
PERSPECTIVE
published: 12 August 2020

doi: 10.3389/fmed.2020.00434

Frontiers in Medicine | www.frontiersin.org 1 August 2020 | Volume 7 | Article 434

Edited by:

Christian Dejaco,

Medical University of Graz, Austria

Reviewed by:

Garifallia Sakellariou,

University of Pavia, Italy

Philipp Sewerin,

Heinrich Heine University of

Düsseldorf, Germany

*Correspondence:

Ai Lyn Tan

a.l.tan@leeds.ac.uk

Specialty section:

This article was submitted to

Rheumatology,

a section of the journal

Frontiers in Medicine

Received: 22 May 2020

Accepted: 06 July 2020

Published: 12 August 2020

Citation:

Farrow M, Biglands J, Alfuraih AM,

Wakefield RJ and Tan AL (2020) Novel

Muscle Imaging in Inflammatory

Rheumatic Diseases—A Focus on

Ultrasound Shear Wave Elastography

and Quantitative MRI.

Front. Med. 7:434.

doi: 10.3389/fmed.2020.00434

Novel Muscle Imaging in
Inflammatory Rheumatic
Diseases—A Focus on Ultrasound
Shear Wave Elastography and
Quantitative MRI
Matthew Farrow 1,2,3, John Biglands 2,4, Abdulrahman M. Alfuraih 5, Richard J. Wakefield 1,2

and Ai Lyn Tan 1,2*

1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds,

United Kingdom, 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom,
3 School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom, 4Medical Physics and

Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 5 Radiology and Medical Imaging Department,

Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

In recent years, imaging has played an increasing role in the clinical management

of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy

and monitoring disease progression. These roles have been underpinned by research

which has enhanced our understanding of disease pathogenesis and pathophysiology

of rheumatology conditions, in addition to their key role in outcome measurement

in clinical trials. However, compared to joints, imaging research of muscles is less

established, despite the fact that muscle symptoms are very common and debilitating in

many rheumatic diseases. Recently, it has been shown that even though patients with

rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many

remain affected by lingering constitutional systemic symptoms like fatigue, tiredness,

weakness and myalgia, which may be attributed to changes in the muscles. Recent

improvements in imaging technology, coupled with an increasing clinical interest, has

started to ignite new interest in the area. This perspective discusses the rationale

for using imaging, particularly ultrasound and MRI, for investigating muscle pathology

involved in common inflammatory rheumatic diseases. The muscles associated with

rheumatic diseases can be affected in many ways, including myositis—an inflammatory

muscle condition, and myopathy secondary to medications, such as glucocorticoids. In

addition to non-invasive visual assessment of muscles in these conditions, novel imaging

techniques like shear wave elastography and quantitative MRI can provide further useful

information regarding the physiological and biomechanical status of the muscle.
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INTRODUCTION

Advances in diagnostic imaging in rheumatology, particularly
in the area of arthritis, have contributed to significant clinical
benefits to patients and improved knowledge in disease
pathogenesis. Despite the usefulness of ultrasound and magnetic
resonance imaging (MRI) in diagnosing arthritis and monitoring
disease progression in joints and related joint structures, the
role of muscle imaging has conventionally been centered around
the diagnosis of inflammatory muscle diseases. However, with
an increasing appreciation of the impact and prevalence of
muscular symptoms in rheumatic diseases (1), and as a result of
technological developments, recent attention has been directed
toward the utility of imaging for the assessment of muscle
pathology in rheumatic diseases.

The impact of muscle weakness is significant for the
health of patients and is associated with disease activity (2).
There is an unmet need for further understanding of more
generalized muscle pathology observed in rheumatic diseases.
This is required to develop effective future strategies to target
this under-researched area. In addition to ultrasound and
MRI, positron emission tomography combined with computed
tomography (PET-CT) is increasingly used in clinical practice
to aid the diagnosis of myositis, with the added advantage
that this technique can screen for malignancy and evaluate
related pulmonary pathologies (3, 4). This perspective will discuss
recent novel imaging developments in ultrasound and MRI for
the assessment of muscles in common inflammatory rheumatic
diseases, with a particular focus on research applicability of
shear wave elastography and quantitative MRI in improving
the knowledge of muscle pathology in rheumatic diseases. The
potential application of these novel techniques will be explored
in the context of three common inflammatory rheumatology
conditions where the muscle is of interest. The first is in myositis,
a primary inflammatory condition of the muscle; the second is
in glucocorticoid-induced myopathy, where patients with giant
cell arteritis and polymyalgia rheumatica are at risk from the
complications of prolonged high dose steroid therapy; and the
third is rheumatoid arthritis where patients often complain of
muscle related symptoms in addition to their joints.

