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Skin lesion border irregularity, which represents the B feature in the ABCD rule, is

considered one of the most significant factors in melanoma diagnosis. Since signs

that clinicians rely on in melanoma diagnosis involve subjective judgment including

visual signs such as border irregularity, this deems it necessary to develop an objective

approach to finding border irregularity. Increased research in neural networks has been

carried out in recent years mainly driven by the advances of deep learning. Artificial

neural networks (ANNs) or multilayer perceptrons have been shown to perform well in

supervised learning tasks. However, such networks usually don’t incorporate information

pertaining the ambiguity of the inputs when training the network, which in turn could affect

how the weights are being updated in the learning process and eventually degrading the

performance of the network when applied on test data. In this paper, we propose a fuzzy

multilayer perceptron (F-MLP) that takes the ambiguity of the inputs into consideration

and subsequently reduces the effects of ambiguous inputs on the learning process. A

new optimization function, the fuzzy gradient descent, has been proposed to reflect those

changes. Moreover, a type-II fuzzy sigmoid activation function has also been proposed

which enables finding the range of performance the fuzzy neural network is able to

attain. The fuzzy neural network was used to predict the skin lesion border irregularity,

where the lesion was firstly segmented from the skin, the lesion border extracted, border

irregularity measured using a proposed measure vector, and using the extracted border

irregularity measures to train the neural network. The proposed approach outperformed

most of the state-of-the-art classification methods in general and its standard neural

network counterpart in particular. However, the proposed fuzzy neural network was more

time-consuming when training the network.
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1. INTRODUCTION

The increasing incidence of melanoma renders the attempts
of the early detection of melanoma a continuing public health
priority. Despite its aggressive infiltration of other body parts,
melanoma is highly curable if diagnosed early and treated
timely (1). Early detection is crucial since it contributes to a
better survival; the 5-year survival rate for early stage invasive
melanoma is 94%, compared to a 5-year survival rate of only 17%
for melanomas that have spread to other parts of the body. There
is a niche to develop an objective, bedside tool that could be used
as an adjunct in the clinical assessment of skin lesions. Tracking
tumor changes manually is also labor-intensive, especially for
patients with multiple moles on their skin.

The ABCD rule (2) emerged in 1985 by a group of researchers
at the New York University as a simple framework that
physicians, novice dermatologists, and non-physicians could use
to learn about the features of melanoma in its early curable
stage, enhancing thereby the early detection of melanoma. The
rule is more geared toward the public than the 7-point checklist
which was designed for non-dermatological medical personnel.
The approach has then been verified by the 1992 National
Institutes of Health Consensus Conference Report on Early
Melanoma, in addition to other studies published at the time
(3–6), and is being advertised by the American Cancer Society
as a method to help in seeking early medical evaluation of any
suspicious pigmented lesions. The ABCD acronym refers to four
parameters: (i) Asymmetry, (ii) Border irregularity, (iii) Color
variegation, (iv) Diameter >6 mm. Such parameters provide
simple means for appraisal of pigmented cutaneous lesions that
may need to be further examined by a specialist, which might
result on further work of dermoscopy or biopsy, or both. The rule
is basically designed to be used on a daily life basis by both the
layperson and the primary care physician (non-dermatologist) as
a simple method to alert on the clinical features of melanoma,
and is intended to help explain a subset of melanomas called
thin tumors which could otherwise be confused with benign
pigmented lesions.

One of the most significant factors in melanoma diagnosis
is border irregularity (the B feature in the ABCD rule) (7). As
opposed to benign pigmented lesions which tend to possess
regular borders, melanoma lesions have irregular borders due
to the uneven growth rate (8), the spread of melanocytes in
various directions, and the regression of invasion and/or genetic
instability of the lesion (9). In this paper we proposes a type-
II fuzzy logic based multilayer perceptron that considers the
ambiguity of neurons and attempts to reduce the effects of such
ambiguous data on the network learning process. Such network
will be used in detecting the skin lesion border irregularity and
will be compared with its standard neural network counterpart.
Detecting the other features (i.e., ACD) is explained in our other
work (10).

Section 2 reviews related work, section 3 introduces the
concepts of the perceptron, multilayer perceptron, and gradient
descent, section 4 explains the notions of fuzzy sets and
type-II fuzzy sets, fuzzy c-means clustering is explained in
section 5, the proposed fuzzy multilayer perceptron (F-MLP)

is described in section 6, sections 7–9 describe the skin lesion
segmentation process, how we detect the skin lesion border,
and how the border irregularity is measured, respectively,
results are depicted in section 10, and the paper is concluded
in section 11.

