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The human lung is a complex tissue subdivided into several regions that differ in size,

function, and resident cell types. Despite years of intensive research, we still do not fully

understand the cross talk between these different regions and diverse cell populations in

the lung and how this is altered in the development of chronic respiratory disease. The

discovery of extracellular vesicles (EVs), small membrane vesicles released from cells

for intercellular communication, has added another layer of complexity to cellular cross

talk in the complex lung microenvironment. EVs from patients with chronic obstructive

pulmonary disease, asthma, or sarcoidosis have been shown to carry microRNAs,

proteins, and lipids that may contribute to inflammation or tissue degeneration. Here,

we summarize the contribution of these small vesicles in the interplay of several different

cell types in the lung microenvironment, with a focus on the development of chronic

respiratory diseases. Although there are already many studies demonstrating the adverse

effects of EVs in the diseased lung, we still have substantial knowledge gaps regarding

the concrete role of EV involvement in lung disease, which should be addressed in

future studies.

Keywords: extracellular vesicles, exosomes, asthma, chronic obstructive pulmonary disease, sarcoidosis,

microRNA

INTRODUCTION

Extracellular vesicles (EVs) are bilayered lipid membrane vesicles that are released by every cell
type in our body. There are several different EV-subclasses with distinct markers (1). Roughly,
EVs are subcategorized according to size and cellular origin into exosomes (40–150 nm) derived
from the budding of the early-endosomal membrane and microvesicles (>1µm) shed from the
plasma membrane (2). Of note, the common EV isolation methods such as ultracentrifugation,
size-exclusion chromatography, and density gradients separate EVs based on size and/or density,
and isolate a mix of different EV populations, thus, we will here only refer to EVs but not distinct
subclasses (3).

Most EVs have been shown to contain RNAs [including small non-coding RNA, such as
microRNA [miRNA]], DNA, lipids, and proteins (4, 5). The scientific interest in EVs exploded
when it became evident that they can functionally transfer molecules between cells (6, 7).
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Furthermore, additional interest in their role has been driven by
observations that EV uptake might be at least partly receptor-
mediated and therewith cell-specific (8). EVs can also exert their
function by sticking to the surface of recipient cells. Dendritic
cells (DCs) use EVs to present novel antigens via the major
histocompatibility complex (MHC) II on the EV surface (9).
Although there are strong hints for EVs being functionally
involved in cellular communication, it is not clear whether
this always includes cell-to-cell transfer of molecules, as the
detailed molecular processes regulating EV uptake are not fully
understood (10).

We here aim to shed light on the functional role of
EV-mediated communication between distinct cell types in a
complex tissue—the human lung. As the lung is a barrier organ
to the outside, it requires constant cross talk between both
structural and immune cells to restore homeostasis and protect
the body from external pathogens. Hereto, we will discuss current
evidence on distinct EV-mediated pulmonary communication,
while also discussing aberrations thereof in chronic lung diseases,
such as asthma, chronic obstructive pulmonary disease (COPD),
and sarcoidosis.

THE LUNG MICROENVIRONMENT IN
HOMEOSTASIS AND DISEASE

The human lung harbors a plethora of different structural cells
(11) that, in order to maintain tissue homeostasis and defense
against external pathogens, are in constant cross talk with each
other and with immune cells. There is substantial knowledge
of the nature of receptor-ligand interactions, different growth
factors, and cytokines; however, these do not fully explain all
known molecular events. Thus, EVs might represent a missing
link in cellular communication in the lung microenvironment,
and understanding their role more completely could help explain
mechanisms driving chronic lung disease.

Asthma and COPD are characterized by airway obstruction
and chronic airway inflammation. In asthma, depending on the
subtype, the inflammation can be allergic, eosinophilic, and Th2-
prone, or non-allergic neutrophilic and Th17-based (12). COPD,
on the other hand, is characterized by a complex inflammatory
environment, coordinated by aging and dysregulated immune
system (13, 14), driven by responses to inhaled pollutants,
predominantly tobacco smoke. Furthermore, COPD is a
heterogeneous condition with differing contributions of small
airways disease and emphysematous changes in individuals (15,
16). Progression of these pathologies leads to lung function
deterioration over time and systemic manifestations associated
with significant multi-morbidity (17).

Sarcoidosis is a systemic inflammatory disease that can display
multiple organ system manifestations, but it predominantly
affects the lung with non-necrotizing granulomas that contain
epithelial cells, macrophages, and CD4+ T cells of mainly Th1,
and Th17 types (18). The etiology is still unclear, but the
disease has both genetic and environmental associations. More
than half of the patients show respiratory symptoms, including
dyspnea, cough, and chest pain. Spontaneous remission occurs

in two-thirds of patients, but some develop chronic disease that
may result in fibrosis and respiratory failure.

