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Hepatocellular carcinoma (HCC) is a commonly diagnosed cancer with high mortality

rates. The immune response plays an important role in the progression of HCC.

Immunotherapies are becoming an increasingly promising tool for treating cancers.

Advancements in scRNA-seq (single-cell RNA sequencing) have allowed us to identify

new subsets in the immune microenvironment of HCC. Yet, distribution of these new

cell types and their potential prognostic value in bulk samples from large cohorts

remained unclear. This study aimed to investigate the tumor-infiltration and prognostic

value of new cell subsets identified by a previous scRNA-seq study in a TCGA HCC

cohort using CIBERSORTx, a machine learning method to estimate cell proportion

and infer cell-type-specific gene expression profiles. We observed different distributions

of tumor-infiltrating lymphocytes between tumor and normal cells. Among these, the

CD4-GZMA cell subset showed association with prognosis (log-rank test, p < 0.05).

We further analyzed CD4-GZMA cell specific gene expression with CIBERSORTx, and

found 19 prognostic genes (univariable cox regression, p < 0.05). Finally, we applied

Least absolute shrinkage and selection operator (LASSO) Cox regression to construct

an immune risk score model and performed a prognostic assessment of our model in

TCGA and ICGC cohorts. Taken together, the immune landscape in HCC bulk samples

may be more complex than assumed, with heterogeneity and different tumor-infiltration

relative to scRNA-seq results. Additionally, CD4-GZMA cells and their characteristics may

yield therapeutic benefits in the immune treatment of HCC.
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INTRODUCTION

Liver cancer is the sixth most commonly diagnosed cancer
and the fourth leading cause of cancer mortality worldwide
(1). Hepatocellular carcinoma (HCC) accounts for highest
proportion of primary liver cancers and can be caused by chronic
hepatitis C virus (HCV) or hepatitis B virus (HBV), heavy
alcohol drinking, and metabolic syndromes related to diabetes
and obesity (2). Beyond traditional treatments, including surgical
and loco-regional interventions, immunotherapy is emerging as
a promising therapeutic tool to treat hepatocellular carcinoma
(3). Yet, immunotherapies have made little progress in clinical
practice and the characteristics of HCC tumors that may predict
the response to immunotherapies remain largely unknown (4, 5).

Single-cell RNA sequencing (scRNA-seq) has allowed
for comprehensive analysis of tissue microenvironments.
A human liver cell atlas has been constructed by scRNA-
seq sequencing, describing previously unknown subtypes of
endothelial cells, Kupffer cells, and hepatocytes (6). New subsets
of tumor-infiltrating lymphocytes (TILs) related to HCC have
been identified, such as exhausted CD8+ T cells, exhausted
Tregs, LAMP3+ dendritic cells (DCs), and tumor-associated
macrophages (TAMs), gradually unraveling the immune
landscape of hepatocellular carcinoma (7, 8). Though scRNA-seq
technique is a powerful method resolving cellular heterogeneity,
it remains impractical for large-scale analyses (9).

Based on the previous approach, CIBERSORT, that
enables estimation of cell type abundances from bulk tissue
transcriptomes, CIBERSORTx is able to infer cell-type-specific
gene expression profiles and allow the use of single-cell
RNA-sequencing data for large-scale tissue dissection (10–12).

Several studies have explored the tumor microenvironments
of HCC and assessed TILs for their overall survival (13–16).
However, previous studies mostly selected mature molecular
markers for common immune cells’ identification and rarely
focused on tissue-specific infiltered cell subsets. The scheme
of our work was shown in Figure 1. In this study, we
applied CIBERSORTx algorithm to realize combination analysis
of scRNA-seq data of TILs in HCC and liver cancer gene
expression profiles from TCGA. We explored the distribution
and prognostic value of the TIL subsets. Importantly, we
analyzed cell-type-specific gene expression profiles of one subset
closely related to clinical outcome with CIBERSORTx (11,
12). In combination with univariate Cox regression analysis,
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was used to construct an immune risk score
model from differentially expressed genes of cell-type-specific
gene expression profiles, offering a significantly powerful means
of predicting the prognosis of patients with HCC cancer.

