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Skin cancer, previously known to be a common disease in Western countries, is

becoming more common in Asian countries. Skin cancer differs from other carcinomas

in that it is visible to our eyes. Although skin biopsy is essential for the diagnosis of

skin cancer, decisions regarding whether or not to conduct a biopsy are made by an

experienced dermatologist. From this perspective, it is easy to obtain and store photos

using a smartphone, and artificial intelligence technologies developed to analyze these

photos can represent a useful tool to complement the dermatologist’s knowledge. In

addition, the universal use of dermoscopy, which allows for non-invasive inspection of the

upper dermal level of skin lesions with a usual 10-fold magnification, adds to the image

storage and analysis techniques, foreshadowing breakthroughs in skin cancer diagnosis.

Current problems include the inaccuracy of the available technology and resulting legal

liabilities. This paper presents a comprehensive review of the clinical applications of

artificial intelligence and a discussion on how it can be implemented in the field of

cutaneous oncology.
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INTRODUCTION

The increasing incidence of skin cancer is a global trend. Skin cancer, which was previously
known to be a common disease in Western countries, is occurring more frequently in South
Korea. According to the Korean Statistical Information Service1, the number of patients with non-
melanoma skin cancer in 2015 was 4,804 (9.4 people per 100,000), an increase over the 1,960 in
2005 and 3,270 in 2010. The increase in incidence rate is thought to be due to the aging population,
the increased popularity of outdoor activities, increased ultraviolet exposure, improved access to
medical services, and increased awareness of skin cancer among patients (1).

Skin biopsy and histopathologic evaluation are essential in confirming skin cancer. However,
it is impossible to confirm all pigmented lesions by biopsy due to pain and scar development.
Therefore, it is first necessary to establish whether or not a biopsy is required through a visual
inspection performed by an experienced dermatologist. Furthermore, dermatologist needs a device
that can detect changes over time in skin lesions and record the lesions in detail so that wrong-site
surgery does not occur (2, 3).

With the development of imaging technologies, methods and devices for recording and
analyzing what doctors see have progressed rapidly. Universally, dermoscopic imaging irradiates
light onto the upper dermal layer, to observe and record more detailed pigment changes. In recent
years, development of high-resolution non-invasive diagnostic devices (e.g., confocal microscopy,
multiphoton microscopy, etc.) that can detect cellular levels of the skin lesions without biopsy has
also been enriched (4–6). In addition, diagnoses of such skin images using artificial intelligence

1http://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_117N_A00025&conn_path=I2
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FIGURE 1 | Relationship between artificial intelligence, machine learning, and deep learning.

(AI) have been shown to outperform the average diagnosis
performances of doctors. These developments are expected to
have a significant impact on the diagnosis of skin cancer,
the accurate recording of changes in suspicious lesions, and
the effectiveness of follow-up skin cancer surgery. For user
convenience, applications suitable for general smartphones have
become available; however, these are not sufficiently supported by
scientific evidence.

In this review, we introduce the basic concepts and clinical
applications of AI via a literature review and discuss how these
can be implemented in the field of dermatological oncology.

BASIC CONCEPTS OF ARTIFICIAL
INTELLIGENCE

AI is a field of computer science that solves problems by
imitating human intelligence, these problems typically require
the recognition of patterns in various data. Conventional
machine learning refers to machine learning methods that
do not involve deep learning; these methods extract features
such as those relating to colors, textures, and edges. In
conventional machine learning, precise engineering knowledge

Abbreviations: ACC, accuracy; AI, artificial intelligence; ALM, acral lentiginous

melanoma; AUC, area under the curve; BCC, basal cell carcinoma; BN, benign

nevus; BoF, bag of features; CLAHE, contrast-limited adaptive histogram

equalization; CNN, convolutional neural network; DCNN, deep convolution

neural network; DI, dice score; DLNN, deep learning-based neural network;

FFOCT, full-field optical coherence tomography; GAC, geodesic active contour;

GLCM, gray-level co-occurrence matrix; ICA, independent component

analysis; ILSVRC, ImageNet large-scale visual recognition challenge; ISBI,

International Symposium on Biomedical Imaging; ISIC, International Skin

Imaging Collaboration; JA, Jaccard index; KNN, k-nearest neighbor; LFN,

lesion feature network; LICU, lesion index calculation unit; LIN, lesion indexing

network; MLP, multi-layer perceptron; MM, malignant melanoma; NPV, negative

predictive values; OCT, optical coherence tomography; PCA, principal component

analysis; PPV, positive predictive values; PS-OCT, polarization-sensitive optical

coherence tomography; RF, random forest; SCC, squamous cell carcinoma; SGNN,

self-generating neural network; SK, seborrheic keratosis; Sen, sensitivity; Spe,

specificity; SVM, support vector machine.

and extensive experience are required to design feature extractors
capable of extracting suitable features. Using these features,
conventional machine learning can derive various results and
identify correlations.

Deep learning uses deep neural networks to learn features,
which are obtained by designing simple but non-linear modules
for each layer. Using deep neural networks, very complex
functions can be learned. For example, in the field of computer
vision, a deep neural network’s first layer typically learns the
presence of edges at particular orientations and locations within
the image. Larger combinations of such edges are identified in
the next layer. As the layers become deeper, they learn larger and
more specific features (7).

