research described here may be applicable to pathologies associated with oxidative

stress. However, recent studies on copper/zinc superoxide dismutase in yeast reveal

that its predominant function may be in signaling pathways rather than in scavenging

superoxide ions. If confirmed in the skin, novel approachesmight be developed to unravel

the enzyme’s remaining mysteries.
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INTRODUCTION

Skin envelops the entire surface of human body and is daily exposed to environmental insults such
as pathogens, injuries and ultraviolet (UV) radiation. Its important functions include regulation of
body temperature, defense, and sensation as well as production of vitamin D. One of the skin’s
several defense mechanisms against environmental insults involves its structural organization:
both skin layers, epidermis and dermis, contain cells, enzymes and other substances that play a
critical role in defense. Several enzyme families contribute specifically to skin defense by scavenging
pathogen-, injury- and UV radiation-derived molecules. The noxious molecules called free radicals
can only be destroyed by the antioxidant activity of enzymes such as catalase, superoxide dismutase,
peroxidase, and some supporting enzymes.Wewill focus here on human skin superoxide dismutase
(SOD) highlighting, in addition to its best-known function of scavenging, further functions already
shown in other models.

ROS

Free radicals have a single unpaired electron on the outer orbit. Derived from oxygen and also
known as reactive oxygen species (ROS), they are generated by normal cellular aerobic respiration
and are produced in mitochondria, endoplasmic reticulum, and peroxisomes, and are involved in
several biochemical reactions that regulate fundamental cellular signaling pathways such as cell
proliferation, apoptosis, and autophagy (1, 2). The energy created by their unstable configuration
is freed through reactions with adjacent molecules, such as inorganic and organic substances,
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FIGURE 1 | Scheme of ROS signaling/effects and defense system in the skin. Exogenous and endogenous agents of skin cells generate ROS, whose excessive

levels can cause cell damage. ROS modulate MAP signaling pathways leading to activation of the transcription factor AP-1 (activator protein 1) and NF-kB (nuclear

factor kappa-light-chain-enhancer of activated B cells). They also induce: (A) a decrease in procollagen synthesis via blocking TGF-β/SMAD signaling; (B) an increase

in the inflammatory processes; (C) an increase in collagen degradation via synthesis of matrix degenerating MMPs. Furthermore, ROS allow nuclear factor Nrf2 to

detach from its cytoplasmic inhibitor, keap-1, to translocate to the nucleus and activate transcription of antioxidant genes. Melatonin (8) and α-MSH (9) are also

stimulated by ROS to activate Nrf2 dependent-pathways and then the expression of antioxidant genes. The Nrf2 pathway is activated not only in different skin cells

such as keratinocytes and melanocytes, but also in fibroblasts (10). Modified by Sardy (11).

proteins, lipids and carbohydrates, and with key membrane
molecules and nucleic acids (3–5). Oxygen radicals and other
reactive species cause modifications in the amino acids of
proteins, which frequently result in functional or structural
changes of enzymatic proteins (6). They are able to induce
covalent bonds with Kelch-like ECH-associated protein 1
(Keap1), a keratinocyte cytoplasmic protein that is normally
linked to nuclear factor erythroid 2-related factor 2 (Nrf2),
which, according to Dinkova-Kostova et al. (7), dissociates from
Keap1 and transmigrates to the nucleus where it acts as a
transcription factor and induces the production of antioxidant
enzymes including copper/zinc SOD (Cu/Zn SOD) (Figure 1).
ROS generation can also trigger autocatalytic reactions resulting
in more free radicals that propagate the damage chain. These
are inherently unstable and generally decay spontaneously.
The superoxide anion, for example, is unstable and decays
spontaneously in the presence of water to release oxygen and
hydrogen peroxide (12).

There are many other exogenous factors, such as pollutants
and UV that can induce ROS production. Excessive ROS
production can lead to skin aging and development of skin
cancer (13–15). Human skin is constantly exposed to three main

types of UV [(16–18)1]. However, epidermis, by means of its
self-protecting cells, keratinocytes, undergoes cornification. And
among the proteins that make up the thickened cell envelope,
small proline rich proteins, also known as stress-inducible
proteins, are expressed that protect keratinocytes from ROS (19).