MATERIALS AND METHODS

Data
We obtained the transcripts per million (TPM) data of 5,063 cell
samples with single-cell transcriptome profiling from GSE 98638
via the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The immune cells without a cell

phenotype were excluded and 4,070 cells were finally left.
The residual cells were all profiled by Smart-seq2 protocol
and sequenced on Illumina HiSeq2500 and HiSeq4000. We
downloaded an RNA-seq dataset of 269 HCC patients from
TCGA (https://portal.gdc.cancer.gov/) and 229 patients from
the ICGC database (https://icgc.org/). Clinical data including
age, gender, TNM stage, follow-up time, and vital status
were also collected. Inclusion criteria were: (1) pathology
confirmed HCC, (2) clinical data from the patients were
available, and (3) follow-up time >30 days. Two RNA-seq
datasets of fragments per kilobases per million (FPKM) values
were converted to transcripts per million (TPM) values in
R. They were annotated by R package “org.Hs.eg.db.” The
RNA-seq dataset of counts in TCGA was also downloaded
for further analysis. The RNA-seq dataset were divided
into tumor and normal groups. We also downloaded a
normalized gene expression matrix of datasets GSE76427,
GSE64041, GSE36376, and GSE14520 from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
They were annotated by R package “illuminaHumanv4.db,”
“hugene10sttranscriptcluster.db,” or relative platform annotation
files. Clinical data meeting inclusion criteria of GSE14520,
including age, gender, TNM stage, follow-up time, and vital
status, were also collected.

Building the scRNA-Seq Signature Matrix
CIBERSORTx online analysis platform (https://cibersortx.
stanford.edu/) was applied to infer cell-type-specific gene
expression profiles without physical cell isolation. We first
prepared and uploaded the single-cell expression matrix
according to the instructions with CIBERSORTx. The default
parameters remained. Then we ran “CIBERSORTx” and obtained
a signature matrix of 11 cell types from scRNA-seq data.

Impute Cell Fractions With CIBERSORTx
We prepared and uploaded the mixture datasets of tumor and
normal groups obtained from TCGA, ICGC, GSE76427,
GSE64041, GSE36376, and GSE14520 according to the
instructions with CIBERSORTx. Then we chose the signature
matrix we obtained before. Since scRNA data was derived
from Smart-seq2, we selected “B-mode” to batch correction.
We set permutations to 1,000. Other parameters retained the
default. After running “CIBERSORTx,” we obtained the relative
proportions of 11 subsets of tumor-infiltrating immune cells in
each sample with p-value measuring the confidence of the results
for the deconvolution. Samples with P < 0.05 were included in a
further study.

Differentially Expressed Gene Analysis
We analyzed the RNA-Seq data of counts for all 269HCC patients
obtained from TCGA. Patients were grouped into high and low
groups by median of CD4-GZMA cell proportion. The analysis
was performed using package “DESeq-2.” Setting the cut-off
criteria as |log2 fold change| > 1.0 and adj.p < 0.05, we identified
755 differentially expressed genes (DEGs).
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FIGURE 1 | Flow chart of this study.
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Enrichment Analysis of DEGs
The Gene Ontology Resource (http://geneontology.org/) and
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/kobas3) (17) were
applied for GO analysis of BP term and pathway enrichment. An
adjusted p < 0.05 was set as the cut-off.

Impute Cell-Type-Specific Gene
Expression With CIBERSORTx
We run CIBERSORTx group-mode to impute cell type-specific
gene expression on tumor and normal classes from TCGA HCC
patients separately. Using filtered gene expression profiles, we
identified statistically significant differentially expressed genes of
CD4-GZMA cells using R script provided by the guideline (12).
The cut-off criteria were false discovery rate (FDR) of <0.05 and
|log2 fold change| > 1.0.