Figure 1 shows the relationship between AI, machine
learning, and deep learning. Deep learning falls within the
category of machine learning, which falls within the category
of AI. In this figure, the examples for conventional machine
learning and deep learning are classifications of acral lentiginous
melanoma (ALM) and benign nevus (BN) in dermoscopy images.
Conventional machine learning extracts specific features from
dermoscopy images; for example, the gray-level co-occurrence
matrix (GLCM) is used to extract texture features (8). The
conventional machine learning method then trains classifiers,
using the extracted features to classify ALM and BN. However,
deep learning methods learn by extracting various features
through deep neural networks. The main difference between
conventional machine learning and deep learning is that deep
learning extracts various features per layer, without human
intervention (9).

We divided the cutaneous oncology publications into those
evaluating malignant skin cancers and non-melanoma skin
cancers. In addition, each publication was divided into machine
learning (excluding deep learning), deep learning, and hybrid
methods (a combination of machine learning and deep learning)
(Figure 2).

In terms of machine learning methods, most publications
use a feature extractor to extract a feature from an image,
they then train the classifier model using these features
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(e.g., malignant melanoma (MM) vs. BN). Recently, deep
convolution neural network (DCNN) have been implemented in
many medical-imaging studies (10–12). DCNN use convolution
operations to compensate for the problems that arise through
neglecting the correlations and pixel localities of multi-layer
perceptron (MLP). Thus, deep learning can be used to train a
robust classifier model with a variety of data. Figure 3 shows
an example of a DCNN for classifying ALMs and BNs in
dermoscopic images. The DCNN feature extractor repeatedly
applies convolution and max-pooling (to obtain the largest
activation for each region) operations to the layer input. This
process generates a feature map. The feature map is inputted
to a classifier via global average pooling for each channel.
The classifier finally determines probabilities for ALM and
BN. The result is then compared with the actual label, and
the parameters are updated via backpropagation. However,
DCNN operations require highly powerful graphics processing
units to manage the complex computations and large datasets
involved. Although DCNN learning capacities can be limited

FIGURE 2 | Number of publications employing artificial intelligence in

cutaneous oncology.

by insufficient medical-image data, it is possible to fine-tune
state-of-art deep learning models that show high performance
in ImageNet large-scale visual recognition challenge (ILSVRC),
making them suitable for medical purposes (13). In the hybrid
method, an ensemble classifier is designed by combining a
conventional machine learning method and a deep learning
method. For example, after extracting the features of an image
using a conventional machine learning method, these extracted
features are used as inputs for a DCNN. Another example is that
of training a support vector machine (SVM) using a feature map
obtained through a DCNN (14). One publication showed that
hybrid models outperform both deep learning and conventional
machine learning models (15), another publication highlighted
the limitations of deep learning and stated a need for hybrid
models to overcome these limitations (16). Thus, these two
methods can be used effectively to create more accurate models.

Every year, the number of articles describing AI
implementations in the field of cutaneous oncology increases. By
observing the trends of the discipline, it can be seen that studies
using conventional machine learning have been decreasing
in popularity since 2015 (five publications in 2015, three
publications from 2016 to 2017, and one publication after
2018); however, the number of studies conducted using deep
learning methods has increased significantly since 2015 (zero
publications in 2015, seven publications from 2016 to 2017, and
nine publications after 2018). These tendencies are a result of
the increasing availability of big data and powerful GPUs. Since
2015, state-of-art deep learning models such as ResNet have also
been studied [ResNet competed for the first time in the 2015
ILSVRC (17); it surpassed the human error rate of 5%, achieving
an error rate of 3.6%].

APPLICATION OF ARTIFICIAL
INTELLIGENCE IN THE DIAGNOSIS OF
MALIGNANT SKIN CANCERS

Melanoma
A total of 18 publications were identified, six of these described
the use of conventional machine learning, nine publications

FIGURE 3 | Example of DCNN for classifying ALM and BN in dermoscopic images. In the feature extractor, each layer performs a convolution operation on the input

data and then performs a max-pooling operation, thereby reducing the image size and increasing the number of channels. The feature extractor generates a feature

map by repeating this process for each layer. After the global average pooling operation, the feature map is used as the input of the classifier layer (fully-connected

layer). Finally, the output of the fully-connected layer appears as a probability of ALM or BN.
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showed the use of deep learning, and two publications presented
the use of hybrid models. Among the total 18 publications, 14
used dermoscopic images as the dataset, and the remainder used
unspecified or clinical images; nine used more than 500 datasets,
and the remainder used <500 datasets. Moreover, in five of the
publications, other skin lesion data such as seborrheic keratosis
(SK) and basal cell carcinoma (BCC) were used alongside
malignant melanomas and nevus. Seven publications presented
the area under the curve (AUC) as a performance indicator of the
model and the remainder presented accuracy (Acc), sensitivity
(Sen), and specificity (Spe) (Tables 1–3).

Deep Learning
Among the deep learning algorithms discussed in the literature,
five were fine-tuned using pre-trained models. The remainder
were fully trained with new models. In four publications,
preprocessing was performed prior to model training. In
addition, two publications performed lesion segmentation and
classification or segmentation of dermoscopic features. To
measure the model performance, one publication (Tschandl,
Kittler et al.) compared the results of final-year medical students
with those of the model; two publications (Yang et al. and
Lee et al.) used the results of dermatological experts as the
comparison. From these, Lee et al. showed that experienced
dermatologists and inexperienced dermatologists improved their
decision making with the help of deep learning models.
One publication (Premaladha and Ravichandran) compared
the conventional machine learning method ’Hybrid Adaboost-
SVM’ and a deep learning-based neural network on the same
dataset; they showed that the deep learning-based neural network
delivered superior performance. Moreover, one publication (Cui
et al.) demonstrated that when more data was used, the
results of deep learning outperformed conventional machine
learning methods.

