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Background: Ending the COVID-19 pandemic is arguably one of the most prominent

challenges in recent human history. Following closely the growth dynamics of the disease

is one of the pillars toward achieving that goal.

Objective: We aimed at developing a simple framework to facilitate the analysis of

the growth rate (cases/day) and growth acceleration (cases/day2) of COVID-19 cases

in real-time.

Methods: The framework was built using the Moving Regression (MR) technique

and a Hidden Markov Model (HMM). The dynamics of the pandemic was initially

modeled via combinations of four different growth stages: lagging (beginning of the

outbreak), exponential (rapid growth), deceleration (growth decay), and stationary (near

zero growth). A fifth growth behavior, namely linear growth (constant growth above zero),

was further introduced to add more flexibility to the framework. An R Shiny application

was developed, which can be accessed at https://theguarani.com.br/ or downloaded

from https://github.com/adamtaiti/SARS-CoV-2. The framework was applied to data

from the European Center for Disease Prevention and Control (ECDC), which comprised

3,722,128 cases reported worldwide as of May 8th 2020.

Results: We found that the impact of public health measures on the prevalence of

COVID-19 could be perceived in seemingly real-time by monitoring growth acceleration

curves. Restriction to humanmobility produced detectable decline in growth acceleration

within 1 week, deceleration within ∼2 weeks and near-stationary growth within ∼6

weeks. Countries exhibiting different permutations of the five growth stages indicated

that the evolution of COVID-19 prevalence is more complex and dynamic than

previously appreciated.

Conclusions: These results corroborate that mass social isolation is a highly effective

measure against the dissemination of SARS-CoV-2, as previously suggested. Apart from
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the analysis of prevalence partitioned by country, the proposed framework is easily

applicable to city, state, region and arbitrary territory data, serving as an asset to monitor

the local behavior of COVID-19 cases.

Keywords: coronavirus, severe acute respiratory syndrome, growth curve analysis, mathematical modeling,

moving regression, Hidden Markov Model

INTRODUCTION

The World Health Organization (WHO) officially declared
Coronavirus Disease (COVID-19) a global pandemic on March
11th 2020 (1). The disease is caused by the novel Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (2,
3), which seems to have first emerged in Wuhan, China on
December 12th 2019 (4, 5). Worldwide dissemination has been
extremely rapid, and by the time this study was completed (May
8th 2020) a total of 3,722,128 cases and 263,288 deaths had been
reported across 209 countries and territories according to data
from the European Center for Disease Prevention and Control
(ECDC) (6). Approximately 86% of all cases are estimated to
have been undocumented prior to the cordon sanitaire in China
(7), which suggests that the disease might be also substantially
under-reported in other countries. Nevertheless, partial COVID-
19 prevalence data are still an invaluable resource to help
monitoring and controlling the disease. In particular, extracting
daily estimates of growth rate (cases/day) and acceleration
(cases/day²) in disease dissemination from real-time case reports
can be decisive for an effective and promptly action to restrain
further contagion. Here we report the development of a simple
framework dedicated to the real-time analysis of COVID-19
prevalence. This framework was built using a combination of
Moving Regression (MR) (8) andHiddenMarkovModel (HMM)
(9), and was deployed as a Shiny (10) application in R (11).
Here we show the utility of that framework in the analysis of
publicly available COVID-19 case reports that are updated daily
by the ECDC. The scope of the framework was to provide real-
time extractions of growth rates and acceleration from prevalence
data, as well as to provide automated classification of growth
stages. Accurate predictions of next-day cases were also obtained
as a secondary product.

RESULTS AND DISCUSSION

For simplicity, assume that the cumulative number of COVID-
19 cases over time (i.e., the growth curve of prevalence) in
a specific country or territory follows an unknown sigmoidal
function (Figure 1A). Such assumption is common in the
analysis of growth data and has been applied to a wide range of
problems, from tumor (12) to bacterial (13) growth. Although
empirical data from a number of countries—including Australia
(Figure 1B) and New Zealand (Figure 1C)—seemed to support
it well, that assumption will be substantially relaxed later in our
framework to accommodate complex dynamics in the evolution
of COVID-19 prevalence.