EXTRACELLULAR VESICLES FROM
UNKNOWN CELLULAR ORIGIN

Several studies report changes in the molecular content of EVs
isolated from bronchoalveolar lavage fluid (BALF) in asthma
(19–21), COPD (22), and sarcoidosis (23–26).

Thereby, all three diseases have been associated with an
aberrant miRNA content of BALF EVs compared with healthy
controls (20, 22, 26). However, these miRNAs have already been
reported to be dysregulated in other diseases, meaning that they
are unlikely suitable as a biomarker, unless combined with other
markers. EVs from both patients with asthma and sarcoidosis
(19, 23) contain enzymes for the biogenesis of pro-inflammatory
leukotrienes (LTs) and have pro-inflammatory effects when
applied to healthy cells. BALF EVs from patients with idiopathic
pulmonary fibrosis, a progressive fibrotic lung disease, have
been shown to enhance myofibroblast differentiation via
Wingless/Integrase I (WNT) signaling (27).

One could thus speculate that an altered molecular content
of EVs might be functionally involved in disease pathogenesis.
However, as those studies analyze the EVs of patients with
established disease, the changes in EV content could also simply
reflect a different cellular composition and function in a diseased
lung. Additionally, BALF represents a mixture of EVs from
several different cell types, hampering conclusions about cross
talk of single cells in the lung. Recently, it has been shown
that EVs can travel through hydrogels composed of extracellular
matrix (28), indicating that they will be able to move among cells
in the lung mesenchyme as well.

In the following review, we will discuss in vitro/ex vivo studies
that specifically studied the EV-mediated interaction of resident
lung cells.

STRUCTURAL CELLS

Airway Epithelial Cells
The airway epithelium plays a pivotal role in the lung, most likely
due to its strategic position at the interface between the body
and the outside world. Next to forming a tight physical barrier,
it has a strong influence on regulating underlying immunity
and is important for host defense against pathogens (29). This
function is achieved by the release of antimicrobial peptides,
cytokines, chemokines, and alarmins. In particular, alarmins,
such as interleukin (IL) 33, thymic stromal lymphopoietin, and
IL-25, have gained a lot of scientific attention, as they activate DC
and induce a subsequent Th2 polarization of naïve T cells that
seems pivotal in asthma development (30, 31). On the other hand,
the airway epithelium communicates to structural cells, such as
fibroblasts (32, 33) and smooth muscle cells (34) via secretion
of cytokines and growth factors. It seems logical, yet much less
well-understood, that the epithelium also uses EVs as tools to
communicate within the lung.
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As can be seen in the interaction matrix in Table 1, EVs from
the airway epithelium have been reported to have functional
effects on other epithelial cells, fibroblasts, and also macrophages,
DCs, and neutrophils. EVs from a human bronchial epithelial
cell line (BEAS-2B) treated with IL-13 had pro-inflammatory
effects in mice and increased macrophage chemotaxis (35).
Recently, it has been shown that primary human bronchial
epithelial cells cultured at the air–liquid interface release EVs to
the apical (air-exposed) and basal (toward the culture medium)
side (36). Upon IL-13 stimulation, mimicking the development
of an asthmatic epithelium, these EVs contain lower levels of
miRNAs miR-92b, miR-210, and miR-34a. The change in miRNA
levels was predicted to influence DC and to promote Th2
differentiation (Table 1). Of note, treating bronchial epithelial
cells with cigarette smoke extract (CSE) to model the early
development of COPD increased the levels of miR-210 in EVs
(37). miR-210 was able to control autophagy processes and
induced myofibroblast differentiation. Thus, the EV-mediated
dysregulation of myofibroblast development could be involved in
remodeling in COPD.

Airway epithelial cells from patients with asthma release
more tenascin-C (TN-C)-carrying EVs upon rhinovirus infection
than healthy ones (38). These EVs induced pro-inflammatory
responses in macrophages and a bronchial epithelial cell line.
However, the latter could not be reduced by decreasing the levels
of TN-C on the EVs, suggesting that it is not the only important
player within the EVs. Human tracheobronchial epithelial cells
cultured in vitro secreted EVs with membrane-tethered mucins,
including MUC1, MUC4, and MUC16 (39). These were found to
directly neutralize influenza, contributing to the innate defense
of the airway epithelium. Furthermore, EV-associated cleaved
Cellular Communication Network Factor 1 (CCN1) was able
to activate the secretion of IL-8 and Matrix metalloprotease 1
(MMP-1) from epithelial cells. CSE exposure of epithelial cells
induced the production of EVs containing CCN1 in vitro (40).
Dysregulation in the production of MMP has been associated
with lung matrix destruction and small airways disease in COPD
(41). Thus, the delivery of MMPs through EVs may be involved
in the development of emphysema.