2. RELATED WORK

Although Artificial Neural Networks (ANNs) have been proved
to work well with supervised learning tasks, they do not include
information related to the ambiguity of the inputs. This issue
can have a negative effect on how the weights are being updated
in the learning process, and subsequently affecting the accuracy
of the network results. The term fuzzy neural network was
proposed in 1975 (11) when the authors attempted to extend
the McCulloch-Pitts model of the neuron (12) in such a way
that allows the activity of a neuron to be fuzzy rather than an
all-or-none process. Different studies have then been published
on combining fuzzy logic and neural networks. Keller and Hunt
(13) proposed a fuzzy perceptron (the building block of fuzzy
neural networks) to alleviate the major drawback with the crisp
perceptron which is its inability to terminate when the data is not
linearly separable. Goh et al. (14) developed an enhanced fuzzy
perceptron that demonstrates higher stability and functionality
compared to the fuzzy perceptron. A neural network classifier
which uses the min-max hyperboxes as fuzzy sets aggregated
into fuzzy set classes was introduced in Simpson (15), and was
referred to as a fuzzy min-max classification neural network. As
opposed to this supervised learning approach, an unsupervised
learning pattern clustering sibling to this work, namely fuzzy
min-max clustering neural network was proposed in Simpson
(16). A fuzzy neural network based on the multilayer perceptron
and capable of fuzzy classification of patterns has been proposed
in Pal and Mitra (17) and Mitra et al. (18). Fuzzified neural
networks, where fuzzy numbers are used for inputs, outputs,
and/or connection weights have been proposed in Buckley and
Hayashi (19), Ishibuchi et al. (20), Ishibuchi (21). Researchers
attempted to enhance the fuzzy perceptron; Chen and Chang
(22) proposed a fuzzy perceptron that addresses classification
problems where it is capable of accepting two different kinds of
input data: numerical data and fuzzy IF-THEN rules. Chen and
Chen (23) proposed a fuzzy kernel perceptron where the fuzzy
perceptron and the Mercer Kernels (24) are incorporated, such
that input data is first mapped into a high-dimensional feature
space and the fuzzy perceptron is then utilized in order to find
a linear separating hyperplane in the high-dimensional feature
space. A comprehensive review of proposed neurofuzzy systems
in the periods 2002–2012 can be found in Samarjit et al. (25).
Lixin Fan from Nokia Technologies wrote a detailed guide (26)
that aims to bridge the gap between fuzzy logic and deep learning
(64).

In this paper we propose a fuzzy multilayer perceptron
(F-MLP) that uses a developed fuzzy gradient descent which
incorporates the membership degrees of neurons (obtained using
fuzzy c-means clustering) to reduce the effects of ambiguous
neurons on the neural network learning process. Moreover, a
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proposed type-II fuzzy sigmoid activation function is used which
allows to represent the range (lowest and highest) of performance
the fuzzy neural network is able to achieve.

A radial search algorithm (27) was used to detect the skin
lesion border in Golston et al. (28), where different sliding
windows that represent the origin of a radii are automatically
detected in the skin lesion. Sufficiently high jumps in luminance
(also contain sufficiently sustained luminance) are searched for
in the radii to form the candidate border points (29). Irregularity

was eventually found using the irregularity index: I = P2

4πA , where
P and A are the perimeter (number of points on the detected
border) and area (number of points on and within the border)
of the closed boundary, respectively. Borders with an irregularity
index greater than 1.8 were classified as being irregular. Sixty skin
tumor images were labeled by a dermatologist as being regular
or irregular (regular: 14, irregular: 46). 83.3% of the tumors
were classified correctly (8/14 and 42/46 for regular and irregular
borders, respectively).

Ng and Lee (30) used fractal dimensions (FDs) in measuring
the irregularity of skin lesion borders. Four fractal dimension
measures were found for each color image: direct FD, vertical
smoothing FD, horizontal smoothing FD, and multi-fractal
dimension of order two. Those FDs were also calculated on
the blue band of the images. Four hundred and sixty eight
melanocytic lesions (not hairy) have been segmented using a
multi-stage method (31) and used to test the proposed approach.
Results showed that the multi-fractal method performed the best.
FDs were also used in Claridge et al. (32) and Ali et al. (33).

An approach which analyzes the structural irregularity of
cutaneous melanocytic lesions was proposed in Lee et al. (34).
The algorithm consists of two stages: (i) pre-processing: dark
thick hair is removed by DullRazor (35) and the lesion border
is extracted from the skin image, (ii) sigma-ratio: this is a
measure derived from the scale-space filtering technique and
used to analyze the structural shape of the lesion border. Results
revealed that sigma-ratio is sensitive to structural indentations
and protrusions (i.e., provides accurate estimation for the
structure irregularity) as opposed to shape descriptors such
as compactness index and fractal dimension which are more
sensitive to texture irregularities than structure irregularities (36).
The authors also proposed a new border irregularity measure in
Lee and Atkins (36), Lee et al. (37), and Lee and Claridge (9),
where all indentations and protrusions are firstly located along
the lesion border and a new irregularity index is measured for
each indentation and protrusion. Summing up all the individual
indices provides an estimation on the overall border irregularity.