We define growth rate and growth acceleration as the first
and second order derivatives, respectively, of the prevalence of

COVID-19 in respect to time. In our framework, we selected
MR to approximate these derivatives over competing models
that are frequently used to describe the behavior of sigmoidal
growth curves, such as the Gompertz model (14, 15), because:
(i) it is dependent on a single free parameter, the “smooth
factor,” which represents the number of neighboring days used
in local regression; (ii) growth rate and acceleration estimates
are approximated by ordinary least squares equations, which
are computationally inexpensive; (iii) we performed extensive
simulations of growth curves and found that it produces
reasonably accurate estimates of growth rate (median R2 = 0.99
with smooth factor of 3) and acceleration (median R2 = 0.92 with
smooth factor of 3) (Figure 2); (iv) it is very robust to departures
from sigmoidal curves; and (v) it does not rely on observations
of the whole curve to produce instantaneous growth rate and
acceleration estimates, and thus can produce such estimates in
near real time. Argument (v) is especially relevant to the analysis
of COVID-19 data since the pandemic is ongoing and each
country will be at a different stage of the growth curve as time
passes. A clear disadvantage of MR is that it may over-fit the
growth curve to the data, especially if the selected smooth factor
is small (say <3), in which case accurate prediction of new
cases of COVID-19 is limited to very few days in the future.
Still, even single-day predictions can be of great use during a
pandemic if reasonably accurate. In the ECDC data set, a forward
validation showed that single-day predictions were sufficiently
accurate (R² > 0.99) (Figure 3).

Sigmoidal growth curves can be partitioned into four easily
distinguishable stages (Figure 1A): (a) the lagging stage, which
corresponds to the beginning of the outbreak or disease
importation, where the number of cases are low and increase
onlymarginally every day; (b) the exponential stage, when growth
starts accelerating and the number of new cases increase rapidly
day-by-day; (c) the deceleration stage, where the number of
new cases reduces daily and tends to asymptote; and (d) the
stationary stage, characterized by stagnation of the prevalence
with sporadic new cases occurring each day. The growth rate
graph is approximately bell-shaped, with its peak corresponding
to the inflection of the exponential stage. This inflection point
signals the beginning of a decline in the growth rate. The growth
acceleration graph usually consists of a combination of two
bell-shaped curves: the first one with a peak and the second
with a valley. The peak indicates the point where acceleration
starts descending toward zero. The moment when acceleration is
exactly zero coincides with the inflection of the exponential stage,
which marks the beginning of growth deceleration (i.e., negative
acceleration). The latter corresponds to the entire concave section
of the curve, but the very bottom of the valley indicates that the
prevalence is moving toward stagnation.
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FIGURE 1 | Growth rate and acceleration in Australia and New Zealand. (A) Theoretical model exemplified by simulated data using a three-parameters Gompertz

model with an asymptote at 80,000, growth coefficient of 0.15, inflection time at 35, and time ranging from 1 to 80. (B) Fitted curves for Australia between January

25th and May 8th 2020. (C) Fitted curves for New Zealand between February 28th and May 8th 2020.

In spite of sigmoidal curves following the four above described
stages sequentially, we anticipated that the growth of COVID-
19 cases may not necessarily obey this sequence in practice,
since the dynamics of the disease is likely complex and highly
responsive to the implementation or relaxation of public health
measures. This implies that a country that has already reached
a stationary stage could resume exponential growth, for example
by seeding a new outbreak via importation. Likewise, decelerating
countries could as well regain acceleration by relaxing prevention
measures. Furthermore, some countries may face multiple
cycles of acceleration and deceleration prior to reaching a

stationary growth. These scenarios could produce more complex
growth curves that deviate from the sigmoidal shape by
mounting different arrangements of exponential, deceleration,
and stationary stages. Of note, MR has sufficient flexibility to
model these complex scenarios and can easily accommodate
curves exhibiting arbitrary permutations of these four stages. In
addition, the near-zero acceleration that is intimately related to
the stationary stage in sigmoidal curves could also arise from
a non-zero constant growth rate in practice. In such cases,
the growth curve would exhibit a linear pattern, which can
be interpreted as a fifth growth stage that is not observed in
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FIGURE 2 | Accuracy (R2) of moving regression estimates of growth rate and growth acceleration from 50,000 simulated Gompertz growth curves.