Airway epithelial cells from cystic fibrosis patients secreted
more EVs than cells from healthy controls when cultured in
air–liquid interface (42). They also had a different protein cargo
and increased chemotaxis of neutrophils to the airways via S100
A12 (42). Of note, as cystic fibrosis is a monogenetic disease
characterized by mutations in the Cystic Fibrosis Transmembrane
Conductance Regulator (CFTR), one could speculate that host
genetics plays a role in the secretion and content of EVs.
However, CFTR mutations largely impact the function and
differentiation of the epithelium due to the diminished secretion
of Cl− anions and formation of sticky mucus on the surface (43).
This, in turn, could affect EV secretion. Thus, further studies are
needed to pinpoint the effect of genetics vs. the environment.

In order to determine the relative contributions of epithelial
EVs in the airways, Pua et al. (44) analyzed airway lining fluid
(bronchial washes) of mice and showed by flow cytometry that
around 80% of EVs were derived from epithelial cells and had a
similar miRNA signature. After allergen-challenge, the presence

of 12 immune-related miRNAs (i.e., miR-142a and miR-223)
increased 2-fold compared with healthy control mice. However,
this does not necessarily imply that the airway epithelium
produces the most EVs in the lung microenvironment, as the
majority of EVs from other cell types might be held back by
the physical epithelial barrier and, thus, do not reach the airway
lining fluid.

Fibroblasts, Mesenchymal Stem/Stromal
Cells, and Smooth Muscle Cells
Fibroblasts and smooth muscle cells play an important role
in lung homeostasis and disease. They regulate epithelial cell
functions through the secretion of growth factors, cytokines,
chemokines, but also EVs. In turn, lung diseases such as COPD,
idiopathic pulmonary fibrosis, and asthma are characterized
by different extents of hyperplasia of both cell types, called
airway remodeling. EVs from bronchial fibroblasts have been
shown to modulate epithelial cell proliferation by TGF-β2-
dependent mechanisms (45). Furthermore, activated human
fibroblasts also inhibit the myofibroblast differentiation of
other fibroblasts via EV-enclosed Prostaglandin E2 (PGE2)
(46). Also, whole mitochondria can be transferred between
cells via EVs (47–49). In response to intracellular oxidative
stress, mesenchymal stromal/stem cells shuttle depolarized
mitochondria by mitophagy within EVs to be engulfed by
macrophages. This contributes to the alteration in cellular
bioenergetics and function in the recipient cells but can also
constitute danger signals (47–49). To our knowledge, there is no
study investigating the EV secretion of airway smooth muscle
cells yet, but according to Table 1, this cell type seems to be
influenced by EVs derived from immune cells.

Immune Cells
As mentioned earlier, the lung forms a barrier to the outside
world. To avoid invasion of pathogens, innate immune cells such
as macrophages and DCs are continuously patrolling our airways
and can call in eosinophils and neutrophils or adaptive immune
cells if needed (11).

Macrophages
There is increasing appreciation for macrophage plasticity
and dichotomy: alveolar macrophages (AMs) suppress,
whereas recruited monocyte-derived macrophages play largely
pathogenic roles in asthma (50, 51). Two studies have found that
EVs derived from AMs contain suppressor of cytokine signaling
(SOCS)-1 and SOCS-3 proteins (52, 53). Treatment of epithelial
cells with these EVs decreased cytokine signaling through
JAK–STAT activation. Of note, a decreased concentration of
SOCS proteins has been found in the BAL fluid of smokers
(54). Dysregulation of the delivery of SOCS proteins through EV
could, therefore, be an important mechanism in the derangement
of cytokine signaling in chronic airway inflammation. AMs are
directly exposed to environmental antigens and particulate
matter (PM). Exposure to PM induces the release of EVs in
a dose-dependent manner, and the PM-induced EVs exert a
pro-inflammatory phenotype on pulmonary epithelial cells,
resulting in the release of the pro-inflammatory cytokines
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TABLE 1 | EV Interaction matrix in the lung.