A new measure of border irregularity based on conditional
entropy was proposed by Arbisala and Claridge (38), where
it was observed that the entropy increases with the degree of
irregularity. The results of the proposed measure were compared
with the Indentation Irregularity Index (9) on 98 skin lesions
(16 were melanoma) and showed to have a better discriminatory
power; ROC curve 0.76 compared to 0.73 for the Indentation
Irregularity Index.

Ma et al. (39) used wavelet decomposition to extract the skin
lesion border structure to determine whether the lesion is naevus

or melanoma. The discrete wavelet transform (DWT) was used
to filter the 1D border into sub-bands down to level 9, where
levels 6–9 (significant levels) have shown to contain information
more relevant for classifying between melanoma and benign
samples. Some statistical and geometrical feature descriptors of
border irregularity were also extracted at each individual sub-
band. Twenty-five measurements were formed by applying six
features in four significant sub-bands and one feature in a single
sub-band. A combination of features was eventually fed to a
back-projection neural network. Using a small training set of 9
melanomas and 9 naevi, the best classifier was obtained when the
best 13 features were used.

Jaworek-Korjakowska and Tadeusiewicz (40) used a simple
method to measure border irregularity, in which a semi-
quantitative evaluation method was used to divide the lesion into
eight similar parts where the sharp abrupt cut-off in each part
has a score of 1. A maximum score of 8 is obtained if the whole
border is irregular, and a score 0 is obtained if the naevus is round
with no ragged borders. Melanomas tend to have scores 4–8 (41).
The approach was tested on 120 skin lesion cases with border
irregularity <3 and 180 skin lesion cases with border irregularity
>4, achieving a 79% accuracy.

Ali et al. (33) proposed a border irregularity measure that
combines fractal dimension, zernike moments, and convexity,
which are represented in a 27-value vector (zernike moments
produced 25 values). Fractal dimension was found using the
extracted border, and zernikemoments and convexity were found
using the segmented image. The extracted measures were then
trained on a CNN (convolutional neural network) and Gaussian
naive Bayes ensemble, which is then used for the automatic
detection (i.e., classification) of skin lesion border irregularity
on new images. The approach achieved outstanding results,
obtaining an accuracy, sensitivity, specificity, and F-score of 93.6,
100, 92.5, and 96.1%, respectively. In this paper we use a similar
skin lesion border irregularity measure, but use only fractal
dimension and convexity.

3. PERCEPTRONS

The perceptron is normally used in supervised linear
classification tasks in which a hyperplane would be tuned
to fit a training dataset. This tuned hyperplane can then be used
to classify new unknown samples. This is achieved byminimizing
the hyperplane’s error as it is applied on the training dataset
through minimizing the error function: ǫ (w) = −

∑

i∈M tiw
Txi,

where M is the set of misclassified samples, and ti ∈ {−1, 1}

is the class of sample xi. If ǫ(w) = 0, this means that the
hyperplane completely separates the classes. This minimization
process is usually carried out in iterations such that after each
iteration we move toward the minimum of ǫ(w). The w vector
of iteration k + 1 is obtained as the following weight updating
step: wk+1 = wk + 1w (weight update). Equation (1) shows
the learning rule used in calculating the value for updating the
weights at each increment:

1wi = η

(

truej − predj

)

x
j
i (1)
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FIGURE 1 | Creating a type-II fuzzy set.

where η is the learning rate, truej is the true class label and predj
is the predicted class label.

The perceptron’s learning process starts by initializing the
weights to small random numbers [or 0]. For each training input
sample the output value is calculated and the weights are updated
until a minimum error is reached (i.e., backpropagation). The
main drawback of perceptrons is that they are only able
to converge when the two classes can be separated by a
linear hyperplane.

A multilayer perceptron (also called Artificial Neural
Network–ANN) is composed of neurons from the input layer,
one or more hidden layers of neurons, and the output layer
of neurons, where the input propagates through the network
layer-by-layer in the forward direction where each layer of the
network contains connections to the next layer. Such network
is called a feedforward neural network and is typically used in
supervised learning. The structure of the multilayer perceptron
enables it to learn complex tasks by extracting more meaningful
features from the input patterns. Gradient descent can be used
to optimize model prediction by finding the local minimum
of a function (i.e., minimize the network error), and is defined
as follows:

w = w− η ×
d

dw
F(w) (2)

where w are the weight values, η is the learning rate, and d
dw

F(w)
is the derivative of the objective function F(w) representing the
slope (gradient).