Construction and Validation of an Immune
Risk Score Model
We applied the univariable Cox proportional hazards regression
to calculate the hazard proportions for CD4-GZMA cell specific
DEGs (FDR< 0.05, |log2 fold change|> 1.0). Among DEGs with
significance at p < 0.05, we used LASSO Cox regression to select
the most useful prognostic genes. To improve the robustness of
the LASSO Cox regression model, we repeated the LASSO Cox
regression fitting process for 10-fold cross-validation evaluations
1,000 times. Genes with non-zero coefficient estimates in at
least 900 of these 1,000 evaluations were chosen for the final
model. Based on the average coefficient of each gene, a formula
for the immune risk score model was established to predict
patient survival:

Immune risk score

=
∑

(Cox coefficient of gene Xi ∗ scale expression value of gene Xi)

Coefficients were the following: FNDC4: 0.004549632; RNF186:
0.10682142; PKIB: 0.006859035; MIR3609: −0.215215851;
PLEKHA4: 0.004534235; ANKRD24: −0.05629549; CEACAM19:
−0.009974964; DIO3OS: −0.050176196; UBASH3A:
−0.045030993; KCNE5: 0.017597103; PCAT6: 0.006024639;
and CCDC184:−0.503357872; XCR1:−0.059899642.

Using R package “survminer” to evaluate the optimal cut-
off values of the risk score, the Kaplan-Meier analysis were
conducted in datasets from TCGA and ICGC for validation of
the model.

Construction and Validation of the
Nomogram Model
A nomogram was established to visualize the prognostic value of
the immune risk score using R package “rms.” The calibration
curves were plotted to assess the predicted probabilities in
comparison with the best predictive line. To determine the
predictive accuracy of the nomogram, we calculated the
concordance index(C-index) using R package “survcomp.”
In addition, we applied time-dependent receiver operating
characteristic (ROC) curve and Decision Curve Analysis (DCA)
to evaluate the performance of the nomogram in predicting

overall survival (OS) in different years with R package “ROCR”
and “rmda.”

Statistical Analyses
TheWilcoxon test was used to estimate the statistical significance
for 11 cell subsets’ distribution between tumor and normal
groups. The optimal cut-off values based on the association
between overall survival and cell fraction or risk score in each
dataset were evaluated by R package “survminer.” Survival curves
were generated by the Kaplan-Meier method and compared
by means of the log rank test using “survival” package. We
used the univariable Cox proportional hazards regression model
to calculate a hazard ratio for univariable analysis. Using
the “glmnet” package, the LASSO Cox regression algorithm
with internal 10-fold cross-validation was applied to select the
most useful prognostic genes. We used time-dependent ROC
curve to depict the sensitivity and specificity of the survival
prediction based on the immune risk score. The quantification
of the area under the ROC curve were calculated using the
“ROCR” package. All statistical analyses were conducted using
R software (version 3.6.1). The R codes involved in this study
could be downloaded from the link https://github.com/szlilixing/
Transcriptome-analysis. A two-tailed P < 0.05 were considered
statistically significant.

RESULTS

Create a Signature Matrix of 11 Immune
Cell Subsets From scRNA-Seq Data
We acquired 4,070 cell samples clustered from 11 immune

cell subsets isolated from peripheral blood, tumor, and

adjacent normal tissues from hepatocellular carcinoma patients
(Table 1). The cell clusters included C1_CD8-LEF1, C2_CD8-
CX3CR1, C3_CD8-SLC4A10, C4_CD8-LAYN, C5_CD8-GZMK,
C6_CD4-CCR7, C7_CD4-FOXP3, C8_CD4-CTLA4, C9_CD4-
GZMA, C10_CD4-CXCL13, and C11_CD4-GNLY (7). Based on
the CIBERSORTx algorithm, a signature matrix including 2,527

TABLE 1 | T cells isolated from peripheral blood, tumor, and adjacent normal

tissues from hepatocellular carcinoma patients in GSE98638 were finally analyzed

in this study.

Category Cell counts Percentage (%)

C01_CD8-LEF1 161 3.96

C02_CD8-CX3CR1 288 7.08

C03_CD8-SLC4A10 363 8.92

C04_CD8-LAYN 300 7.37

C05_CD8-GZMK 467 11.47

C06_CD4-CCR7 646 15.87

C07_CD4-FOXP3 261 6.41

C08_CD4-CTLA4 582 14.30

C09_CD4-GZMA 689 16.93

C10_CD4-CXCL13 146 3.59

C11_CD4-GNLY 167 4.10

Total 4,070 100
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genes of 11 cell clusters was created (Supplementary Figure 1A,
Supplementary Table 1).