MUSCLE IMAGING TECHNIQUES

Ultrasound
Due to recent innovations, ultrasonography has evolved from
demonstrating mainly anatomical details to elucidating the
physical properties of tissues. Although B-mode ultrasonography
has been shown to be reliable in assessing muscle mass and
quality (5–7), and muscle fibers during dynamic scanning (8, 9),
recent interest has been directed to a new type of ultrasound
called elastography (10). This technique provides a measure
of the stiffness of tissue (11). The first generation machines,
developed in the 1990’s utilized “strain elastography,” where a
mechanical ultrasound pulse was generated by repeated probe
compressions on the skin by the operator. The returned waves
could be used to qualitatively estimate stiffness by comparing
the pre- and post-compression tissue deformations. The images

were represented as a color map, superimposed on a B-mode
image (blue—hard, and red—soft). Shear wave elastography
(SWE) has more recently been introduced to offer quantitative
measurements by monitoring the velocity of the shear waves
generated by strong acoustic pulses. The physics behind shear
waves is complex and beyond the scope of this article, but
essentially, the velocity of the shear wave increases proportionally
with Young’s elasticity modulus. SWE is less operator dependent
than strain elastography, and offers more objective outcomes.
Hence, this perspective will focus on the potential uses of SWE,
which has more commonly been established for examining
breast, liver, thyroid and prostate tissues (12–14).

In the musculoskeletal setting, SWE has largely been used
to study tendinopathies (15, 16). More recently however, SWE
has been extended to examining muscles, and has been shown
to be a reliable tool to measure muscle stiffness (17–19). The
technique has been used in the sports and exercise scenarios,
to assess muscle injuries and the effect of exercise interventions
on muscles (20, 21). Clinically, SWE of muscles, such as of the
rotator cuff muscles that are commonly susceptible to tears,
has been shown to inform appropriate management strategies
(22). In the hospital setting, it has shown good reliability for
monitoring the muscles of critically ill patients (23). Other
clinical uses of SWE are in the assessment of the muscles
in neuromuscular conditions including Parkinson’s disease,
Duchene muscular dystrophy, and in post-stroke spasticity (24–
26). Insight into the potential of using SWE in assessing muscle
elasticity has prompted recommendations into standardizing the
technique for optimal data acquisition (27–29). It is known that
muscles change with age, which is apparent in the structure and
the function of the muscles (30, 31). Although some studies using
SWE have shown that there is a decline in muscle stiffness with
age (32–35), this observation was not corroborated by others (36–
38). These studies looked at different muscles, which may have
influenced the final outcomes, as it has been found that SWE
findings may be muscle-dependent (39).

MRI
MRI offers the ability to examine deeper tissue structures
compared to ultrasound. Although MRI can also measure the
elasticity of muscles using magnetic resonance elastography (40–
44), the cost of the technique is more prohibitive when compared
to SWE; thus far, the utility of MRI in assessing muscle elasticity
is still debatable (45).

Due to its excellent spatial and contrast resolution, MRI can
evaluate a wide array of muscle pathologies including muscle
injury (46) and soft tissue masses (47). MRI is beginning to have
a role in the diagnosis and monitoring of muscle disease and
in guiding muscle biopsy (48, 49). Whole-body MRI can help
identify muscular involvement over large anatomical regions (50,
51). Aside from conventional MRI there is also an important role
for quantitative MRI (qMRI) measurements, such as fat fraction,
T2 measurement and diffusion tensor imaging (DTI), in muscle
imaging. Quantitative MRI can provide information about tissue
microstructure that may not be apparent in conventional MRI.
It provides objective measurements, as opposed to a qualitative
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FIGURE 1 | Conventional MRI of the right thigh in (A) T2-STIR and (B) T1-weighted images of a 60-years-old male with active myositis, compared to (C) T2-STIR and

(D) T1-weighted images of a 45-years-old healthy female.

assessment and has been shown to be reliable and reproducible
in the muscle (52, 53).

Fat fraction measurements exploit the differences in the
resonant frequencies between the MR signals of fat and water in
order to generate a measurement of the proportion of fat in each
voxel in the image (54). Thesemeasurements provide an objective
assessment of fatty infiltration in muscle, which is a common
pathology in muscle disease.

Measurements of the T2-relxation time also have applications
in the muscle. T2, or the spin-spin relaxation time, is one of
the fundamental contrast mechanisms in MRI. By measuring the
signal at multiple echo times, measurements of T2 can be made
within the muscle. Raised T2 is often interpreted as increased
fluid due to edema or inflammation. However, care must be taken
in the interpretation of T2. Fat can also increase T2 values and
fat suppression is challenging in T2 measurements (55, 56), with
some papers arguing that T2 may actually decrease with disease
activity (57).