EV Recipient

Airway

epithelium

Smooth muscle Fibroblasts Macrophages Dendritic cells Eosinophils Neutrophils T-cells B-cells Unknown

E
V
D
o
n
o
rs

Airway

epithelium

- Pro-inflammatory

(TN-C)38

–Innate defense

against influenza

(MUC1,4,16)39

–IL-8 and MMP1

secretion ↑

(cleaved CCN1)40

Myofibroblast

differentiation ↑

(miR-210↑)37

Chemotaxis ↑35

pro-inflammatory

(TN-C)38

Th2 polarization

(miRNA-92b,

miR-210 and

miR-34a↓)36

Chemotaxis ↑

(S100 A12)42

Smooth

muscle

Fibroblasts Proliferation ↑

(TGF-β2↓)45
Inhibition of

myofibroblast

differentiation

(PGE2 )
46

Macrophages- Dampening of

inflammation

(SOCS1,

SOCS3)52,53

–proinflammatory

IL-6 and TNF-α↑55

–ICAM1

expression and

cytokine secretion

↑ (TNFα)61

Enzymes for

biosynthesis of

leukotrienes64

-Differentiation of

monocytes into

macrophages↑(miR-

223)57

–after bacterial

infection: TNF-α

secretion ↑

(bacterial

PAMPs)60

- Migration

(chemotactic

eicosanoids)64

–TNF-α secretion

↑ (bacterial

PAMPs)60

Ag presentation

via MHCII and Th2

polarization58

Gelatinolytic and

collagenolytic

activity

(MMP-14)56

Dendritic

cells

Enzymes for

biosynthesis of

leukotrienes64

Migration

(chemotactic

eicosanoids)64

- Th2 polarization

(OX40L↑)63

–Ag- presentation

and Th2

polarization58

Eosinophils Apoptosis

↑(mechanism

unknown)65

Proliferation

↑(mechanism

unknown)65

Autoregulation

(nitric oxide,

reactive oxygen

species)66

Chemotaxis66

Neutrophils Destruction of

collagen fibers

(emphysema)

(NE)67

T-cells

B-cells Ag presentation

via MHCII and Th2

polarization70

Cellular interaction in the lung via EVs from donor cells (rows) to recipient cells (columns) and responsible molecule in brackets (if known); Reference in superscript, italic means murine study; blue structural cell types,

green: immune cell types.
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FIGURE 1 | EV-mediated cross talk in the lung microenvironment. The lung microenvironment is characterized by a complex cross talk of several different cell types.

Secreted extracellular vesicles (EV) from these cells have been shown to play critical roles in the tissue homeostasis or the development of chronic respiratory disease

due to the transfer of molecules to other cell types. EVs are displayed in the respective color of the parent cell, and transferred molecules are indicated next to the

arrows.

IL-6 and tumor necrosis factor α (TNF-α) (55). EVs derived
from CSE-exposed macrophages have been shown to contain
MMP-14 with gelatinolytic and collagenolytic activity and
might, therefore, be involved in emphysema development in
COPD (56).

EVs produced from a differentiated monocyte cell line in vitro
induced the differentiation of naive monocytes into macrophages
that was dependent on miR-223 (57). The accumulation of
dysfunctional macrophages is characteristic of the COPD
lung, and EV-miR-223 may provide an amplification loop
for monocyte differentiation (Figure 1). Macrophage and DC-
derived EVs also contain MHC class II and co-stimulatory
molecules (58), providing a route for antigen presentation and
immune activation in the lung. A key pathway in the production
of inflammatory cytokines by macrophages is through Toll-like
receptor stimulation by pathogen-associated molecular patterns
(PAMPs) (59). A study foundmacrophages infected with bacteria
to produce EVs containing bacterial cell wall components.

These EVs were shown to stimulate the release of TNF-α by
macrophages and neutrophils in a mouse model (60). Other
studies have shown the direct transport of TNF-α in EVs from
macrophages and epithelial cells upon LPS stimulation (61).