Conventional Machine Learning
From the conventional machine learning publications, four of
the five publications performed feature extraction and then
created a classifier. Two of these publications used SVM for
the classifier, one used multivariable linear regression, and one
used a layered model. In three publications, artifact removal or
lesion segmentation were performed prior to feature extraction.
On the other hand, one publication (Marchetti, Codella et al.)
presented a new model using a fusion method, developed by 25
teams participating in International Symposium on Biomedical
Imaging (ISBI) 2016.

Hybrid (Deep Learning + Machine Learning)
In the publications using hybridmethods, one publication (Jafari,
Nasr-Esfahani et al.) preprocessed the input images, extracted
the patches, and performed segmentation using a convolutional
neural network (CNN). In one publication (Xie, Fan et al.),
segmentation was performed after preprocessing, using a neural
network called self-generating neural network (SGNN); they then
presented an ensemble network by designing a feature extractor
and classifier. Furthermore, in one publication (Sabbaghi et al.),

a deep auto-encoder combined with bag of features (BoF)
outperformed themodel using a BoF or deep auto-encoder alone.

Non-melanoma Skin Cancer: BCC,
Squamous Cell Carcinoma (SCC)
We identified seven deep learning publications, three machine
learning publications and three hybrid publications on non-
melanoma skin cancer. Several publications discussed MM;
however, all of them discussed BCC and three publications
discussed SCC, thus we classified the publications into these
categories. The results are organized in Tables 4–6.

The results of all publications were presented using an
accuracy indicator, and some of these publications using a variety
of indicators, such as specificity, sensitivity, precision, and F1
score. The datasets used in each publication were different,
making it impossible to compare them directly.

Deep Learning
Rezvantalab et al. compared the abilities of deep learning
against the performances of highly trained dermatologists. This
publication presented outcomes from various deep learning
models. In the BCC classification, the highest AUC of the
publication was reported as 99.3%, using DenseNet 201. When
compared against dermatologists (AUC 88.82%), the results of
deep learning were found superior.

Five publications used datasets of dermoscopic images. One
used full-field optical coherence tomography (FFOCT) images,
and Jordan Yap et al. used different forms of data including
metadata, macroscopic images, and dermoscopic images. Next,
they trained a deep learning model using fusion techniques, in
which image feature vectors were concatenated with themetadata
feature vectors. Two publications by Zhang et al. written in
2017 and 2018, showed interesting results; the 2018 publication
improved the previous year’s algorithm for utilizing medical
information. Their results showed an average improvement of
0.7% over those of the previous year.

Conventional Machine Learning
We identified four publications that used only machine learning
techniques. Three publications used dermoscopic images and one
used polarization-sensitive optical coherence tomography (PS-
OCT) images. Each author used different methods and features.

Marvdashti et al. performed feature extraction and
classification using multiple machine learning methods [SVM,
k-nearest neighbor (KNN)]. Kharazmi et al. segmented vascular
structures using independent component analysis (ICA) and
k-means clustering, then classified them using a random forest
classifier. Kefel et al. introduced automatically generated borders
using geodesic active contour (GAC) and Otsu’s threshold for
the detection of pink blush features, known as a common feature
of BCCs. Subsequently, they classified using logistic regression,
based on features such as smoothness and brightness.

Hybrid (Deep Learning + Machine Learning)
Three publications implementing hybrids were identified. Each
publication used a different dataset. One publication used
optical coherence tomography (OCT) images and another used
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TABLE 1 | Melanoma skin cancer publications using deep learning method.

Publication End-point Results Method Dataset

Li et al. (18) – Lesion segmentation (task1)

– Lesion dermoscopic feature

extraction (task2)

– Lesion classification (task3)

Task 1: JA : 0.710 (LIN)

Task 2 :AUC : 0.848 (LFN)

Task 3 :AUC : 0.912 (LIN with

LICU)

– Task 1 and Task 3

Preprocessing:

Center crop + Resize(320*320)

Data augmentation

Task 1 used LIN

Task 3 used LIN with LICU

– Task 2

Pre-processing:

Superpixel extraction

Data augmentation

Random sample

Patch rotation

Using LFN

ISIC 2017 dataset (n = 2000)

The dataset contains melanoma,

SK and nevus

Pour et al. (19) – Lesion segmentation

– Lesion dermoscopic feature

segmentation (streak and

globule features)

Lesion segmentation:

Sen : 0.91

Spe : 0.95

Acc : 0.94

JA : 0.83

DI : 0.89

Lesion dermoscopic feature

segmentation:

Sen: 0.119

Spe: 0.997

Acc: 0.991

JA: 0.60

DI: 0.108

Data Augmentation

– Lesion segmentation : Deeper model

with 16 conv. layers, augmentation

by flipping and cropping (7200

training images)

– Lesion dermoscopic feature

segmentation:

Similar convolutional layers initialized

with a pre-trained model from lesion

segmentation phase. This

architecture is followed by two parts,

each contains two convolutional

layers and four deconvolutional layers

to predict masks for both streak and

globule features.