SUPEROXIDE DISMUTASE

SOD is a highly conserved enzyme, that is abundantly expressed
in the cytoplasm of aerobic organisms and plays a fundamental
role in protecting cells from oxidative stress. It belongs to a
family of enzymes that catalyze the dismutation of the superoxide
radical (20, 21). These radicals are generated in many cellular
processes (22) such as products of normal respiration and
oxidative bursts from immune cells. There are various forms
of SOD that incorporate different covalently bound substances
(Mn, Zn, Cu, Fe) (23), and can inactivate both intra- and extra-
cellular superoxides (20). Work on their subcellular localization
in hepatocytes shows that Cu/Zn SOD (SOD1), which contains
copper and zinc, may be found in the nuclei, cytoplasm,

1http://www.who.int/mediacentre/multimedia/en/
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peroxisomes and lysosomes, but also in mitochondrial
intermembrane space (24–26). Mn SOD (SOD2) contains
manganese and it is predominantly found in the mitochondrial
matrix (27). The third one, Cu/Zn extracellular SOD (SOD3),
also contains copper and zinc and is secreted in the extracellular
space (28). Superoxide radical anions are unstable molecules,
commonly produced by aerobic metabolism. Oxidative stress,
induced by the uncontrolled production of superoxide and
its reaction products, is implicated in the development of
pathologies including neurodegenerative diseases, premature
aging, cancer, diabetes, and dermatitis. There is a clear increase in
ROS generation of the skin after UV exposure (6). Epithelial cells
and thymus-based fibroblasts can release antioxidant enzymes,
especially under stress conditions (29). All mammalian cells
express both mitochondrial Mn SOD and cytosolic Cu/Zn SOD,
while the extra-cellular SOD high molecular weight isoform
appears to be expressed only in specific cell populations (30, 31).
Extra-cellular SOD was discovered by Marklund (30, 32) who
showed that it is localized in the fluid and in the extra-cellular
matrix of tissues; its role in cancer cells has been reviewed
by Griess et al. (33) who suggested that extra-cellular SOD
increase generated by ROS might work as a cancer suppressor
(33). Immunohistochemistry has shown that EC SOD is also
present in connective tissue. It is absent, however, in the thymus,
stomach and skeletal muscle (34). Although it has been observed
that extra-cellular SOD protects the extracellular space and the
endothelial cell surface, its activity is low (32). These observations
suggest that the enzyme can act both by a paracrine mechanism
and on remote cells (35, 36). The hydrogen peroxide generated
by SOD activity acts as an inhibitor of the enzyme. In this case the
superoxide radical is not neutralized and inhibits the enzymes
involved in subsequent reactions (e.g., catalase) (37–39).

Cu/Zn SOD is a stable 15.9 kDa homodimer. The dimerization
is held by hydrophobic contacts (40) that reduce solvent
accessibility and increase its stability (41). Each monomer
contains two metals, a copper ion and a zinc ion, which
together have either a structural or catalytic function. Initially
Cu/Zn SOD was detected in the cytosol (24), in the outer
membrane and/or in the intermembranous space between
mitochondria and peroxisomes, which generate superoxide
radicals (42). In fibroblasts, Cu/Zn SOD appears to be localized
in peroxisomes (43). An important novel function of Cu/Zn
SOD has been reported recently in yeasts and humans. In
response to oxidative stress, high levels of H2O2 promote Cu/Zn
SOD nuclear translocation and as a transcription factor the
enzyme regulates the expression of oxidative resistance and
repair genes (44). In addition, in yeasts, only a small amount
of Cu/Zn SOD was shown to scavenge superoxides while the
majority of Cu/Zn SOD mediated peroxide signaling (45).
There are as yet few similar investigations on vertebrate cells
including human; it would therefore be of great interest to
confirm the data obtained in Saccharomyces cerevisiae. Actually,
it has been reported that 25% of genes related to human
degenerative pathologies overlap almost completely with those
of yeast pathologies, thus allowing the study of homologous
antioxidant response genes in much simpler eukaryotic
organisms (46).