Identification of Immune Infiltration of Bulk
Samples Based on Signature Matrix
We downloaded RNA-seq profiles or gene expression profiles of
HCC patients from TCGA, GSE76427, GSE64041, GSE36376,
GSE14520, and ICGC. Using the CIBERSORTx algorithm,
we calculated the relative proportion of immune subsets

between tumor and normal samples (Figure 2). CD4-
GZMA cells and CD8-LAYN cells were found to have
higher infiltration in normal tissue while CD8-LEF1 cells
showed higher fraction in tumor tissue (Figure 2). To some

extent, the fraction of CD4-FOXP3 cells were also lower
in normal tissue from most datasets. The distribution of

CD8-CX3CR1 cells showed a slightly decrease in tumor
sites. The CD4-CTLA4 cells had no significant differences
between tumor and normal samples. The rest of the cell

FIGURE 2 | Distribution of inferred immune cell subsets in various datasets. (A–F) Violin plots depicting the different distributions of several immune cell subsets

between tumor and normal samples from datasets TCGA, GSE76427, GSE64041, GSE36376, GSE14520, and ICGC (Immune cell subsets with low proportions

were excluded, depicted p-values are from Wilcoxon test). ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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subsets had low levels in both tumor and normal samples (data
not shown).

Correlation of Proportion of Immune
Subsets With Overall Survival
To explore the prognostic value of immune subsets, we
first evaluated the association between overall survival and
cell fraction in the TCGA cohort (Table 2) using R package
“survminer” (Figures 3A–F). A high proportion of CD4-
CTLA4 cells and a low proportion of CD4-GZMA cells were
significantly associated with poor overall survival in log-rank
test (Figures 3A,C). Besides, CD8-CX3CR1 and CD8-LEF1 cells
were also associated with prognosis in the TCGA cohort
(Figures 3D,F). However, we only found lower infiltration of
CD4-GZMA cells associated with poor prognosis in two other
datasets (Table 2) (Supplementary Figures 2A,B).

Differentially Expressed Genes Analysis
and Functional Enrichment Analysis
Considering different proportions in tumor and normal tissues,
CD4-GZMA cells may play an important role in HCC patients’
prognosis. Thus, we analyzed the differentially expressed genes
between high and low groups according to the proportion
of CD4-GZMA cells (the cut-off value was the media of
fraction of CD4-GZMA cells). We set the cut-off criteria as
|log2 fold change| > 1.0 and adj.p < 0.05 and identified 755
differentially expressed genes (DEGs) (Figures 4A,B). Functional
enrichment clustering of these genes showed strong association
with the tumor microenvironment and immune response
(Figures 4C–E).

TABLE 2 | Clinical characteristics of the patients in this study.

N TCGA LIHC

(N = 269)

(%)

ICGC LIRI

(N = 229)

(%)

GSE14520

(N = 213)

(%)

Age, median (range) 60 (16–82) 67 (31–89) 59 (21–77)

Gender

Female 85 (31.60%) 61 (26.64%) 30 (14.08%)

Male 184 (68.40%) 168 (73.36%) 183 (85.92%)

TNM stage

I 153 (56.88%) 36 (15.72%) 90 (42.25%)

II 63 (23.42%) 105 (45.85%) 75 (35.21%)

III 50 (18.59%) 69 (30.13%) 48 (22.54%)

IV 3 (1.11%) 19 (8.30%)

Histological type Not report

Hepatocellular carcinoma 263 (97.78%) 213 (100%)

Fibrolamellar carcinoma 2 (0.74%)

Hepatocholangio

carcinoma

4 (1.48%)

TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium;

LIHC, Liver hepatocellular carcinoma; LIRI-JP, Liver Cancer-RIKEN, JP.