ISBI 2016 challenge dataset

The dataset contains a

representative mix of images of

both MM and BN

– Lesion segmentation:

Train_Images (n = 900)

Test_Images (n = 379)

– Lesion dermoscopic feature

segmentation:

Train_Images (n = 807)

Test_Images (n = 335)

Yu et al. (20) Classification (ALM and BN) Group A

– CNN

Sen: 92.57%

Spe: 75.39%

Acc: 83.51%

PPV: 77.14%

NPV: 91.88%

– Expert

Sen: 94.88%

Spe: 68.72%

Acc.: 81.08%

PPV: 73.13%

NPV: 93.71%

– Training

Data augmentation : 12 patches

cropping, rotation, and flipping

CNN: 5-layer convolution network +

FC

– Testing

Cropping 12 patches per test image

and when one or more images were

predicted as containing melanoma,

the corresponding test image was

interpreted as containing melanoma

Dermoscopic images

ALM (n = 350) and BN (n =

374)

– Group A

ALM (n = 175) and BN (n = 187)

Nasr-Esfahani

et al. (21)

Classification (melanoma and

nevus)

Sen: 81%

Spe: 80%

Acc: 81%

PPV: 75%

NPV: 86%

Pre-processing : Removal of noise and

illumination artifacts

CNN: 2-layer convolution network (20

feature maps and 50 feature maps) +

FC

Clinical images

Melanoma (n = 70) and nevus (n =

100)

Train_Images (80%)

Test_Images (20%)

Premaladha et al.

(22)

Classification (MM and BN)

Best model : DLNN

Sen. 94.83%

Spe. 90.46%

Acc. 92.89%

Pre-processing : CLAHE and median

filter

Segmentation : Normalized Otsu’s

segmentation (NOS)

Classifier : Compared DLNN and hybrid

Adaboost-SVM. Best model was DLNN

Dermoscopy images

Train_Images (85%)

Test_Images (15%)

Matsunaga et al.

(23)

Classification (melanoma, nevus

and SK)

– ISBI 2017 challenge dataset

AUC : 0.958

– ISBI 2016 challenge dataset

AUC : 0.874

Pre-processing : luminance and color

balance of input images are normalized

exploiting color constancy

CNN :

Fine-tuned 50-layer ResNet MM

classifier and SK classifier

Ensemble classifier made by merging

two classifiers

ISBI 2017 challenge dataset

Train_Images : provided data

(374MM, 254 SK, 1372 nevi) +

external data (409MM, 66 SK, 969

nevi)

Test_Images (n = 150)

(Continued)
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TABLE 1 | Continued

Publication End-point Results Method Dataset

Tschandl et al. (24) Classification (melanoma, BCC,

dermatofibroma, melanocytic naevi,

seborrheic keratoses and vascular

lesion)

– CNN

Sen: 90%

Spe: 71%

AUC: 91%

– Students

Sen: 86%

Spe: 79%

AUC: 85%

All images from the students’ training

session were also used to retrain the

last layer of the “GoogLeNet Inception

v3” neural network, without any kind of

test-set augmentation (4,000 epochs,

learning rate 0.001, batch size 50).

Dermoscopic images (n = 348)

Train_Images (n = 298):

melanoma (n = 62), BCC (n = 40),

dermatofibroma (n = 7),

melanocytic naevi (n = 129), SK (n

= 38), and vascular lesion (n = 22)

Test_Images (30%):

melanoma (n = 10), BCC (n = 10),

dermatofibroma (n = 2),

melanocytic naevi (n = 14), SK (n =

9) and vascular lesion (n = 5)

Esteva et al. (25) Classification (757 diseases) – 3-way classification

Dermatologist 1 Acc: 65.6%

Dermatologist 2 Acc: 66.0%

CNN Acc: 69.4 ± 0.8%

CNN – partitioning algorithm

Acc: 72.1 ± 0.9%

– 9-way classification

Dermatologist 1 Acc: 53.3%

Dermatologist 2 Acc: 55.0%

CNN Acc: 48.9 ± 1.9%

CNN – partitioning algorithm

Acc: 55.4 ± 1.7%

– Training Using Google Inception v3

CNN architecture pretrained on the

ImageNet dataset (1.28 million

images of over 1,000 generic object

classes) and fine-tuned on their own

dataset of 129,450 skin lesions

comprising 2,032 different diseases.

The 757 training classes were

defined using a novel taxonomy of

skin diseases and a partitioning

algorithm that maps diseases into

training classes.

– Testing Author developed an

algorithm to partition diseases into

fine-grained training classes (for

example, amelanotic melanoma and

acral lentiginous melanoma). During

inference, the CNN outputs a

probability distribution over these fine

classes. To recover the probabilities

for coarser-level classes of interest

(for example, melanoma) they

summed the probabilities of

their descendants

Dermoscopic and conventional

images (n = 129,450)

Train_Images (n = 127,463)

Test_Images (n = 1,942)

Lee et al. (26) Classification (ALM and BN) – CNN

Sen: 90.2%

Spe: 93.8%

AUC: 97.6%

– Board-certified

dermatologists

Sen: 87.0%

Spe: 71.4%

Acc: 79.2%

Data augmentation : four

center-overlapping patches

CNN :

Fine-tuned 50-layer ResNet

Made an ensemble model [merging

Model 2 (intermediate tumor in BN set)

and Model 3 (intermediate tumor in

ALM set)]

Dermoscopy images

ALM (n = 500), BN (n = 500) and

intermediate tumor (n = 72)

Train_Images (n = 872):

ALM (n = 400), BN (n = 400) and

intermediate tumor (n = 72)

Test_Images (n = 200):

ALM (n = 100), BN (n = 100)

Cui et al. (27) Classification (melanoma and

non-melanoma)

– CNN

(best model: Inception V3)

Acc: 93.70%

Sen: 95.30%

Spe: 92.10%

CNN:

Fine-tuned CNNs (AlexNet, VGG16,

VGG19, Inception V3) and compared

CNNs (best model was Inception V3)

Dermoscopy images

deep learning dataset (n = 2,200):

melanoma (n = 564) and

non-melanoma (n = 1,636)

dermoscopic images. Unusually, the third publication used data
downloaded from the Internet, not directly taken.