FIGURE 2 | Structure of the normal human epidermis (man, aged 25;

forearm skin). (A) Section of human skin showing the different layers of the

epidermis. OPA trichrome staining (47). 40 x magnification; (B) The enzyme is

clearly present in epithelial keratinocytes. Horseradish peroxidase

development. Methyl green counterstaining allows a better identification of

SOD1-immunoreactive nuclei (arrows). Specimens are subsequently evaluated

by histo-densitometry of Cu/Zn SOD immunoreactive areas. 10x magnification.

Illustration of BCC (man, aged 71; back, scapular skin). (C) Structure of the

epidermis showing a nodular lesion in the dermis. Hematoxylin-Eosin. 10x

magnification; (D) Densitometric measurements of Cu/Zn SOD for basal

carcinomas were made at the level of the surface epidermis and in the tumor

areas invaginated in the dermis. Faint staining of epidermis. Horseradish

peroxidase development. Methyl green counterstaining. 10x magnification.

Illustration of SCC (woman, aged 65; back, scapular skin). (E) Structure of

the SCC-affected skin. Hematoxylin-Eosin. 10x magnification; (F)

Densitometric measurements of Cu/Zn SOD in SCC-affected human skin were

made at the level of the surface epidermis and in the tumor areas invaginated

in the dermis. Epidermal staining is weaker than normal tissue. Horseradish

peroxidase development. Methyl green counterstaining. 10x magnification.

Cu/Zn SOD AND SKIN

In a recently published immunocytochemical study Altobelli et
al. localized Cu/Zn-SOD in human skin in several conditions
(Figures 2A–F). Some studies show that during the processes
of natural aging and photo-aging the activity of SOD does not
change in the skin, while that of catalase is increased in the
epidermis and considerably reduced in the dermis (48). The
activity of antioxidant enzymes seems to vary among cell types;
for instance, fibroblasts have high levels of catalase, glutathione
peroxidase and SOD compared to keratinocytes (43). In the skin,
environmental direct contact-induced ROS production can cause
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aging, skin diseases, and cancer. Photo-aging depends on the
degree of exposure and the type of skin. For example, individuals
who live in warm environments are more exposed to light and
are consequently prone to photo-aging (49). However, according
to Hellemans (50), the seasonal activity of SOD in the stratum
corneum does not seem to vary.

UV rays induce the synthesis of matrix metalloproteinases
(MMP) in the skin, leading to the destruction of collagen
(51) (Figure 1). The greatest effect is observed in photo-
aging, where there is a greater activity of MMP and an
increase in the accumulation of hydrogen peroxide, due
to reduced dermal catalase. The accumulation of hydrogen
peroxide changes the activity of mitogen-activated protein
(MAP) kinases involved in the synthesis of pro-collagen
and consequently induces aging (50, 52–54). In vitro studies
of the effects of SOD on cellular antioxidant metabolism
have shown its relationship with MMP and its consequent
regulation of extracellular matrix degradation (55). These data
were later confirmed in a study in vivo on a pig model.
Clinical results of radiation-induced fibrosis have provided
some evidence that Cu/Zn SOD could become an anti-fibrotic
drug, its therapeutic effect relating to down-regulation of
transforming growth factor beta 1 (TGF-beta1). In fact, SOD
significantly reduces the expression of TGF-beta1 while an
increase of TGF-beta1 expression is associated with fibrotic
diseases (56).

Direct murine skin-exposure to various oxidative stresses
requires a high antioxidant capacity to maintain a low
oxidant balance (57). Measurements of enzymes and antioxidant
substances present in human skin showed that the activity of
SOD was higher in the epidermis than the dermis in both
young and aging skin (48). These results were then confirmed
by histo-densitometry and showed a reverse relationship between
human cutaneous Cu/Zn SOD and aging, as well as a higher
level in the male than the female (58). In addition, exposed
skin expressed more of the enzyme than non-exposed skin
(Figure 2B). Interestingly, it has been proved that carbazole
induces ROS production in the human keratinocyte cell line,
HaCaT. Carbazole is an aromatic heterocyclic compound so
called because it contains one or more aromatic rings in
its structure. It has been shown that when carbazole is
present in human skin, for example in tattoo ink, prolonged
exposure to sunlight resulting in photosensitized carbazole
causes downregulation of antioxidant genes (hmox-1, keap-1,
nrf-2, and bcl2) in HaCaT cells and of course an increase
of ROS, with consequent apoptotic cell death (59). In vitro
experiments with HaCaT (59, 60) provide important information
on the physiology of SOD and oxidative stress-linked skin
diseases. HaCaT cell lines have also been used to unravel an
unexpected relationship of the NO/NOS system with Cu/Zn
SOD. NO is thought to up-regulate Cu/Zn SOD expression
that in turn might inhibit the mechanism of keratinocyte
proliferation (61).