FIGURE 3 | Accuracy (R2) of moving regression predictions of next-day COVID-19 prevalence.

classic sigmoidal functions. Such linear pattern may appear if the
deceleration stage does not form an enough deep valley prior to
acceleration rising up again toward zero. Again, MR is capable of
modeling these anomalous behaviors. In this study we sought to
ascertain whether these five stages of growth curves could have
direct implications in understanding the dynamics of COVID-
19 prevalence both globally and locally. We further developed a
HMM to automate the detection of transitions between stages
in the growth curve using acceleration and growth rate data
obtained with MR as input (seeMaterial and Methods).

Using MR and HMM on ECDC data frozen on May 8th 2020,
we first evaluated the utility of the framework in identifying
countries reaching stationary growth. Apart from Australia
(Figure 1B) and New Zealand (Figure 1C), China (Figure 4A),
South Korea (Figure 4B), and Austria (Figure 4C) also appeared
to have reached stationary growth. However, our HMM classifier
categorized the apparent stationary phase of these countries as
a mixture of linear growth, deceleration, and stationary growth.
Indeed, these three countries did not present a perfect asymptote
after first deceleration, and their accumulated cases of COVID-
19 were instead growing in a linear pattern for several days.
China and South Korea further reached a stationary stage, but
underwent an additional deceleration phase before. This implies
that the growth dynamics of COVID-19 cases could be more
complex than previously appreciated. Therefore, analyzing the
raw growth curve alone, dissociated from its derivatives, is very

limiting for inference and may hamper the understanding of the
evolution of the pandemic.

By projecting government responses recorded by the
Blavatnik School of Government from the University of Oxford
(16) against the growth curves, we further observed that decline
in growth acceleration occurred shortly after the implementation
of measures that drastically reduced human movement. Upon
restriction, decline in growth acceleration was typically detected
within 1 week, deceleration of growth was achieved within 2
weeks, and the prevalence plateaued within 6 weeks. These
results suggested that: (i) the effect of public health measures
on SARS-CoV-2 prevention could be detected in seemingly
real time by monitoring the behavior of acceleration curves;
and (ii) restriction to human mobility is very effective in
controlling the spread of the disease, but takes several weeks
to produce a stationary growth. Indeed, regression of percent
change in acceleration against policy indicators recorded in the
Oxford dataset (Table 1) revealed that all indicators of mobility
restriction were significantly associated with reductions in
acceleration (P < 0.05). These findings are in line with a recent
study showing that human mobility explained early growth and
decline of new cases of COVID-19 in China (17).

In order to illustrate the utility of the framework in detecting
deceleration in real-time, we decided to look more closely to data
from three countries: Germany (Figure 5A), Spain (Figure 5B),
and Italy (Figure 5C). The latter has been severely impacted with
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FIGURE 4 | Growth rate and acceleration in China, South Korea, and Austria. (A) Fitted curves for China between December 31st 2019 and May 8th 2020. The first

red dot marks the midpoint between January 23rd and 24th 2020, when a strict cordon sanitaire was imposed to Wuhan, Shanghai, Jiangsu, and Hainan. The

second red dot pinpoints February 4th 2020, when the cordon was extended to a larger portion of the eastern part of China. (B) Fitted curves for South Korea

between January 20th and May 8th 2020. The red dot is placed between February 20th and 21st, when a collection of restrictions to human mobility was imposed,

including lockdown of Daegu city, suspension of flights, cancellation of mass gatherings, and lockdown of all South Korean military bases. (C) Fitted curves for Austria

between February 26th and May 8th 2020. The red dot is placed on March 10th, when the Austrian government ordered children to stay at home and announced

closure of universities and cancellation of public gatherings. The apparent stationary phase in these three countries was in reality classified as a mixture of linear

growth, deceleration, and stationary stage by our framework.