Dendritic Cells

Most knowledge on lung-resident DCs is based on the
development of asthma, where they play a pivotal role in
establishing an allergen-specific Th2 response in the airways
after stimulation with epithelial alarmins (62). A recent study
showed that DCs stimulated in vitro with the epithelial alarmin
thymic stromal lymphopoietin secrete EVs expressing OX40L on
their surface, via which they stimulate the proliferation of CD4T
cells and Th2 differentiation (63). Furthermore, EVs secreted
by monocyte-derived DCs purified from human airways express
HLA-DR,MHC-Imolecules, CD63, CD86, and CD54, suggesting
their potential to cross-present antigen-loaded MHC molecules
mediating co-stimulation (21). DC-derived EVs also contribute
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enzymes for biosynthesis of LTs, key pro-inflammatorymediators
important in the pathogenesis of asthma, to smooth muscle
cells. Additionally, these EVs produced chemotactic eicosanoids
and induced granulocyte migration (64). Of note, LTs and their
enzymes have also been found in BALF EVs of patients with
asthma (19) and sarcoidosis (25). The importance of LTs in
asthma is established, but the role in sarcoidosis is unknown and
needs further investigation.

Eosinophils
Eosinophils infiltrate into the lung during the development
of asthma and influence several lung-resident cells via EVs
(Table 1, Figure 1). Accordingly, eosinophil EVs of patients with
asthma induce epithelial cell apoptosis and smooth muscle cell
proliferation, both important aspects of asthma pathogenesis
(65). Eosinophil-derived EVs also autoregulate themselves in
asthma by producing nitric oxide and reactive oxygen species
(66) (Figure 1). Moreover, these EVs can act as a chemotactic
factor for eosinophils due to expression of adhesion molecules,
such as ICAM-1 and integrin α2 (66).

Neutrophils
Neutrophilic infiltration into the lung is a major characteristic
of inflammation caused by cigarette smoking and COPD but is
also sometimes observed in non-allergic asthma. A recent study
has found neutrophil elastase (NE) in EVs from activated human
neutrophils, and those were shown to degrade collagen fibers
and induce emphysema development in mice (67). This could
be a crucial mechanism in the development of emphysema and
should, thus, be further investigated.

Myeloid-Regulatory Cells and T and B cells
EV-enclosed mitochondria from regulatory myeloid-lineage cells
are internalized by CD4+ T lymphocytes (49). Furthermore,
functional mitochondria within the EVs produce reactive oxygen
species, and the transferred mitochondrial components merge
with the mitochondrial network of the recipient T cells in
asthmatics (49). These regulatory myeloid cells have been shown
to modulate T-cell proliferation in persons with asthma (68), and
hence, the transfer of mitochondria within EVs may facilitate
antigen-presentation and T-cell activation.

T cells produce Th2 cytokines when stimulated with B-cell
derived EVs loaded with peptide-loaded MHC-II isolated from
patients with birch pollen allergy (69). Similarly, in allergic skin
diseases, EVs transfer antigens activating immune responses in
B or T cells (69, 70). To our knowledge, there is no study
investigating the functional effect of T-cell-derived EVs on lung
cells specifically, but the regulations of the immune response
might be similar to other tissues.

CONCLUDING REMARKS

Although we have some knowledge on EVs in the lung
microenvironment (Figure 1, Table 1), we still do not completely
understand their role in the development of respiratory disease.

Most of the studies discussed here focus on EVs from isolated

cell cultures or a mixture of EVs isolated from human body
fluids, although there is still little knowledge on EV-mediated
communication in complex cellular interactions in tissues in
vivo. Furthermore, it is not clear if alterations in EV content
are a cause or a consequence of disease. Table 1 represents an
interaction matrix of EVs between lung cells, and it clearly
shows that the most studied EV-mediated interactions are the
cross talk of macrophages with the airway epithelium and vice
versa. Generally, it seems like there is EV-mediated cross talk
between structural and innate immune cells, but there still are a
lot of missing links that are yet to be established. For example,
although there are several reports showing that EVs play a
role in the interaction of antigen-presenting cells with adaptive
immune cells, there has been no study on the effect of EVs
derived from activated T or B cells on (structural) lung cells. As
many lung diseases are characterized by chronic inflammation,
this would certainly be of importance in the future. It also
becomes evident that we often do not know the EV donor and/or
recipient cell, as EVs have been isolated from body fluids such
as BALF, and identifying EV internalizing target cells remains
difficult, especially in vivo. Knowledge about, that is, surface
receptors involved in the (supposedly) specific targeting process
could lead to them being used in future therapy. Thus, future
studies using in vivo models and three-dimensional cultures are
urgently needed to further decipher the reciprocal cross talk.
Furthermore, most studies either investigate the EV-associated
protein or non-coding RNA content but seldom both, even if
the molecules most likely act together. Comprehensive profiling
of distinct EV populations, including RNA-seq, proteomics, and
lipidomics of the same EVs, will help to gain further insight
in their role in the development of lung diseases and will
identify their potential as biomarker or even as therapy for
respiratory disease.
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