Annan Li et al. used deep learning for feature extraction,
then classified images using the principal component analysis
(PCA) and SVM machine learning techniques. They compared
deep learning models and assessed the differences in dimensions
of the PCA features. Sarkar et al. applied Gaussian blurring
to denoise the images and then used the contrast-limited
adaptive histogram equalization (CLAHE) algorithm to enhance
them. Unlike previous publications, deep learning was used
for classification.

IMPLEMENTATION IN SMARTPHONES

With the spread of smartphones, the mobile application market
has expanded rapidly. Applications can be used in various
fields, particularly in the field of dermatology through the

use of smartphone cameras. In particular, due to the ubiquity

of smartphones, easily accessible mobile apps can make it

more efficient to detect and monitor skin cancers during
the early stages of development. In addition, with the recent
development of smartphone processors and cameras, machine
learning techniques can be applied, and skin cancer diagnoses
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TABLE 2 | Melanoma skin cancer publications using conventional machine learning method.

Publication End-point Results Method Dataset

Sabouri et al. (28) Classification (MM and BN) Sen: 89.28%

Spe: 100%

(best model: cascade classifier)

Pre-processing:

Artifact removal (hair artifact removal)

Cropping (512*512) and

lesion segmentation

(border segmentation)

Feature extraction:

Color features: RGB and HSV

Texture features: using GLCM

Classifier: compared many models

(KNN, MLP, Naïve Bayes, RF, SVM).

Best model was cascade SVM

Classifier (SVM #1 using normalized

HSV, SVM #2 using a combination of

color and texture features)

Unspecified images

Train_Images (n = 370):

MM (n = 175) and BN (n = 195)

Test_Images (n = 42):

MM (n = 16) and BN (n = 26)

Kaur et al. (29) Pink lesion classification within MM

or BN

AUC: 0.879 (all features) Relative color thresholds

Segment of 3 shades of pink (light, dark

and orange pink)

Quintile overlays

Feature extraction:

Blob features (5 per shade)

Color features for each pink shade over

entire lesion (15 per shade)

Texture features derived from lesion

histogram (24 per shade)

Location features (6 per shade)

Classifier : multivariate analysis using

linear regression was performed using

the Proc Logistic function in SAS

Dermoscopic images.

Train_Images (n = 60):

Only MM containing visible pink

areas within the lesion

Test_Images (n = 132):

MM (n = 54), benign dysplastic,

and congenital nevi (n = 78)

Shimizu et al. (30) 4-class classification (melanoma,

nevus, BCC, SK) Best model:

Layered model

Acc: 0.904

AUC: 0.864

(AUC denotes the area of the

receiver-operating characteristic

(ROC) curve between %M and

min (%N, %B, %S).)

Border detection : The core of the

algorithm was color thresholding,

removal of artifacts such as microscope

border and hair, and inclusion of bright

area seen specifically in NoMSLs (BCC

and SK)

Feature extraction:

Color-related Features : calculating ten

statistics for the intensity of six color

channels (RGB, HSV)

Subregion-related features : describing

geometrical distribution of the color.

Texture-related features : by adopting

GLCM

Classifier: compared layered model and

flat model.

Dermoscopic images

Train_Images (not described)

Test_Images (n = 964):

melanoma (n = 105), nevi (n = 692),

and SK (n = 98), BCC (n = 69)

Abedini et al. (31) Classification (MM and BN) Acc: 0.90

(accuracy continues to improve

with some fluctuation before

converging at approximately

90% after 150 responses.)

One feature of the system enables the

domain expert to improve previously

built models.

Classifier with a stochastic gradient

descent SVM and a feedback

mechanism.

Eventually, as more feedback is

provided (more training examples), the

SVM accuracy improves.

Dermoscopic images

Train_Image (n = 100)

Test_Image (n = 5):

melanoma (n = 3) and normal skin

(n = 2)

Marchetti et al. (32) Classification (MM and BN)

Best model: greedy fusion

– Greedy fusion

Sen: 58%

Spe: 92%

AUC: 86%

– Average dermatologist

Sen: 82%

Spe: 59%

AUC: 71%

Compared five methods of fusing all

automated predictions from the 25

participating teams in the ISBI

challenge into a single prediction (three

machine learning methods and two

non-learned approaches)

ISBI 2016 challenge dataset

The dataset contains a

representative mix of images of both

MM (n = 248) and BN (n = 1,031)

Train_Images (n = 900)

Test_Images (n = 379)

Reader study images (n = 100):

MM (n = 50) and BN (n = 50)
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TABLE 3 | Melanoma skin cancer publications using hybrid method.