the disease, and by the time we completed our study the country
had recorded 215,858 cases and 29,958 deaths. On March 10th
2020, Italy implemented a strict quarantine. Five days later, the
country reached its maximum acceleration and started to move
toward an inflection of the exponential growth. On March 25th,
Italy further implemented a complete shut down of its borders,
and our analysis showed that the country started to decelerate on

March 26th. In contrast, Germany applied a package of measures
that started with school closing in early March and culminated
in restrictions to internal movement and gatherings by March
22nd. Germany began deceleration on April 1st. Spain followed
similar steps, with a state of emergency issued on March 14th.
Acceleration decline started on March 22nd and deceleration
began on March 31st in the country.
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TABLE 1 | Effect of mobility restrictions on variation of COVID-19 acceleration

(cases/day2) during exponential growtha.

Policy indicator Oxford

code

Average change in

acceleration after

implementation (%)b

Standard

error (%)

P-value

School closing C1 −15.00 1.61 4.66 × 10−20

Workplace closing C2 −14.25 1.25 4.33 × 10−29

Cancellation of

public events

C3 −9.33 1.77 1.53 × 10−7

Restrictions on

gatherings

C4 −10.62 1.30 7.68 × 10−16

Closure of public

transportation

C5 −5.97 0.97 8.16 × 10−10

Stay at home

requirements

C6 −7.67 1.11 7.18 × 10−12

Restrictions on

internal movement

C7 −13.43 1.19 1.96 × 10−28

International travel

controls

C8 −6.05 1.42 2.31 × 10−5

aThis analysis was performed with data from a subset of 62 countries presenting a

minimum of 30 observed days and at least one exponential stage.
bEstimated from a linear regression of daily percent changes in acceleration against an

indicator variable assuming value 1 if the policy is present and 0 otherwise.

The relatively rapid response to public health measures makes
the acceleration curve an useful tool for policy evaluation. Much
attention has been recently given to Brazil and the United States
of America (USA), as these two countries are the new epicenters
of the coronavirus pandemic. Together, these two countries
sum up 1,392,078 cases and 84,816 deaths to date. Monitoring
the acceleration curve might be helpful in these countries by
enabling the assessment of the efficacy of adopted measures.
Since the beginning of the exponential growth in Brazil back in
early March (data not shown), growth acceleration has presented
great oscillation in the country. Currently, Brazil is experiencing
an acceleration decline, and could begin a deceleration process
within few weeks if effective measures are implemented and
rigorously followed. On the other hand, USA has started
its deceleration process on April 9th but has not formed a
deceleration valley yet (data not shown), which hampers the
production of an expressive decline in new cases. Furthermore,
as outbreaks are expected to occur in African countries in the
following months, the analysis of growth acceleration could be
an invaluable asset to evaluate control strategies in the continent.

To this date, the lack of combined analysis of growth rate
and acceleration of the COVID-19 pandemic is to be blamed
on scarce availability of tailor made, user-friendly software. To
aid to the analysis of growth rate and acceleration of COVID-
19 cases, we built a web application using R (11) and Shiny (10).
This application automatically loads the latest ECDC case reports
and applies MR to extract growth rate and acceleration from
real-time data. The app also performs automated classification
of growth stages with HMM (albeit free parameters should be
manually tuned for improved results). Users are not limited to
case reports from ECDC, since the app allows for the upload of
custom data (e.g., city, region, province, or state), which can be

used to monitor the growth behavior of COVID-19 locally. Upon
closing of the COVID-19 pandemic, this tool could be further
used in the analysis of future outbreaks and epidemics, or even
of historical disease data. A limiting factor however is that the
proposed framework relies on updated case reports, such that
sub-notification, delayed communication, and the elapsed time
between sample collection, diagnostic results, and reporting may
impact the real-time inference of growth dynamics in disease
transmission and consequently jeopardize the timely detection
of transitions in the growth curve. In spite of that limitation,
the presented tool remains highly useful to monitor the growth
behavior of epidemics.