CIBERSORTx Group-Mode Analysis
We performed CIBERSORTx group-mode analysis to impute
CD4-GZMA cell specific gene expression according to the
guidelines (12). Setting cut-off criteria as false discovery
rate (FDR) of < 0.05 and |log2 fold change| > 1.0, we
identified 384 differentially expressed genes (DEGs) (Figure 5A).
Pathway analysis showed associations with cancer, metabolism,
and immunity (Figure 5B). In addition, the Venn diagram
showed nine genes appearing in both CD4-GZMA cell specific
differentially expressed genes and signature genes of the CD4-
GZMA cell subset (Figure 5C).

Construction and Validation of Immune
Risk Score Mode
To further mine the potential prognostic value of CD4-GZMA
cell specific DEGs, univariable cox survival analysis were first
applied to find out their prognostic role, and 19 genes were finally
observed associated with HCC patients’ prognosis (Table 3).

To select the most useful prognostic genes, LASSO Cox
regression analysis was used to build an immune risk score
model in the TCGA cohort (Figure 6). We repeated the
LASSOCox regression fitting process for 10-fold cross-validation
evaluations 1,000 times to improve the accuracy of the model
(Supplementary Figures 3A,B). Thirteen genes with non-zero
coefficient estimates in at least 900 of these 1,000 evaluations
were finally selected for the LASSO model. The formula for
the immune risk score can be found in materials and methods.
The Kaplan-Meier analysis of the TCGA cohort showed strong
association between overall survival and the risk score. We
investigated the prognostic accuracy of the model in the TCGA
cohort using time-dependent ROC analysis at the time points
2, 3, 4, and 5 years (Figure 6B). Moreover, we constructed a
nomogram to visualize the prognostic value of the immune
risk score (Figure 6C). The concordance index(C-index) was
0.775. The calibration curves showed well-predicted probabilities
compared with the best predictive line (Figures 6D–F). In
addition, we validated our model in the dependent dataset from
ICGC (Figure 7). After building a nomogram, the concordance
index(C-index) was calculated as 0.787 (Figure 7C). Moreover,
we evaluated the performance of the nomogram in predicting
OS in different years using the time-dependent ROC curve and
Decision Curve Analysis (DCA) (Supplementary Figures 4, 5).

DISCUSSION

Despite substantial progress having been made in treating HCC,
the implementation of effective precision medicine remains
challenging (3, 18). Identification of the characteristics of the
tumor microenvironment, especially immune context and robust
predictive biomarkers, may ultimately improve the clinical
management of HCC (5, 19). Advances in scRNA-seq have
allowed us to explore detailed compositions in tumors at
high resolutions. A series of recent studies using the scRNA-
seq technique have been conducted to disclose the mystery
of HCC (7, 8, 20–23). In the current work, we aimed to
explore the tumor-infiltration and prognostic value of new cell
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subsets identified by a recent HCC scRNA-seq study, using
the state-of-the-art deconvolution algorithm CIBERSORTx (7,
11). The scRNA-seq study has already identified 11 TILs of
HCC, including many exhausted T cells (7). The signature
matrix of 11 immune cell subsets created with CIBERSORTx
involved more genes and partly overlapped with signature genes
of the scRNA-seq data. According to the signature matrix,
CD8-LAYN cell and CD4-CTLA4 cell were characterized by
PDCD1 (programmed cell death 1) and CTLA4 (cytotoxic T-
lymphocyte associated protein 4), indicating their exhausted
function (24). However, we also observed high level expression

of effective functional genes, such as GZMA (granzyme A)
and GZMB (granzyme B), in CD8-LAYN cell. This subset
might be involved in the regulation of tumor immunity
through a dual functional mechanism. The CD4-GZMA cell
type might play a positive role in HCC immunity on
account of its high expression of effective immune genes,
especially GZMA.