Thus, SOD protects human keratinocytes from UV-induced
damage that includes aging caused by fragmentation of
collagen and elastic fibers and activation of metalloproteases
(62). A comprehensive review of mainly plant-derived natural

antioxidants for human skin has been produced by Dunaway
et al. (63): it has been reported that antioxidants such as green
tea, vitamin C, vitamin E, CoQ10 and hydroxytyrosol could
reduce the effect of UV radiation (64–69). In human skin, a
single exposure to UV rays involves a transient reduction of
SOD activity; however, after chronic UVB irradiation, activity
of epidermal SOD is induced (6). Studies on mouse skin have
shown that UVB lowers the level of Cu/Zn SOD, while Mn SOD
is influenced by UVA. Seasonal alternation, however, does not
cause a variation in SOD concentration in either exposed or
non-exposed skin (50).

It seems that HaCaT cell lines become apoptotic in a dose-
dependent way 24 h after radiation with 150 J/m2 of UVB and
only 35 J/m2 of UVC (70). These negative effects are reduced in
the body thanks to the activity of antioxidant enzymes.

BASAL CELL AND SPINOCELLULAR
CARCINOMAS

The skin is the organ generally most affected by tumors because
it is the most exposed to environmental insults. The importance
of SOD in the skin is not always clear, i.e., its expression may be
influenced by cytokines (71).

The activity of SOD is variable: it is reduced in the
presence of melanomas, epitheliomas, and carcinomas
(72). Immunohistochemical studies have shown in fact
that in carcinomas the activity of both Cu/Zn SOD and
Mn SOD decreases (58, 73). EC SOD, however, is present
both in the dermis and in the epidermis and its level of
expression is seven times greater in the dermis (71). In
another study both basal and spinous layers contained
Cu/Zn SOD with a prominent expression in the upper
epidermal layers (58) (Figures 2C,D). In addition, a
weak intracellular distribution was observed throughout
the human epidermis and especially in the stratum
corneum (6).

Chronic exposure of the skin to sunlight promotes premature
aging, reduces its immunological response to environmental
antigens and is the main risk factor in the development of a
variety of precancerous and malignant skin neoplasms due to
the uncontrolled growth of keratinocytes and melanocytes (74–
76). Although ultraviolet rays are responsible for tanning, the
UVB component in particular can damage skin cell DNA (77).
Damage to the DNA induces in turn the modulation of genes
concerned with the activation of various signal transduction
pathways, promoting tumor growth from initiated cells, which
can grow into tumors because they divide much more rapidly
than normal ones (78).

Skin tumors develop mainly in areas most exposed to
the sun: face, ears, neck and scalp (79). Basal cell carcinoma
(BCC) is particularly frequent and is the most common
invasive skin carcinoma in humans, followed by spinocellular
carcinoma (SCC). Melanoma is rarer, but better known and
more dangerous. Malignant skin tumors develop relatively
slowly and are largely treatable if detected early and then
treated promptly (80). Immunohistochemical analysis of
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BCC and SCC revealed a reduction of immunoreactive
Cu/Zn SOD and Mn SOD, indicating a UV-dependent
depletion of antioxidant defenses; this reduction seems to
be inversely proportional to the proliferation of malignant
cells (81). In another study there was a noticeable increase
in SOD activity at 24 h from exposure to UVB rays, with
a significant increase in Cu/Zn SOD and a reduction in
Mn SOD levels (82). Notably, it has been reported that
melatonin has a protective action against UV radiation (UVR)-
induced 8-hydroxydeoxyguanosine formation and depletion
of antioxidative enzymes. The experiment used ex vivo human
full-thickness skin exposed to UVR in a dose- (0, 100, 300
mJ/cm2) and time- (0, 24, 48 h post-UVR) dependent manner.
Thus, melatonin plays a crucial role as a potent antioxidant
and DNA protectant against UVR-induced oxidative damage in
human skin (83).