Publication End-point Results Method Dataset

Jafari et al. (33) Lesion segmentation Sen: 95.2%

Spe: 99%

Acc: 98.7%

– Training

Pre-processing:

edge-preserving smoothing

Patch selection:

Lesion patch selection

Border patch selection

Normal skin patch selection

CNN: local texture analysis + general

structure analysis

– Testing

Pre-processing:

edge-preserving smoothing

Patch selection:

Global and local patch definition

CNN: local texture analysis + general

structure analysis

Post-processing : selecting largest

connected component, dilation and

hole filling

Clinical images (n = 126)

MM (n = 66) and non-MN (n = 60)

Train_Images (75%)

Test_Images (25%)

Xie et al. (34) Classification (melanoma and

nevus)

– Xanthous race dataset

Sen: 95%

Spe: 93.75%

Acc: 94.17%

– Caucasian race dataset

Sen: 83.33%

Spe: 95%

Acc: 91.11%

Pre-processing : hair removal (using

partial differential equation)

Segmentation: using SGNN

Feature extraction:

Region division on dermoscopy images

Description of color, texture and border

features

Feature normalization and

dimensionality reduction

Classifier: meta-ensemble model of

multiple neural network ensembles

Ensemble 1: single-hidden-layer BP

nets with same structures

Ensemble 2: single-hidden-layer BP

nets and fuzzy nets

Ensemble 3: double-hidden-layer BP

nets with different structures

Dermoscopy images

– Xanthous race dataset (n = 240):

MM (n = 80) and BN (n = 160)

– Caucasian race dataset (n =

360): MM (n = 120) and BN (n =

240)

Sabbaghi et al.

(35)

Classification (MM and BN) Sen: 95.5%

Spe: 94.9%

Acc: 95%

(Deep auto-encoder with BoF)

Each RGB dermoscopy image from a

training set is converted to BoF mode

Then, the generated BoF

(scale-invariant feature transform (SIFT)

+ color) are fed into the stack

auto-encoder for training

Dermoscopic images.

MM (n = 174) and BN (n = 640)

Train_Images (n = 570)

Test_Images (n = 244)

can be conducted through smartphones. Table 7 shows that a
lot of research and development on smartphone implementation
is carried out. AI technology relevant to skin cancer diagnosis
is anticipated to eventually be implemented in smartphones,
enabling the reduction of unnecessary hospital visits. Many types
of mobile health application are already available.

Types and Accuracies of Diagnostic
Applications Using a Smartphone
According to a recent review (53, 54), numerous applications
have already been released, seven of which use image analysis
algorithms. Four of the seven applications are not supported by
scientific evidence, and these four have been deleted from the app
store since the review was conducted; the other three apps are
still available. Table 7 provides a summary of the apps. SkinScan,
SkinVision, and SpotMole are currently available. SkinVision

uses machine learning algorithms and SkinScan and SpotMole
use the ABCDE rule (that is asymmetry, border irregularity,
color that is not uniform, diameter >6mm, and evolving size,
shape or color). Only one application employs amachine learning
technique. The sensitivity and specificity of these applications are
shown in the table.

Most diagnosis applications are not accurate (55).
Furthermore, only a few inform users using image analysis
and machine learning. Most apps are not supported by scientific
evidence and require further research.

Problems and Possible Solutions
Inaccuracies in medical applications can result in problems
of legal liability. In addition, the transmission of patient
information may correspond to telemedicine practices, for
which there are certain legal restrictions; these include
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TABLE 4 | Non-melanoma skin cancer publications using deep learning method.

Publication End-point Results Method Dataset

Rezvantalab et al.

(36)

Compare ability of deep learning

with the performance of highly

trained dermatologists

– Melanoma AUC

82.26% (Dermatologist)

93.80% (DenseNet 201)

94.40% (ResNet 152)

93.40% (Inception v3)

93.20% (Inception ResNet v2)

– Basal cell carcinoma AUC

88.82% (Dermatologist)

99.30% (DenseNet 201)

99.10% (ResNet 152)

98.60% (Inception v3)

98.60% (Inception ResNet v2)

Pre-trained Inception v3,

Inception ResNet v2,

ResNet 152,

DenseNet 201

n = 10,015 dermoscopic images.

Melanoma (1,113 samples)

Melanocytic nevi (6,705 samples)

BCC (514 samples)

Actinic keratosis and intraepithelial

carcinoma (327 samples)

Benign keratoses (1,099 samples)

Dermatofibroma (115 samples)

Vascular lesions (142 samples)

n_train = 70%

n_val, n_test = 15%

Zhang et al. (37) Automatically classify dermoscopic

images for clinical decision support

– Dataset A

Acc: 86.54%

– Dataset B

Acc: 85.86%

GoogLeNet Inception v3

Pre-trained on over 1.28 million images

and adjusted the final layer to input own

datasets using transfer learning

n = 1,067 dermoscopic images

Dataset A

418 (Nevus)

291 (SK)

132 (BCC)

226 (Psoriasis)

Dataset B

132 (Nevus, SK, BCC, Psoriasis)

n_train = 80%

n_val, n_test = 10%

Vander Putten

et al. (38)

Demonstrate a sensitivity and

specificity that could make neural

networks a realistic tool for

dermatologists

Classification layer

53 layers

AUC 0.92, Sen 0.98, Spe 0.95

98 layers

AUC 0.89, Sen 0.98, Spe 0.94

152 layers

AUC 0.93, Sen 0.97, Spe 0.96

1. Segmentation (deep residual

network)

2. Classification (very deep

residual network)

Two independent sources (BCC)

Dermoscopic images

1. “Skin Lesion Analysis

Toward Melanoma Detection”

competition released with ISBI

2016

2. International Skin Imaging

Collaboration (ISIC) Archive

Mandache et al.