4. FUZZY SETS

Let U = {x1, x2, x3, . . . , xn} be the universe of discourse, a fuzzy
set A ∈ U is defined as the set of ordered pairs {(xi,µA (xi))},
where xi ∈ U, µA :U → [0, 1] is the membership function of A,
and µA (x) ∈ [0, 1] is the degree of membership of x in A. Such

fuzzy sets are called type-I fuzzy sets. However, this kind of fuzzy
sets is unable to model different types of uncertainties since their
membership functions are crisp. Membership functions of type-
II fuzzy sets are on the other hand fuzzy and can model different
types of uncertainties. A type-II fuzzy set A′ is characterized by
a type-II membership function µA′ (x,µ), where x ∈ U and
µ ∈ [0, 1], and is defined as:

A′ = {(x,µ) ,µA′ (x,µ) |∀x ∈ U,µ ∈ [0, 1]} (3)

where 0 ≤ µA′ (x,µ) ≤ 1.
Type-II fuzzy sets can be simply formed by firstly defining

a type-I fuzzy set and assigning lower and upper membership
degrees to each element in order to construct the footprint of
uncertainty (FOU), that is, the interval between the lower and
upper membership values (Figure 1 depicts this concept). A
type-II fuzzy set can be defined as (42):

A
′

= {(x,µU (x) , x,µL (x)) |µL (x) ≤ µ (x) ≤ µU (x) ,

µ ∈ [0, 1]} (4)

where µL and µU represent the lower and upper membership
degrees of the initial membership function µ(x), respectively,
defined as follows (42):

µL (x) = [µ (x)]α (5)

µU (x) = [µ (x)]
1
α (6)

where α ∈ (1,∞). In this paper, α = 2 since α >> 2 is not
meaningful for image data (42).

5. FUZZY C-MEANS CLUSTERING

Let X = {x1, . . . , xi, . . . , xn} be the set of n objects (i.e., pixels),
f (x1, y1), . . . , f (xi, yj) : i ∈ [1, . . . ,m] ; j ∈ [1, . . . , n], and V =
{v1, . . . , vi, . . . , vc} be the set of c centroids in a p-dimensional
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FIGURE 2 | Proposed fuzzy multilayer perceptron (F-MLP) architecture.

feature space. In fuzzy c-means (FCM), X is partitioned into c
clusters by minimizing the objective function J:

J =

n
∑

j=1

c
∑

i=1

(

uij
)m∥

∥xj − vi
∥

∥

2
(7)

where 1 ≤ m ≤ ∞ is the fuzzifier (set to 2 in this paper), vi
is the ith centroid corresponding to cluster Ci, uij ∈ [0, 1] is the
fuzzymembership of xj to clusterCi, and ‖.‖ is the distance norm,
such that:

vi =
1

ni

n
∑

j=1

(

uij
)m

xj where ni =

n
∑

j=1

(

uij
)m

(8)

and,

uij =
1

∑c
k=1

(

dij
dkj

)
2

m−1

where dij
2
=

∥

∥xj − vi
∥

∥

2
(9)

The process starts by randomly choosing c objects that represent
the centroids (means) of the c clusters. Membership values uij are
calculated based on the relative distance (i.e., Euclidean distance)
of the object xj to the centroids. The centroids vi of the clusters
are calculated after the memberships of all objects have been
found. If the centroids at the previous iteration are identical
to the centroids generated at the current iteration the process
terminates (43).

6. FUZZY MULTILAYER PERCEPTRON
(F-MLP)

The proposed multilayer perceptron in this paper incorporates
the membership degree of each input sample to the classes
of interest (e.g., regular vs. irregular) in the learning process.
Moreover, the gradient descent benefits from the membership
values by reducing the effects of ambiguous features (i.e., features
that have a membership degree of 0.5) when updating the weights
(learning). Membership degrees are obtained by clustering each
layer in the neural network (except the output layer) using fuzzy
c-means. The proposed architecture is depicted in Figure 2.

A commonly used activation function in multilayer
perceptrons is the sigmoid activation function (Equation
10). The sigmoid function is suitable for binary classification and
provides continuous values in the range [0, 1] that represent the
probability of a class in the binary classification problem. As the
sigmoid function introduces non-linearity in the hidden layers,
it allows the neural network to learn more complex features (44).

sig (x) =
1

1+ e−x
(10)

Assuming that ϕ is the fuzzy sigmoid activation function, the
type-II fuzzy sigmoid activation function can be represented as:

ϕL (x) =

[

1

1+ e−x

]α

(11)
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FIGURE 3 | Samples of images used to train U-Net along with their groundtruth.

ϕU (x) =

[

1

1+ e−x

]
1
α

(12)

where ϕL and ϕU are the lower and upper sigmoid activation
functions, respectively.