Benign epithelial neoplasms are common and generally
biologically harmless. These tumors, deriving from the multi-
layered keratinized basal epithelium of the epidermis, hair
follicles, and the ductal epithelium of the cutaneous glands,
generally maintain the characteristics of their cells of origin.
With regard to malignant tumors, the incidence of BCCs
increases significantly in immunosuppressed patients and
in those with congenital defects of DNA repair mechanisms
and affects individuals over 45 years of age (84, 85). These
tumors can take various forms and can affect every part
of the body but most often the head. Approximately 33%
patients a year develop another primary BCC. SCCs occur
on light-exposed skin of elderly subjects. Except for lesions
of the lower limbs, these tumors have a higher incidence
among men. They are more aggressive than BCCs, expanding
more rapidly and occasionally (<5%) metastasizing to
nearby lymph nodes where they are generally profoundly
invasive (85).

The main predisposing factor is exposure to UVR from
the sun and consequent DNA damage; other factors include
industrial carcinogens, chronic ulcers and draining osteomyelitis,
old burn scars, ingestion of arsenical substances, ionizing
radiation and (for the oral cavity) mastication of tobacco (86,
87). Sunlight, in addition to its effects on DNA, also seems
to have a direct transient immunosuppressive effect on the
skin, altering the normal immune-surveillance function of its
Langerhans cells. SCCs, often preceded by preneoplastic lesions
(actinic keratoses), are usually diagnosed and operated early
when they heal in 95% of cases, otherwise they can invade the
deep tissues and destroy the bone and cartilage, especially around
the eyes, nose, and ear. Morphologically these epitheliomas
are nodular, flat (cicatricial), sclerodermiform and pigmented,
and may be ulcerated. Both BCCs and SCCs express Cu/Zn
SOD enzyme mostly in the upper epidermis (Figures 2E,F).
Furthermore, histo-densitomentric evaluation of these tumors
has recently demonstrated increased human epidermal SOD
activity with respect to dermal one, and more expression in
human male skin than in female as well as more in young than
old people (58).

CONCLUSION

Cu/Zn SOD has long been known as an enzymatic protein,
but morphological studies in skin began only in the late
nineteen-eighties, first in pig and then in human (88, 89).
The first observations allowed the localization of two types
of SOD, the Cu/Zn-type and a Mn-type. However, these
initial morphological studies were aimed at understanding the
relationship between SOD activity and epidermal proliferation.
Then, using cultured human keratinocytes, different roles were
established for Cu/Zn SOD and Mn SOD. Cu/Zn SOD activity
increases after irradiation as a reaction to ROS-generated
oxidative stress, therefore acquiring an antioxidant function
(89). Furthermore, it was suggested that cytokines IL-1 alpha
and TNF-alpha produced by keratinocytes could mediate SOD
recovery after the defense reaction. During the past decade
understanding has changed, as described above: many other
Cu/Zn SOD functions have been proposed; for example, the
role of transcription factor and, with the help of the yeast, S.
cerevisiae, and HaCaT cells, the function of oxidative signaling,
which predominate over that of scavenging. Thus, Cu/Zn SOD
crosses the nuclear membrane to join promoters and activate
transcription of determinate signaling pathways. In fact, Cu/Zn
SOD-containing cells show immune-positive nuclei as well as
cytoplasm. It remains to be clarified why nuclear labeling by
immunogold doesn’t occur in Kobayashi’s skin preparations (89).
In another investigation, Cu/Zn SOD nuclear translocation was
shown in yeast and human fibroblast (44). Additional evidence
for the anti-oxidant role of this enzyme comes from work
on skin atrophy and delayed wound healing in SOD-deficient
mice which can be reversed with various anti-oxidants, such as
syringaresinol, vitamin C derivatives and Palladium/Platinum
nanoparticle mixtures (90–93). It would be useful if all these
data could be confirmed in the human epidermis. Skin is a very
complex biochemical laboratory. Many aspects of antioxidant
enzymes have been discovered during the past 5 years but there
are more to be elucidated before the definitive functions of
Cu/Zn SOD and other antioxidant enzymes in human skin are
fully understood.
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