Due to a lack of robust effector functions, exhausted T
cells express multiple inhibitory receptors with an altered
transcriptional programme (25). An abundance of exhausted T
cells results in an invalid control of tumors, leading to poor

FIGURE 3 | Associations between survival and six immune cell subsets in the TCGA cohort. (A–F) Survival plots of immune cell subsets in the TCGA cohort. Time

was calculated by month. Depicted p-values are from log-rank tests.
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FIGURE 4 | The differentially expressed genes between CD4-GZMA high and low groups defined by median proportion. (A) The heatmap of differentially expressed

genes between CD4-GZMA high and low groups. (B) The volcano Plot of differentially expressed genes between CD4-GZMA high and low groups. (C) GO analysis of

differentially expressed genes. (D) The chord diagram of GO analysis. (E) Pathway Enrichment of differentially expressed genes.
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prognosis (26–29). Yet, after deconvolution of the TCGA HCC
RNA-seq data with CIBERSORTx, the proportion distribution
of 11 cell types (mainly six cell types) in tumor and normal
tissues showed a different trend. Firstly, among relatively high
proportion CD8+ cell subsets, CD8-LAYN cells’ infiltration
was higher in normal tissues than tumorous ones without
association with prognosis. We inferred that CD8-LAYN cell
might immigrate from normal to tumor sites and lose its function
gradually (25). The complex regulatory mechanism behind this
process remained unclear. Secondly, a high fraction of the CD4-
CTLA4 subset was statistically significantly associated with poor
prognosis in two datasets, though there was no difference in
their proportion between tumor and normal tissues. Considering
the high expression of exhausted functional genes, including
PDCD1 and CTLA4, the CD4-CTLA4 cell subset might also
be a potential target for immunotherapies. Thirdly, the CD4-
GZMA cell subset showed great prognostic value combined with
their different abundance between tumor and normal tissues.
CD4+ T cells have been proven to participate in anti-tumor
immunity and improving prognosis (30, 31). The CD4-GZMA

cell subset is similar to Th1 cells (7). We assumed the CD4-
GZMA cell type might be a key point in anti-tumor immune
responses in HCC.

To further explore the role of the CD4-GZMA cell subset
in HCC development, we analyzed the differentially expressed
genes (DEGs) between high and low CD4-GZMA cell infiltrated
groups and further performed GO and Pathway analysis. Among
these DEGs, 323 genes were up-regulated, and 432 genes were
down-regulated. Biology process analysis showed aberrations
of growth, differentiation, and organization of cell populations
happened in the high CD4-GZMA cell infiltrated group. Among
the core DEGs of GO function, BMP10 (bone morphogenetic
protein 10) and KCNK2 (potassium two pore domain channel
subfamily K member 2) were proven to be associated with
progression and prognosis in HCC (32, 33). OR7C1 (olfactory
receptor family 7 subfamily C member 1) represented a novel
marker of colon cancer-infiltrating cells (CICs) (34). Considering
its higher expression in the CD4-GZMA highly infiltrated
group, it may help promote CTL-like immune responses against
tumors. In addition, up-regulated BMP9 (bone morphogenetic

FIGURE 5 | CD4-GMZA-specific differentially expressed genes. (A) The volcano plot of CD4-GMZA cell-specific differentially expressed genes between tumor and

normal tissues by group-mode of CIBERSORTx. (B) Pathway Enrichment of differentially expressed genes. (C) The Venn diagram between CD4-GZMA cell specific

differentially expressed genes and signature genes of CD4-GZMA cell subset. ↑, Up-regulated genes; ↓, Down-regulated genes.
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TABLE 3 | Univariable cox analysis of CD4-GZMA cell-specific different expressed

genes detected in group mode with CIBERSORTx.