The proposed fuzzy gradient descent is defined
as follows:

w = w−mean
(

|u1 − u2|
2
)

× η ×
d

dw
ϕ (13)

where w are the weight values, u1 and u2 are the degrees of
membership of each neuron to class1 and class2, respectively; ϕ is
the type-II fuzzy sigmoid function, andmean is used to represent
the square differences between the degrees of membership
with a single value, which can be perceived as an ambiguity
parameter. Notice that for ambiguous nodes |u1 − u2|

2 will
evaluate to 0, thus having no effect on how weights are being
updated. Incorporating degrees of membership in optimization
will determine how input samples contribute to the learning
process based on their ambiguity, such that more ambiguous
features will have less effect on learning, and will rather be based
on more non-ambiguous features The cost function used in our
work is simply represented as the difference between the actual
values and the predicted values. The F-MLP algorithm code has
been open sourced and can be accessed via https://github.com/
abderhasan/F-MLP.

7. SKIN LESION SEGMENTATION

To segment skin lesions (62) we use the U-Net architecture
(45, 63), an end-to-end encoder-decoder network for semantic
segmentation which was firstly used for medical image
segmentation. U-Net has also been used for skin lesion
segmentation in dermoscopic images (46, 47). The architecture

consists of two sides: left (down) and right (up). The down part is
the encoder part [follows the Convolutional Neural Network—
CNN architecture (48)] where convolution blocks are applied
followed by max-pooling in order to encode the input image
into feature representations at multiple levels, provided that the
number of feature channels are doubled at each downsampling
step. In the up part, the feature map is upsampled and a
convolution operation is applied, bringing the number of feature
channels to half; a concatenation with the corresponding cropped
feature map from the down part occurs, followed by two 3 × 3
convolutions which are also followed by two ReLU operations
and one 2 × 2 max-pooling operation with stride 2 used for
downsampling. Since border pixels are lost at each convolution,
the cropping process is deemed essential. The higher resolution
features from the down part are concatenated with the upsampled
features in order to localize and learn representations better.
The resulting architecture is one where the expansive path
is symmetric to the concatenating path, yielding a U-shaped
architecture. The network is composed of 23 convolutional layers
in total and does not have any fully connected layers. The final
layer of U-Net uses a 1 × 1 convolution to map each 64 feature
vector to the desired number of classes. An overlap-tile strategy is
used to predict the pixels of the border region where the missing
context is extrapolated by mirroring the input image. The U-
Net architecture was trained for 20 epochs on a Tesla P100 GPU
on 1777 dermoscopy images (resized to 256 × 256 pixels) along
with their corresponding groundtruth response masks from the
“ISIC 2018: Skin Lesion Analysis Toward Melanoma Detection”
grand challenge datasets (49, 50), and tested on 158 images from
the same dataset (those images were not used in training U-
Net). Training U-Net and testing it took 27.6 min and 25.9
s, respectively. Figure 3 shows samples of the training dataset
along with their groundtruth, and Figure 4 shows samples of the
segmentation results using U-Net (i.e., test dataset). The average
Dice similarity achieved on the 158 images was 83.8%.
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FIGURE 4 | Samples of images used to test U-Net, their groundtruth, and segmentation results.

8. SKIN LESION BORDER DETECTION

To detect the skin lesion border, we use the method we
proposed in Ali et al. (46), namely FuzzEdge. Say that we have
an image G of size M × N pixels with L gray levels: G =
[

g(i, j)
]

M×N
, where g

(

i, j
)

∈ {0, 1, . . . , L− 1} refers to a pixel

in the image. Let X =
[

x
(

i, j
)]

M×N
be the original input

image, and Y =
[

y
(

i, j
)]

M×N
be the filtered output image;

y(i, j) = FuzzEdge(X(i, j)) represents the (i, j)th pixel of the
filtered image Y , where X(i, j) is a 3 × 3 kernel centered at the
input pixel x(i, j) that will be affected by the filter, and FuzzEdge(.)
is the fuzzy filter function. Three fuzzy concepts (sets) are
defined: Bright,Dark, andMedian. Those concepts can be created
using Algorithm.1.

The value associated with each pixel in the image is
determined using the membership function (i.e., fMedian) of the
corresponding fuzzy concept. FuzzEdge runs three standard
deviation processes to determine the values of the filtered
pixel (center pixel in the kernel) on each fuzzy concept,
producing three values for each pixel: ¯yBright

(

i, j
)

, ¯yDark
(

i, j
)

,

and ¯yMedian

(

i, j
)

. In the decision step of FuzzEdge, a standard
deviation process similar to the above is applied on the
pixels through a kernel, provided that the pixel values will be
determined using a new membership function, that is, the fuzzy
interval membership function. The final output of each filtered
pixel is eventually determined bymeasuring the distance between
¯yBright

(

i, j
)

, ¯yDark
(

i, j
)

, and ¯yMedian

(

i, j
)

to the fuzzy estimator,
and taking the nearest pixel to the fuzzy estimator as the value

of the filtered pixel in our kernel. Figure 5 shows some samples
of borders detected using FuzzEdge.