(39)

Propose exploiting FFOCT images AUC: 95.93%

Sen: 95.2%

Spe: 96.54%

Feature extractor

– Convolutional blocks

– Dropout layer

– ReLU

Classifier

– Fully connected layer

– Dropout layer

n = 40 FFOCT images

10 (BCC)

Zhang et al. (40) Machine learning algorithms need

to be combined with sufficient

clinical expertise in order to achieve

an optimal result

– Dataset A

Acc: 87.25%

– Dataset B

Acc: 86.63%

Developed algorithm based on

pre-trained GoogLeNet Inception v3

In order to facilitate decision-making

and improve the accuracy algorithm,

this summarized

classification/diagnosis scenarios

based on domain expert knowledge

and semantically represented them in a

hierarchical structure

n = 1,067 dermoscopic images

Dataset A

418 (Nevus)

291 (SK)

132 (BCC)

226 (Psoriasis)

Dataset B

132 (Nevus, SK, BCC, Psoriasis)

n_train = 80%

n_val, n_test = 10%

Yap et al. (41) A method which combines multiple

imaging modalities together with

patient metadata

– Melanoma

AUC: 86.1%

– Cancer

AUC: 88.8%

Used pre-trained modified ResNet-50

architecture (to extract image features)

Using a late fusion technique

Image feature vectors were

concatenated together with the

metadata feature vectors and sent

through the embedding network

n = 2,917 (metadata +

macroscopic images +

dermoscopic images)

1,127 (Nevus)

727 (All cutaneous melanomas

except mucosal and ocular)

647 (BCC)

273 (SCC)

143 (BKL)

information protection regulations to prevent third parties
accessing data during the transmission process. Even if
the accuracy is improved, the advertisements embedded

in the application suggest that the technology could
be used for commercial advertisements; for example, to
attract patients.

Frontiers in Medicine | www.frontiersin.org 9 July 2020 | Volume 7 | Article 318

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chu et al. Artificial Intelligence in Cutaneous Oncology

TABLE 5 | Non-melanoma skin cancer publications using conventional machine learning method.

Publication End-point Results Method Dataset

Marvdashti et al.

(42)

Fully automated procedure to

detect BCC in ex-vivo human skin

from PS-OCT images

AUC: 97.2%

Sen: 95.4%

Spe: 95.4%

Extracting image features from the two

complementary image contrasts offered

by PS-OCT, intensity and phase

retardation (PR) using machine learning

Then, classify image features using SVM

with linear and Gaussian kernels, KNN,

and RF

n = 520 PS-OCT

260 (Healthy, 26 patients)

260 (BCC, 26 patients)

Kharazmi et al.

(43)

Detection and segmentation of

cutaneous vasculature from

dermoscopy images and extracted

vascular features are explored for

skin cancer classification

– BCC

AUC:

96.5%

– Non-BCC

AUC:

96.5%

Segment vascular structures by

decomposing the image using ICA,

k-means clustering

Then, a vessel mask is generated as a

result of global thresholding

Vascular features fed into an RF classifier

(decision tree)

n = 659 dermoscopy images

299 (BCC)

360 (Non-BCC)

Kefel et al. (44) Automatic method for detection of

pink blush

(common feature in BCC)

Manually created borders vs.

automatic created borders

Manual

AUC: 87.8%

Automatic

AUC: 87.7%

Border detection by GAC and modified

Otsu’s threshold

Classification:

logistic regression by Proc Logit of SAS

(smoothness, brightness)

n = 2,266 dermoscopic images

manually created borders

n_train = 354

n_test = 1,024

GAC

n_train = 888

n_test = 1,024

To solve this problem, a supervisory institution in which
doctors participate is required, along with a connection
to remote medical care services. The United States has
been steadily attempting to promote telemedicine in its
early stages, to address the issue of access to healthcare.
Since the establishment of the American Telemedicine
Association (ATA)—a telemedicine research institute—in
1993, legislation, including the Federal Telemedicine Act,
has been established. It has been applied to more than 50
detailed medical subjects, including heart diseases, and has been
successfully implemented in rural areas, prisons, homes, and
schools (56).

To obtain good results, it is necessary to focus on
securing high-quality data, to form a consensus between
the patient and the doctor, and to actively participate
in development.

In summary, the evidence for the diagnostic accuracy
of smartphone applications is still lacking because few
mHealth apps offer services. In addition, because the rate
of service or algorithm change is faster than the peer-
review publishing process, it is difficult to compare different
apps accurately.

Risks of Smartphone Applications
Smartphone applications pose some risk to users, especially
if the algorithm returns negative results and delays the
detection and treatment of undiagnosed skin cancer. It is
very difficult to study false-negative rates because there is
no histological evidence. Users may not be able to assess all
skin lesions, especially if they are located in areas difficult to
reach or to see. Given the generally low specificity of current
applications, there would be a few false positives. This would put
unnecessary stress on the user and result in unnecessary visits

to the dermatologist. Furthermore, through limited trust and
awareness, the user may not follow the advice provided by the
smartphone application.

Chao et al. described the ethical and privacy issues of
smartphone applications (57). Whilst applications have the
potential to improve the provisions of medical services,
there are important ethical concerns regarding patient
confidentiality, informed consent, transparency in data
ownership, and protection of data privacy. Many apps
require users to agree to their data policies; however, the
methods in which patient data are externally mined, used,
and shared are often not transparent. Therefore, if a patient’s
data are stored on a cloud server or released to a third
party for data analysis, assessing liability in the event of a
breach of personal information is a challenge. In addition,
it is unclear how the responsibilities for medical malpractice
will be determined if the patient is injured as a result of
inaccurate information.

CONCLUSION

In this review, we analyzed a total of 35 publications. Studies
on skin lesions were divided into those assessing malignant
melanomas and non-melanoma skin cancers. In addition,
studies involving clinical data and OCT images were used
alongside those involving the dermoscopic images widely
used in dermatology. Because the considered datasets
differed between the publications, it was impossible to
determine how best to perform the analysis. However, as
seen in the publication by Cui et al. deep learning methods
obtain better results than conventional machine learning
methods if the dataset is large. Also, certain publications have
reported comparable or superior results to dermatologist. In
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TABLE 6 | Non-melanoma skin cancer publications using Hybrid method.