CONCLUSIONS

We deployed a simple framework for the real-time analysis of
COVID-19 prevalence. We were able to demonstrate that the
real-time decomposition of growth curves of COVID-19 cases
into growth rate and acceleration can be a powerful tool to
monitor the impact of public health measures on the spread of
the disease. We also showed that restrictions to human mobility
can significantly decelerate the incidence of new cases within
weeks. Furthermore, we found that the prevalence of the disease
is more complex and dynamic than previously appreciated. This
observation will have important implications to assumptions
adopted in mathematical models to predict the evolution of
the pandemic.

MATERIALS AND METHODS

Moving Regression (MR) Model
The MR technique (8) adopted here aimed at fitting a smooth
growth curve to the COVID-19 prevalence data, such that the
resulting curve could describe the cumulative number of cases
as a function of time. For n recorded days in a given country
or territory, let x be a n-dimensional column vector of days
since the first case report and y the reciprocal column vector
with elements corresponding to the cumulative number of cases.
Relative to day d, we define yd and xd as k-sized subset vectors of
y and x, respectively, where k = 1 + 2s and s is a free parameter
representing the number of offset days before and after day d.
Hereafter, we refer to s as the “smooth factor,” since it controls the
compromise between over-smoothing (large s) and over-fitting
(small s) the curve to the data. Finally, we define Xd = [1k xd],
where 1k is a k-dimensional column vector with all elements
equal to one. The local growth rate was estimated by ordinary
least squares regression:

[µd gd]
T = (XT

d Xd)
−1XT

d yd (1)

where µd is an intercept and gd is the estimated growth rate
(cases/day) at day d. In practice, gd corresponds to an estimate of
the instantaneous rate of change in the number of cases at day d,
which in turn is an approximation to the first order derivative of
the unknown growth function evaluated at time d. The smoothed
growth curve was obtained by calculating fitted values as:

ŷd = Xd[µd gd]
T (2)
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FIGURE 5 | Growth rate and acceleration in Germany, Spain and Italy. These three countries were in deceleration as of May 8th. (A) Germany determined school

closing in early March (first red dot) and extended restrictions to movement and gatherings within the country by March 22nd (second red dot). (B) Spain declared

state of emergency on March 14th (red dot). Acceleration decline started 1 week later. (C) Italy imposed a strict quarantine on March 10th 2020 (first red dot) and

closure of borders on March 25th 2020 (second red dot).

After fitting Equation (1) to all n records, we define g as a vector
of size n containing all estimated local growth rates and gd as a
k-sized subset vector of g. The local growth acceleration at day d
was then obtained by adapting Equation (1):

[µdad]
T = (XT

d Xd)
−1XT

d gd (3)

where ad is the estimated growth acceleration (cases/day²) at day
d. Now ad is an estimate of the instantaneous rate of change
of the growth rate at day d, which consequently approximates

the second order derivative of the unknown growth function
evaluated at time d.

Hidden Markov Model (HMM) for Growth
Stage Classification
In order to automate the process of growth stage classification, we
built a HMM (9) that uses acceleration data obtained from MR
as input. Considering a as the n-dimensional vector of estimated
growth accelerations across n recorded days, we first compute
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z = sign(a), where sign(.) is a modified sign function which
retrieves −1 for a < –c, +1 for a > c and 0 otherwise. Scalar
c is defined as an acceleration cutoff, which is treated here as
a free parameter. Through trial and error with both simulated
and real data, we adopted a default value of c = 5 cases/day².
However, as a free parameter, c can be controlled by the user
in order to obtain improved classification results. The objective
of the HMM was to generate a sequence of states K = (k1,
k2, . . . , kn) where each element ki takes one of the following
values: “lagging,” “exponential,” “deceleration,” or “stationary.”
The initial probabilities for these hidden states were set to 1,
0, 0, and 0, respectively, assuming that all growth curves start
from a lagging stage. Now let T be a 4 × 4 matrix of transition
probabilities between hidden states and E be a 4 × 3 matrix of
emission probabilities that models the probability of each hidden
state producing a value of z of−1, 0, or+1. We adopted:

T =









0.8 0.2 0.0 0.0
0.0 0.8 0.2 0.0
0.0 0.0 0.8 0.2
0.0 0.2 0.0 0.8









E =









0.25 0.40 0.25
0.00 0.10 0.50
0.50 0.10 0.00
0.25 0.40 0.25









(4)

The selected values in T only permitted transitions lagging →

exponential, exponential → deceleration, deceleration →

stationary or stationary → exponential. Values in E made
z = 0 more likely to be produced by either the lagging or
stationary stages, z = +1 more likely to be produced by the
acceleration stage and z = −1 more likely to be produced by
the deceleration stage. For the atypical transition deceleration
→ exponential, the described model would generate a short and
intermediate stationary step between these two stages. In these
cases, the spurious stationary step was replaced by an exponential
classification after the HMM has been fitted to the data. The
Viterbi algorithm implemented in the HMM v1.0 package (18)
in R (11) was used to estimate the sequence K. After prediction of
growth stages, stationary classifications were confronted against
growth rates. If a given stationary stage presented a median
growth rate greater than the maximum growth rate of the
lagging phase, it was re-classified as a “linear” stage. Again,
values in matrices T and E were selected based on trial and
error. We acknowledge that setting fixed values for T and E

may limit the ability of the classifier in accommodating atypical
transitions. Therefore, more flexible systems that calibrate these
probabilities according to the observed data should be targeted in
the near future.

Simulation Study
To test the performance of MR in approximating growth curves
and their rate of change and acceleration in scenarios where
these curves have been observed only partially (i.e., real-time
case report), we selected a widely used sigmoidal mathematical
function, namely the Gompertz model (14, 15), to generate
50,000 simulated growth curves. We used a parameterization of
the Gompertz model that is dependent on three parameters, apart
from time:

f (t) = α∗exp(−exp(−k(t − δ))) (5)

where t is a time point, α is the asymptote (i.e., number of cases at
the stationary stage), exp is the exponential function, κ is a growth
coefficient and δ is the time at inflection of the exponential
stage (i.e., time when the growth rate reaches its maximum
value and acceleration transitions from positive to negative).
All simulations were performed considering a 100-days period,
with parameters sampled as follows: α ∼ Uniform(500, 10,000),
κ ∼ Uniform(0.05, 0.95), and δ ∼ Uniform(5, 95). Completely
stationary curves were discarded. The accuracy of growth rate
and acceleration estimates produced by MR with smooth factor
ranging from s = 3 to s = 10 were then evaluated by taking the
coefficient of determination (R²) of the regression of true values
onto estimates.

Analysis of COVID-19 Case Reports
We analyzed case reports that have been updated daily by the
European Center for Disease Prevention and Control (ECDC).
The framework was applied to that data using smooth factors
ranging from s = 3 to s = 10. The acceleration curves were
clipped at observation n – s to avoid poor growth acceleration
estimates at the end of the curve. Likewise, the last s days had
their growth rates estimated by compounding rates from n – s
to n using the acceleration estimated for day n – s. Finally,
next-day predictions of COVID-19 prevalence were obtained by
summing the last observed prevalence with its estimated growth
rate. In order to measure the accuracy of these predictions,
we performed a step-wise simulation by censoring observations
ahead of each day, fitting MR to the remaining data and then
comparing predicted and true next-day prevalence. Accuracy of
predictions were again measured by linear regression.