Diffusion MRI is able to measure water diffusion in the
muscle. Diffusion measurements in inflamed muscle may be
greater due to increased fluid in the extracellular space. Diffusion
tensor imaging (DTI) allows the anisotropy of the diffusion to
be assessed. As muscle is made up of long fibers, or fibrils,
muscle diffusion is highly anisotropic and ordered. As muscle
diameters are relatively wide, long diffusion times are necessary
if the measurements are to be sensitive to restricted diffusion
across the fiber. Fiber disorganization and deterioration through
trauma or disease can be detected by DTI measurements, such

as fractional anisotropy (FA) (26). However, the interpretation
of what a change in diffusion measurement means is difficult.
Fiber disorder, fiber density, fiber diameter (58, 59) and changes
in extracellular water (60) can all affect diffusion parameters.
There is on-going research into the use of modeling to analyse
DTI acquisitions at multiple diffusion times to separate out
different properties of the muscle microstructure from diffusion
measurements (61–63).

In the clinical setting, qMRI of various tissues including
muscles shows potential as a promising biomarker for assessing
and monitoring a range of neuromuscular and musculoskeletal
diseases (57, 64–68). In general, these patients show higher
muscle fat fractions, smaller muscle volume, and increased T2
measures, which also correlate with muscle function (69).

MUSCLE IMAGING IN INFLAMMATORY
RHEUMATIC DISEASES

Myositis
The idiopathic inflammatory myopathies (IIM) are
the commonest inflammatory muscle diseases seen by
rheumatologists. They are a heterogeneous group of
autoimmune inflammatory muscle conditions comprising
mainly of dermatomyositis and polymyositis, which present
with muscle weakness, raised muscle enzymes, abnormal
electromyography (EMG), abnormal muscle biopsies and
myositis-related antibodies (70).
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FIGURE 2 | Quantitative MRI fat fraction measurement in the quadriceps and hamstrings, respectively in the thigh in (A) 45-years-old healthy female with a fat fraction

of 1.9 and 2.7%, respectively, (B) 83-years-old healthy male presenting with fatty infiltration associated with healthy aging with a fat fraction of 9.6 and 13.4%,

respectively, (C) 60-years-old male with active myositis presenting with fatty infiltration with a fat fraction of 19.6 and 28.5%, respectively.

MRI has become an integral imaging tool in the clinical
diagnosis and monitoring of disease activity of myositis due to
its ability to non-invasively detect abnormal muscles and identify
the most suitable site for muscle biopsies (Figure 1) (45, 71–
74). Reassuringly, MRI findings in myositis correlate well with
biopsy results (75), and whole body MRI can be more sensitive
than muscle enzymes and EMG in diagnosing myositis (76).
Nevertheless, the image interpretation can be subjective (77),
there is no validated MRI protocol for assessing myositis (45)
and MRI findings in isolation may not be specific enough for
diagnostic purposes (78).

Quantitative MRI, which allows further characterization of
the muscle structure at a microscopic level, can provide a more
precise description of muscle pathology (55, 73, 79). It could
potentially be used in longitudinal monitoring of disease (80).
It has been demonstrated that T2 and fat fraction increase
in myositis patients (Figure 2), demonstrating that MRI is
sensitive enough to quantitatively detect muscle edema (55,
81) and myosteatosis (82). These measures could be used to
more accurately guide muscle biopsies. This may be of greater
importance in patients with low grade inflammation, where
there are subtle muscle changes that might go undetected by
conventional MRI. DTI measurements are sensitive to subtle
changes in the muscle, and have been used to detect differences
in muscle due to diseases including myositis (83). However,
muscle DTI is far from standardized. The optimal methods and
parameters for performing diffusion in muscle have not been
established and larger studies are necessary to establish whether
diffusion will be a useful tool for monitoring muscle disease in
clinical practice.

One of the drawbacks of MRI as an imaging tool is its cost.
Often, this is the deciding factor in choosing ultrasonography
over MRI as a more feasible modality in assessing articular
joints. But does this cost consideration translate to examining
muscles or in patients with myositis? In addition to the more
favorable cost compared to MRI, ultrasound also has a greater
acceptability by patients. Although there is greater operator

dependence for ultrasound, there is the possibility to apply the
ultrasound information directly in the clinical setting. There is
a suggestion that ultrasound elastography of muscles may be
able to aid diagnosis of myositis and its follow-up (84), but the
impression is that ultrasound is unlikely to replace MRI in the
clinical setting in myositis just yet, because the current evidence
is not strong, due to small sample sized studies that results in
inconclusive findings (85).