Publication End-point Results Method Dataset

Annan et al. (45) Propose BCC detection

method

Proposed method AUC (Best model : VGG-16)

ConvNet Ori Dimension of PCA feature

100 200 500 1,000

AlexNet 0.916 0.897 0.915 0.897 0.917

GoogLeNet 0.744 0.744 0.744 0.744 0.744

VGG-16 0.935 0.858 0.913 0.928 0.931

VGG-19 0.891 0.798 0.824 0.863 0.894

1. Graph based skin surface

segmentation

2. Surface flattening

3. Deep feature extraction (pre-trained

AlexNet, GoogLeNet,

VGG-16, VGG-19)

BCC classification (PCA, SVM)

n = 5,040 OCT images 1,875

(lesion or irregular structure)

Sarkar et al. (46) Novel state of the art deep

neural network for skin

carcinoma detection

– BCC

AUC: 97.9%

Spe: 97.5%

Sen: 98.3%

Precision: 96.7%

F1 score: 97.5%

– Benign

AUC: 97.9%

Spe: 98.6%

Sen: 96.6%

Precision: 98.3%

F1 score: 97.5%

Pre-processing:

Denoising of images by Gaussian

blurring

Enhancement of images by CLAHE

algorithm and use parallel deep residual

network (RMSprop optimizer)

for classification

n = 700 dermoscopic images

300 (BCC positive)

100 (augmented set of SCC

positive)

300 (benign skin lesion)

n_train = 560

n_val = 140

Dorj et al. (47) Focus on the task of the

classifying skin cancer
Cancer AUC,

%

Sen, % Spe, %

Actinic Keratoses 92.3 98.9 91.67

Basal cell carcinoma 91.8 97.7 86.73

Squamous cell carcinoma 95.1 96.9 94.17

Melanoma 94.2 97.83 90.74

Pre-trained AlexNet is used to extract

training features and the obtained

convolutional neural network features

are classified into four groups using

error-correcting output codes (ECOC),

SVM

n= 3,753 collected from the internet

Actinic Keratoses

– 712 (Train), 185 (Test)

BCC

– 728 (Train), 193 (Test)

SCC

– 777 (Train), 200 (Test)

Melanoma

768 (Train), 190 (Test)
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TABLE 7 | Smartphone applications.

Application name Algorithm Evidence Performance References

DermaCompare

(removed)

Machine learning Not found Not found [1]

Lubax (removed) Content-based image retrieval

(compare), KNN

(classification)

One peer-reviewed supporting

publication

Sensitivity (95% CI)

90% (86–94)

Specificity (95% CI)

92% (85–95)

(48) [2]

MskinDoctor (removed) Grab cut algorithm

(segmentation), SVM

(classification)

Not found Not found [3]

MySkinMap (removed) Machine learning Not found Not found [4]

SkinScan Image processing technique,

ABCDE rule

Not found Not found [5]

SkinVision Conditional generative

adversarial neural network

(segmentation) and SVM

(classification)

Two peer-reviewed supporting

publications, evaluated in

independent publications

Sensitivity (95% CI)

iOS: 50% (22–78)

Android:

72%(58–87)

Specificity (95% CI)

iOS: 50% (22–78)

Android: 27% (1–56)

(49–52) [6]

SpotMole Image processing techniques,

ABCDE rule

Evaluated in independent

publications

Sensitivity (95% CI)

43% (28–58)

Specificity (95% CI)

80% (60–100)

(52) [7]

[1]AppAdvice. Derma Compare by Emerald Medical Applications. Available online at: https://appadvice.com/app/derma-compare/982517772.

[2]AppAdvice. Lubax - Skin Lesion ID Using Image Recognition by Lubax, Inc. Available online at: https://appadvice.com/app/lubax-skin-lesion-id-using-image-recognition/956423382.

[3]AppBrain. mSkin Doctor Mobile Application for Skin Cancer Detection by Aleem Technologies. Available online at: https://www.appbrain.com/app/mskin-doctor/com.maleemtaufiq.

mSkinDoctor.

[4]AppAdvice. MySkinMap by Xyrupt Technologies, LLC. Available online at: https://appadvice.com/app/myskinmap/1151655127.

[5]AppAdvice. SkinScan by TeleSkin ApS. Available online at: https://appadvice.com/app/skinscan/1025190936.

[6]SkinVision. Available online at: https://www.skinvision.com/.

[7]Google Play. SpotMole. Available online at: https://play.google.com/store/apps/details?id=com.spotmole&hl=nl.

particular, recent publications have reported that dermatologists
have improved diagnostic accuracy with the help of deep
learning (26, 58). Therefore, in the future, computer-aided
diagnostics in dermatology will show greater reliance on deep
learning methods.

For the convenience of users, the use of a smartphone is
necessary. However, an accuracy limitation occurs when applied
to smartphones. This problem is due to the limitations of
hardware, which used conventional machine learning techniques
such as SVM rather than deep learning. However, MobileNet has
recently made it possible to use deep learning methods in IoT
devices, including smartphones (59). This enables deep learning
to be applied to IoT devices for faster performances than large
networks, which will lead to more active research into skin lesion
detection using applications.

Application inaccuracies can lead to legal problems.
To solve this problem, doctors and patients must
participate together in the development stage, and an
institution for managing and supervising this process is
also required.
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