Analysis and Visualization Tools
All analyses presented in this paper were performed using R
version 3.4.4 (11). To visualize the growth rate and acceleration
of COVID-19 pandemic, we implemented a simple Shiny (10)
dashboard application, which offers an intuitive web interface
and allow us to be updated on new cases and the prevalence of
COVID-19 worldwide. The application automatically loads the
latest case reports from ECDC. Alternatively, users can upload
their own data to visualize the growth rate and acceleration of
COVID-19 of specific states, provinces, cities, or aggregate data
from arbitrary territory definitions. For the implementation we
used the following packages: shiny v1.4.0 (19), shinydashboard
v0.7.1 (20), shinydashboardPlus v0.7.0 (21), readxl v1.3.1 (22),
shinyalert v1.0 (23), httr v1.4.1 (24), and plotly v4.9.2 (25), all
available on CRAN (Comprehensive R Archive Network, https://
cran.r-project.org/). The application can be downloaded from
our GitHub repository at https://github.com/adamtaiti/SARS-
CoV-2/. A live instance of the app will be maintained until the
end of the pandemic at https://theguarani.com.br/.
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2020). Data on government responses were obtained from the
Blavatnik School of Government, University of Oxford, and
are available at https://www.bsg.ox.ac.uk/research/publications/
variation-government-responses-covid-19 (accessed on May 8th
2020). The source code for the R Shiny application used for
data analysis is found in our GitHub repository: https://github.
com/adamtaiti/SARS-CoV-2. A live instance of the app can be
accessed at https://theguarani.com.br/.

AUTHOR CONTRIBUTIONS

YU conceived the study, performed simulations, coordinated the
data analysis, and wrote the manuscript. AU built R code for data

analysis and programmed the Shiny AppDashboard. RT, SP,MM,
and JG revised growth curves for all countries/territories and
pinpointed dates of measures taken by them to reduce human
mobility. All authors revised and agreed with the contents of
the manuscript.

ACKNOWLEDGMENTS

We would like to express our highest gratitude to all health
agents and individuals around the globe who were involved in
reporting cases and making COVID-19 prevalence data available
to the public. This study did not receive financial support and was
conducted during voluntary social isolation.

REFERENCES

1. World Health Organization. Coronavirus Disease (COVID-2019) Situation

Reports. Available online at: https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/situation-reports/ (accessed March 25, 2020).

2. Coronaviridae Study Group of the International Committee on Taxonomy of
Viruses. The species severe acute respiratory syndrome-related coronavirus:
classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. (2020)
5:536–44. doi: 10.1038/s41564-020-0695-z

3. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry
RF. The proximal origin of SARS-CoV-2. Nat Med. (2020)
26:450–2. doi: 10.1038/s41591-020-0820-9

4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia
outbreak associated with a new coronavirus of probable bat origin. Nature.
(2020) 579:270–3. doi: 10.1038/s41586-020-2012-7

5. Chen S, Yang J, Yang W, Wang C, Bärnighausen T. COVID-19 control
in China during mass population movements at New Year. Lancet. (2020)
395:764–6. doi: 10.1016/S0140-6736(20)30421-9

6. European Center for Disease Prevention and Control (ECDC). COVID-2019.
Available online at: https://www.ecdc.europa.eu/en/novel-coronavirus-china
(accessed March 25, 2020).

7. Li R, Pei S, Chen B, Song Y, Zhang T, YangW, et al. Substantial undocumented
infection facilitates the rapid dissemination of novel coronavirus (SARS-
CoV2). Science. (2020) 368:489–93. doi: 10.1101/2020.02.14.20023127

8. Zivot E, Wang J. (Editor). Chapter 9: rolling analysis of time series. In:
Modeling Financial Time Series With S-PLUS R©. New York, NY: Springer
(2006). p. 313–60.

9. Eddy SR. What is a hidden Markov model? Nat Biotechnol. (2004) 22:1315–
6. doi: 10.1038/nbt1004-1315

10. RStudio Inc. Shiny: Easy Web Applications in R. Available online at: http://
shiny.rstudio.com/ (accessed March 25, 2020).

11. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna. Available online at: https://
www.r-project.org/ (accessed March 25, 2020).