Nevertheless, the current evidence suggests that SWE shows
less muscle stiffness in myositis compared to healthy individuals
(Figure 3), and can distinguish myositis from normal muscles
(86). The loss of muscle stiffness in myositis patients was also
observed using magnetic resonance elastography (87). SWE
measurements also correlate with muscle strength and MRI
grades of edema and atrophy (86, 88). All of these findings appear
to only manifest when the muscles are under no passive or
active loading.

IIM can be a very disabling condition. The potential to use
promising non-invasive diagnostic and monitoring tools like
qMRI and SWE could facilitate prompt diagnosis and treatment
for patients. In the diagnosis of giant cell arteritis (GCA)
(89), ultrasound can now reliably replace invasive temporal
artery biopsies in GCA diagnosis. Similarly, the continuing
development of qMRI and SWE of muscle could 1 day replace
muscle biopsy in the diagnosis of IIM.

Steroid Myopathy
Glucocorticoids are powerful anti-inflammatory agents and
have a variety of uses in rheumatology, most commonly as
bridging therapy before other longer term treatments are started.
Polymyalgia rheumatic (PMR) and the related GCA are two
examples where high doses of steroids are prescribed. As
a result, many often develop a proximal myopathy, without
typical inflammatory laboratory markers, such as muscle enzyme
abnormalities or myositis-related antibodies. These patients are
often disabled by muscle weakness from the disease process.
It would, therefore, be reasonable to hypothesize that, despite
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FIGURE 3 | Shear wave elastography in healthy muscles and myositis. (A) Shows a normal muscle stiffness (8.7 kPa) in a 50-year-old healthy female person. (B)

Shows a low muscle stiffness (5.5 kPa) in a 49-year-old male with active polymyositis.

not demonstrating a classical myositic picture with abnormal
blood markers, muscles in PMR and GCA are likely to
be abnormal.

There may be a fine line between the effects of inflammation
from disease (PMR and GCA) and the catabolic effects of therapy
(steroids) on muscle in patients. Amongst the many adverse
effects of glucocorticoids, they trigger muscle atrophy, with a
particular affinity for the atrophy of fast-twitch or type II muscle
fibers (90, 91). This will often present as myopathy or muscle
weakness, but due to the lack of a standardized definition of
glucocorticoid-induced myopathy, reporting of myopathy due to
therapy in PMR and GCA can prove inconsistent (92). Therefore,
themanagement of steroid-inducedmyopathy can be challenging
due to the difficulty in identifying myopathy before any clinical
symptoms with the current means of investigation (93).

Can imaging help in characterizing the myopathy in this
group of patients? Very little research in this area has been

performed. Most studies have been focused on the diagnosis of
PMR and GCA and responses to steroid therapy, based mainly
on joint findings (94–97). Certainly, studies have demonstrated
that quantitative ultrasound was able to show muscle changes
associated to chronic use of steroids, but was unable to tell if
the observed changes could be due to other causes including
cachexia or sarcopenia (98, 99). A recent study showed that SWE
detected a higher reduction in muscle stiffness over time in GCA
patients on long term glucocorticoid who were also weaker (100).
However, as patients with GCA (and PMR) tend to be older, and
therefore more likely to be sarcopenic, these observed muscle
changes have to be interpreted cautiously. If future research
shows that SWE changes could potentially be evident before
patients present with signs of weakness, then we may have an
imaging tool that can direct appropriate management of steroid-
induced myopathy, including preventative strategies to preserve
muscle function.
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The fact that type II muscle fibers tend to be affected by
steroid therapy suggests that techniques likeMRI diffusion tensor
imaging that are sensitive to changes in muscle microstructure
could be potentially useful in understanding the pathogenesis of
steroid-induced myopathy and its diagnosis (80, 101). Due to
the inflammatory nature of PMR and GCA, T2 MRI could be
able to identify the edema within the muscle itself, which could
be contributing to pain and fatigue. The muscle atrophy due to
the catabolic effects of glucocorticoids could be quantitatively
measured to monitor muscle change over time. The challenge
will be interpreting the findings and to tease out if the observed
imaging changes are due to therapy (glucocorticoids), or to
the inflammatory disease process. Previously, when patients
with RA were treated with long term steroids, it was possible
to tell when they had weaker strength compared to patients
who did not receive steroid therapy (102, 103). This would
have provided a useful cohort to compare imaging findings
of the muscle, and changes could be attributed to the steroid
therapy independent of the disease process. However, due to the
complexities of modern therapy and the ethical limitations, such
direct comparison studiesmay not be feasible. Another iatrogenic
cause of myopathy is in IIM treated with glucocorticoids,
which presents another challenging dilemma in differentiating
between muscle changes due to therapy and that due to the
inflammatorymuscle disease per se. This proposes an unmet need
for means to identify the exact cause of the myopathy to optimize
management—an area for further exploration of imaging as a
potential tool for this purpose.