FuzzEdge code has been open sourced and can be accessed
from: https://github.com/abderhasan/fuzzedge.

9. SKIN LESION BORDER IRREGULARITY

To measure skin lesion border irregularity, a measure that
combines fractal dimension and convexity [similar to that
proposed in our other work (33)] is used to form an objective
quantitative measure of border irregularity, especially that many
of the signs that the clinician relies on in diagnosis involve
subjective judgment. This applies to visual signs such as border
irregularity; it has been shown that both clinicians and patients
find it hard in agreeing upon whether a naevus border is
considered irregular or not (51). Such measure could thus aid in
improving the diagnostic accuracy.

Figure 6 depicts the process of extracting the skin lesion
irregularity measure, which also shows that our measure will
be represented as a vector of two values: convexity and fractal
dimension, especially that those measures have been utilized in
characterizing skin lesion border irregularity in literature.

Fractal dimension has been used in characterizing skin lesion
border irregularity as in Claridge et al. (51), Ng and Lee (30), and
(52). Fractal geometry (53) describes the space-filling capacity of
irregular borders which is considered size independent and does
not require any smoothing operations of irregular borders for
measurement to be possible (54), meaning that structures don’t
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Algorithm 1: Fuzzy concept creation

input : grayscale image I
output: fuzzy set (concept)

1 For the fuzzy concepts Bright, Dark, andMedian, specify the
intervals of [Brightbegin,Brightend], [Darkbegin,Darkend], and
[Medianbegin,Medianend], respectively.

2 Let Brightbegin =
(

Nf − 1
)

[

L−1
Nf

]

, Darkend =
[

L−1
Nf

]

,

Medianbegin = Darkend − left_overlap, and
Medianend = Brightbegin + right_overlap /* Nf is the number

of fuzzy concepts, and left_overlap and right_overlap
determine the overlapping range of the fuzzy concepts (the
overlap range was set to 0 in this paper) */.

3 Set Darkbegin to be the first gk from 0 to Darkend.

4 Set Brightend to be the last gk from Brightbegin to L− 1.

5 In interval [Darkbegin,Darkend], find a pixel gk with the
maximum value of p(gk).

6 For the fuzzy concept Dark, create its membership function
fDark as follows:mDark← gk, αDark ← mDark − Darkbegin,
βDark← Darkend −mDark.

7 In interval [Medianbegin,Medianend], find a pixel gk with the
maximum value of p(gk).

8 For the fuzzy conceptMedian, create its membership
function fMedian as follows:mMedian ← gk,
αMedian ← mMedian −Medianbegin,
βMedian ← Medianend −mMedian.

9 In interval [Bright, begin− Brightend], find a pixel gk with
the maximum value of p(gk).

10 For the fuzzy concept Bright, create its membership
function fBright as follows:mBright ← gk,
αBright ← mBright − Brightbegin,
βBright ← Brightend −mBright .

need to possess a perfect geometric shape. Fractal dimension is a
mathematical parameter that is able to quantify the irregularity
of a skin lesion border via an objective observer-independent
value, such that a higher fractal dimension refers to a higher
degree of complexity of the analyzed pattern. A straight line
in a 2-dimensional system has a fractal dimension of one, and
more complicated lines (having fractal properties) will have
larger dimensions (55). The fractal dimension is able to describe
melanoma irregular borders that possess fractal properties
more accurately than Euclidean measures (i.e., perimeter) (56).
The box-counting method (57) is used to estimate the fractal
dimension of the skin lesion border, and is defined as:

D = lim
e→0

logN (e)

log
(

1
e

) (14)

where D = [1, 2] is the box-counting fractal dimension of the
skin lesion border, e > 0 is the side (edge) length of the box,
and N is the smallest number of boxes of side length e needed to
completely cover the skin lesion border. The fractal dimension is

the slope in the logN (e)/ log
(

1
e

)

graph. Figure 7 demonstrates
the box-counting method.

The straighter the skin lesion border the lower the value D,
and vice versa. As melanoma borders tend to be irregular they
are considered to be similar to fractals [i.e., Koch snowflake
(58)] and are expected to have a higher fractal dimension than
regular-boundary naevi. It was found in Cross et al. (54) that the
fractal dimension of all lesions are greater than the topological
dimension (i.e., one), indicating the existence of a fractal element
in their structure.