12. Henscheid N, Clarkson E, Myers KJ, Barrett HH. Physiological
random processes in precision cancer therapy. PLoS ONE. (2018)
13:e0199823. doi: 10.1371/journal.pone.0199823

13. Zwietering MH, Jongenburger I, Rombouts FM, van ’t Riet K. Modeling
of the bacterial growth curve. Appl Environ Microbiol. (1990) 56:1875–
81. doi: 10.1128/AEM.56.6.1875-1881.1990

14. Winsor CP. The Gompertz curve as a growth curve. Proc Natl Acad Sci USA.
(1932) 18:1–8. doi: 10.1073/pnas.18.1.1

15. Tjørve KMC, Tjørve E. The use of Gompertz models in growth analyses, and
new Gompertz-model approach: an addition to the unified-Richards family.
PLoS ONE. (2017) 12:e0178691. doi: 10.1371/journal.pone.0178691

16. Hale T, Angrist N, Kira B, Petherick A, Phillips T, Webster S. “Variation
in government responses to COVID-19” version 5.0. Blavatnik School of

Government Working Paper. Available online at: https://www.bsg.ox.ac.uk/
research/publications/variation-government-responses-covid-19 (accessed
May 8, 2020).

17. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The
effect of human mobility and control measures on the COVID-19 epidemic in
China. Science. (2020) 368:493–7. doi: 10.1101/2020.03.02.20026708

18. Himmelmann. HMM - Hidden Markov Models. R Package Version 1.0.
Available online at: https://CRAN.R-project.org/package=HMM (accessed
March 25, 2020).

19. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J. Shiny: Web

Application Framework for R. R Package Version 1.4.0. (2019). Available
online at: https://CRAN.R-project.org/package=shiny (accessed March
25, 2020).

20. Chang W, Ribeiro BB. shinydashboard: Create Dashboards With ‘Shiny’. R

Package Version 0.7.1. (2018). Available online at: https://CRAN.R-project.
org/package=shinydashboard (accessed March 25, 2020).

21. Granjon D. shinydashboardPlus: Add More ‘AdminLTE2’ Components to

‘shinydashboard’. R Package Version 0.7.0. (2019). Available online at:
https://CRAN.R-project.org/package=shinydashboardPlus (accessed March
25, 2020).

22. Wickham H, Bryan J. readxl: Read Excel Files. R Package Version 1.3.1. (2019).
Available online at: https://CRAN.R-project.org/package=readxl (accessed
March 25, 2020).

23. Attali D, Edwards T. shinyalert: Easily Create Pretty Popup Messages (Modals)

in ‘Shiny’. R Package Version 1.0. (2018). Available online at: https://CRAN.R-
project.org/package=shinyalert (accessed March 25, 2020).

24. WickhamH. httr: Tools for WorkingWith URLs and HTTP. R Package Version

1.4.1. (2019). Available online at: https://CRAN.R-project.org/package=httr
(accessed March 25, 2020).

25. Sievert C. plotly for R. (2018). Available online at: https://plotly-r.com
(accessed March 25, 2020).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Utsunomiya, Utsunomiya, Torrecilha, Paulan, Milanesi and

Garcia. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 9 May 2020 | Volume 7 | Article 247

https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://github.com/adamtaiti/SARS-CoV-2
https://github.com/adamtaiti/SARS-CoV-2
https://theguarani.com.br/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1016/S0140-6736(20)30421-9
https://www.ecdc.europa.eu/en/novel-coronavirus-china
https://doi.org/10.1101/2020.02.14.20023127
https://doi.org/10.1038/nbt1004-1315
http://shiny.rstudio.com/
http://shiny.rstudio.com/
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1371/journal.pone.0199823
https://doi.org/10.1128/AEM.56.6.1875-1881.1990
https://doi.org/10.1073/pnas.18.1.1
https://doi.org/10.1371/journal.pone.0178691
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://doi.org/10.1101/2020.03.02.20026708
https://CRAN.R-project.org/package=HMM
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinydashboardPlus
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=shinyalert
https://CRAN.R-project.org/package=shinyalert
https://CRAN.R-project.org/package=httr
https://plotly-r.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Growth Rate and Acceleration Analysis of the COVID-19 Pandemic Reveals the Effect of Public Health Measures in Real Time
	Introduction
	Results and Discussion
	Conclusions
	Materials and Methods
	Moving Regression (MR) Model
	Hidden Markov Model (HMM) for Growth Stage Classification
	Simulation Study
	Analysis of COVID-19 Case Reports
	Analysis and Visualization Tools

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