Nevertheless, qMRI can differentiate the muscle properties
between the ages and has been shown to correlate with muscle
outcome measures. Therefore, it shows potential promise as a
tool to help understand the varying factors that can affect muscle
in rheumatic diseases (104).

Rheumatoid Arthritis
The predominant site of pathology in rheumatoid arthritis
is in the joints. The articular joints are therefore the most
commonly imaged structure in RA. However, there are many
reasons for patients with RA to have weaker muscles, including
impaired physical function and a greater tendency toward
physical inactivity (105, 106). RA patients often present with
lower muscle mass (107), which remains apparent in remission
(105). A large proportion of RA patients report experiencing
muscle problems or myopathy (108, 109). Histologically, RA is
also associated with atrophy of type II muscle fibers, similar to
the effects of glucocorticoids on muscle (110, 111). In addition,
the pro-inflammatory state in inflammatory arthritis predisposes
patients to a cachectic body composition—another reason for
abnormal muscles in inflammatory arthritis (112, 113).

Despite the many causes of muscle involvement in
inflammatory arthritis, there are relatively little muscle imaging
data in RA. Reduced muscle strength is associated with disease
activity in RA, and muscle function and physical activity are
modifiable factors (2). Preliminary SWE of the muscles in RA
shows some indication that muscles are less stiff compared
to healthy individuals, but the results do not show statistical
significance despite the fact that RA patients show reduced

strength (114). The lack of differential findings from SWE
studies suggests that muscle pathology in RA is less likely to be
due to biomechanical properties of muscle. Quantitative MRI
offers a different imaging perspective of muscle, and can provide
further insight into the pathogenesis of muscle pathology in RA.
Indeed, qMRI could be used to identify if rheumatic patients in
remission still have muscle pathology, such as inflammation or
fatty infiltration. This would identify whether effective treatment
is improving muscle health, or if additional interventions, such
as exercise, should be developed for a more holistic approach in
patients with inflammatory arthritis.

Fatigue is a common symptom in many rheumatic conditions
including inflammatory arthritis with significant impact on
patients’ lives (115). Although treatment including biological
therapy can help improve symptoms of fatigue, they are not
effective in all patients (116). Of note is that exercise has also
been shown to reduce fatigue levels in RA (117); this suggests that
modifying the muscles in inflammatory arthritis is a potential
route to improving symptoms in patients. This is an area where
the mechanism of action needs clarifying—an important cue for
imaging, such as SWE and qMRI to help provide some insights.

FUTURE PERSPECTIVES AND
CONCLUSIONS

The capabilities of novel imaging in muscle continue to
be stretched to better understand the significance of the
observations. Quantitative ultrasonographic techniques, such
as muscle echo-intensity may reveal useful imaging biomarkers
beyond the mechanical properties of SWE (88). The use
of both SWE and qMRI in assessing muscles are relatively
recent imaging advances. Due to the heterogeneous nature of
muscle involvement in rheumatic diseases, a multi-parametric
imaging approach may offer a clearer picture of the varying
disease processes (118). Combining both techniques could
result in a more powerful imaging combination that provides
complementary understanding of muscle changes (119).
The application of artificial intelligence (AI) in imaging in
rheumatology has enhanced efficacy and efficiency in image
interpretation (120). Unsurprisingly, AI in rheumatology
imaging is currently confined to assessing the common
joint abnormalities like joint synovitis, tenosynovitis, bone
erosions and cartilage loss. Deep learning involving qMRI and
SWE may accelerate the knowledge and application of these
imaging techniques.

This perspective highlights that the involvement of muscle is
widespread in many rheumatic diseases, which can also affect
other conditions including the connective tissue diseases like
systemic lupus erythematosus, Sjogren’s syndrome and systemic
sclerosis (1). Imaging, in particular the more recent novel
techniques like SWE and qMRI, shows potential to improve
the understanding of how muscle is affected in rheumatic
diseases. Imaging has an important role in assessing potential
interventions on preserving muscle function. Imaging has
improved our knowledge of joint abnormalities, but it is now
timely for a call to action for a more anatomically-holistic
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approach toward the understanding of the pathogenesis of
rheumatic diseases, with due attention to the muscle.
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