Convexity, the ratio between the perimeter (the number of
points/length of the boundary) of the convex hull of the skin
lesion (the smallest convex polygon that surrounds all of the
skin lesion pixels) and the skin lesion perimeter, can be used
to characterize the skin lesion border shape and irregularity
(37, 59, 60). Convex objects tend to have a convexity value of 1, as
opposed to non-convex objects (i.e., irregular skin lesion borders)
which tend to be less than 1. In other words, convexity shows the
amount by which the object differs from the convex object.

10. RESULTS AND DISCUSSION

To prepare the training and testing data for F-MLP, 158 images
segmented using U-Net were used, their skin lesion borders
extracted using FuzzEdge, and the extracted borders sent to a
dermatologist (Dr.Sally O’Shea) to label as regular or irregular
borders (regular: 5, irregular: 153), which will eventually serve
as our groundtruth (labels) for the training data. Figure 8 shows
some samples of regular and irregular borders along with their
original and segmented images. However, due to the imbalance
in data, an augmentation step (rotating, and flipping horizontally
and vertically) has been carried out to increase the regular
samples. Augmentation was carried out on the 5 regular bordered
images, producing multiple versions of those images. The total
number of images after augmentation was 310 images (regular:
157, irregular: 153).

Table 1 shows the fractal dimension and convexity values
for the images in Figure 8. It should be emphasized that
fractal dimension is found for the edge images (i.e., FuzzEdge)
and the convexity is found for the segmentation (i.e., U-
Net) results of the image, as demonstrated in Figure 6.
Figure 9 shows box-and-whisker plots depicting the distribution
of fractal dimension and convexity values for the regular
and irregular skin lesions used in training and testing the
neural networks.

The extracted skin lesion border irregularity measures were
used to train and test a standard neural network and a type-II
F-MLP. For both networks the number of neurons in the input
layer is equal to the number of input features (2 features), the
first hidden layer is composed of 4 neurons, the second hidden
layer is composed of 2 neurons, the output layer is composed of
1 neuron which represents the final classification result, and the
learning rate is 0.001. Experiments were run on a machine with
an Intel Core i7 processor of speed 2.2 GHz and 16 GB memory.

After obtaining the prediction probability ∈ [0, 1] of each test
sample, a threshold is generated from the prediction probabilities
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FIGURE 5 | Samples of test images, their segmentations using U-Net, and borders detected using FuzzEdge.

FIGURE 6 | Skin lesion border irregularity measures extraction.
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FIGURE 7 | Twenty-two boxes are required to cover the skin lesion border using the box-counting method.

FIGURE 8 | Samples of regular and irregular borders labeled by the dermatologist.

to decide the final prediction (regular or irregular) according to
Equation (15).

threshold =

∑n
i=1 pi

n
(15)

where n is the number of test samples, and pi is the prediction
probability of test sample i. The final decision is obtained using

Equation (16).

Decision =

{

regular, pi > threshold

irregular, pi ≤ threshold
(16)

Tables 2, 3 show the different training and testing split ratios
used to evaluate the networks, number of iterations used in each
network, time consumed (in seconds), and accuracy, for the
standard neural network and F-MLP, respectively. The networks
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were run for only 1 iteration since more iterations didn’t improve
the accuracy.

Using two sigmoid activation functions reflects the type-
II fuzzy set in that the error rates represent the range of
performance that could be achieved using the fuzzy neural
network (F-MLP), modeling thereby the potential uncertainty
occurring within the input data. Two versions (lower and upper
sigmoid) of F-MLP can be obtained, and the one with the best
performance (maximum accuracy) can be used as shown in the
following equation:

λFMLP = max
(

λFMLPlower , λFMLPupper
)

(17)

where λFMLP is the accuracy of the fuzzy multilayer perceptron,
λFMLPlower is the accuracy of the fuzzy multilayer perceptron
utilizing the lower sigmoid activation function, and λFMLPupper
represents the accuracy of the fuzzy multilayer perceptron
utilizing the upper sigmoid activation function.

In comparing the standard neural network and F-MLP, we
consider the 80:20 ratio as it results in better accuracy amongst
the other ratios, evaluating to 91.9 and 95.2% for the standard
neural network and F-MLP, respectively. Tables 4, 5 depict the
confusion matrices of the classification results, from which we
derive the sensitivity and specificity values that evaluate to 100

TABLE 1 | Border irregularity measures for the images presented in Figure 8.

Image Fractal dimension Convexity Label

1.r 1.2527 0.9898 1

2.r 1.2599 0.9890 1

3.r 1.2875 0.9893 1

1.i 1.4499 0.9031 0

2.i 1.3056 0.9531 0

3.i 1.3125 0.9586 0

Images 1.r, 2.r, and 3.r from left to right refer to the first three images (regular), and images

1.i, 2.i, and 3.i refer to the last three images (irregular).

and 82.8% for the standard neural network, respectively, and
100 and 89.7% for the F-MLP, respectively. Figure 10 depicts the
receiver operating characteristic (ROC) curves of the standard
neural network and F-MLP.

To evaluate the proposed approach further, we compare
it with other state-of-the-art classification methods as shown
in Table 6 which shows that F-MLP outperforms most of
those methods.

Incorporating the membership degree in the gradient descent
(Equation 13) helps in reducing the effects of ambiguous
features/neurons when updating the weights, and thus increases
the performance of learning (i.e., higher accuracy predictions).
The proposed type-II F-MLP is able to perform better than
its traditional neural network counterpart with fewer iterations.

TABLE 2 | Standard neural network evaluation on classifying regular and irregular

borders using different training and testing split ratios.

Ratio Training Testing Training time Testing time Accuracy (%)

80:20 248 62 0.02 0.007 91.9

70:30 217 93 0.02 0.008 91.4

60:40 186 124 0.01 0.007 87.9

50:50 155 155 0.02 0.009 79.4

TABLE 3 | F-MLP evaluation on classifying regular and irregular borders using

different training and testing split ratios.

Ratio Training Testing Training

time

Testing

time

Lower

sigmoid

acc. (%)

Upper

sigmoid

acc. (%)

80:20 248 62 0.58 0.01 95.2 90.3

70:30 217 93 0.8 0.07 91.4 89.2

60:40 186 124 0.6 0.08 90.3 87.9

50:50 155 155 0.7 0.08 83.9 75.5

FIGURE 9 | Box-and-whisker plots representing the fractal dimension and convexity distributions of the skin lesions (regular and irregular) used in training and testing

the neural network.
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However, training F-MLP is more time-consuming than its
traditional neural network counterpart.

11. CONCLUSION

An automatic approach for detecting the skin lesion border
irregularity has been proposed. The approach starts by
segmenting the skin lesion using U-Net, detecting the lesion
border using FuzzEdge, extracting the irregularity measures
(fractal dimension and convexity), training a F-MLP on the
extracted measures, and predicting border irregularity on new

TABLE 4 | Standard neural network confusion matrix.

Predicted

Regular Irregular Total

Actual Regular 33 0 33

Irregular 5 24 29

Total 38 24 62

TABLE 5 | F-MLP (lower sigmoid) confusion matrix.

Predicted

Regular Irregular Total

Actual Regular 33 0 33

Irregular 3 26 29

Total 36 26 62

images using the trained model. The proposed F-MLP utilizes
type-II fuzzy sets and showed to provide better prediction
accuracy than most of the state-of-the-art classification methods
in general and its standard neural network counterpart
in particular.

The proposed approach reflects three main contributions:
(i) developing a fuzzy gradient descent that considers the
membership degrees of neurons, minimizing thereby the effects
of ambiguous neurons on the neural network learning process,
(ii) proposing a type-II fuzzy sigmoid activation function
which allows to represent the range (lowest and highest)
of performance the fuzzy neural network is able to attain,
where the fuzzy neural network with the highest performance
(highest accuracy) could be utilized in the prediction process,
(iii) proposing an irregularity measure that is represented
as a vector of fractal dimension and convexity values. The

TABLE 6 | F-MLP evaluation on classifying regular and irregular borders using

different training and testing split ratios.

Method TP TN FP FN Accuracy (%)

F-MLP (lower sigmoid) 33 26 3 0 95.2

Stochastic gradient descent 33 26 3 0 95.2

Random forests 32 28 1 1 96.8

Logistic regression 32 22 7 1 87.1

K-nearest neighbors 32 26 3 1 93.5

Gaussian naive bayes 32 22 7 1 87.1

Support vector machine 28 23 11 0 87.1

Decision tree 32 26 3 1 93.5

FIGURE 10 | (A) Standard neural network ROC curve (B) F-MLP (lower sigmoid) ROC curve.
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approach is however more time-consuming when training the
neural network.

The process of assigning regular and irregular labels
to the skin lesion borders in the F-MLP training
phase is considered laborious and might involve a
larger team to be able to label thousands of lesion
borders, a task that could eventually improve the
prediction accuracy.

This work leads us to what we call fuzzy deep learning, in
which we hypothesize that it would improve the traditional
deep learning approaches currently used in literature. We
are aiming to investigate further the combination of fuzzy
logic and CNNs. There could be different approaches
to fuzzifying the CNN such as using fuzzy arithmetic
instead of the currently used convolution arithmetic
(61) for instance. This will be demonstrated further in a
future study.

As future work, we would also like to investigate introducing
more metrics in the skin lesion border irregularity measure
vector to increase the robustness of such measure. Moreover,
we would like to apply the method on problems incorporating
more than two classes, and on skin lesion images taken using
a mobile phone camera (i.e., less quality) as opposed to
dermoscopic images.
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