Gene HR 95% CI wald.test p.value

FNDC4 1.3 1.1–1.6 8.2 0.0041

RNF186 1.4 1.1–1.9 6.5 0.011

PKIB 1.2 1–1.4 5.9 0.015

MIR3609 0.63 0.43–0.92 5.8 0.016

PLEKHA4 1.3 1–1.6 5.7 0.017

LINC01370 1.1 1–1.2 5.6 0.018

ANKRD24 0.68 0.49–0.94 5.4 0.02

CEACAM19 0.73 0.56–0.95 5.3 0.021

DIO3OS 0.73 0.56–0.95 5.3 0.021

GJA4 0.77 0.61–0.97 4.8 0.029

NLRC3 0.6 0.37–0.95 4.7 0.03

UBASH3A 0.65 0.45–0.96 4.7 0.03

KCNE5 1.3 1–1.6 4.6 0.032

PCAT6 1.3 1–1.5 4.6 0.032

TAPT1 0.68 0.48–0.97 4.6 0.032

TMEM88 0.77 0.59–0.99 4.2 0.041

CCDC184 0.48 0.24–0.97 4.1 0.042

XCR1 0.52 0.28–0.98 4.1 0.043

CASQ2 0.75 0.57–1 4 0.047

protein 9, also known as GDF2, growth differentiation factor 2)
were involved in cell migration and epithelial to mesenchymal
transition (EMT) in HCC (35). Pathway analyses were highly
associated with immune responses, including cytokine signaling
in the immune system, signaling by Interleukins, and the innate
immune system. The core up-regulated genes were FGF23
(fibroblast growth factor 23), MUC5AC (mucin 5AC), FCN3
(ficolin 3), andC7 (complement C7). Ficolin 3 expressed typically
in the lung and liver, playing a vital role in innate immunity.
The mutation or deficiency of FCN3 may cause immune
disorders like SLE (Systemic Lupus Erythematosus) (36–38). In
addition, GPCR-related pathways were enriched, possibly serving
as important regulators in HCC development (39–41). Using
group-mode of CIBERSORTx, we estimated CD4-GZMA cell
specific gene expression between tumor and normal samples
(11, 12). The CD4-GZMA cell specific genes were enriched
in pathways associated with tumor metabolism and malignant
progression. Moreover, there were nine genes appearing in
both CD4-GZMA cell specific differentially expressed genes and
signature genes of the CD4-GZMA cell subset. We inferred
that they may exert great effectiveness in HCC progression and
tumor immunity. Previous studies have reported that JUND
(JunD proto-oncogene), AQP3 [aquaporin 3 (Gill blood group)],
and PLK3 (polo like kinase 3) promote hepatocarcinogenesis
and metastasis (42–44). PLPP5 (phospholipid phosphatase 5,
or HTPAP) was defined as a metastatic suppressor of HCC,
which was down-regulated in tumor samples (45). ZC3H12A
(zinc finger CCCH-type containing 12A) was involved in
cellular inflammatory response and immune homeostasis and
it negatively regulates Interleukin-17-Mediated Signaling (46).
Mutations of ZC3H12A had recently been verified to be
associated with ulcerative colitis recently (47, 48). Besides,
SLC5A3 (solute carrier family 5 member 3) was proved to be

promote inflammatory responses in inclusion body myositis
(IBM) (49). Their up-regulation might further reduce the anti-
tumor immune response. Down-regulation of LIN7C (lin-7
homolog C) was found to be related to oral squamous cell
carcinoma (OSCC) metastasis in an early research (50). In
addition, PDK3 (pyruvate dehydrogenase kinase 3) had been
reported to regulate tumor cell differentiation and cell fate. Yet,
it remained unclear how they work in HCC progression. FASLG
(Fas ligand), a core gene involved in lymphocyte apoptosis and T-
cell development, was down-regulated, which meant partial loss
of self-regulation in tumor immunity.

In recent years, various immunoscore models, based on
TILs’ proportion, ratio of immune cells, and expression of
prognostic genes, have been developed and verified to assess
prognosis (51–53). Though current studies showed relatively
good probability of prognostic assessment in part, they focus on
the overall distribution of immune cells and total gene expression
difference between samples. In this study, we estimated CD4-
GZMA cell specific genes with CIBERSORTx in the TCGA HCC
dataset and evaluated their prognostic value using univariable
cox survival analysis. We further applied LASSO cox regression
to construct our immune risk model for higher accuracy (54).
Time-dependent ROC analysis and validation independent of
the dataset ICGC demonstrated the reliability of our model. We
also established a nomogram model to visualize the prognostic
value of the immune risk score. Thirteen genes were incorporated
in our model. Among these genes, previous studies had
reported that FNDC4 (fibronectin type III domain containing
4), RNF186 (ring finger protein 186), and UBASH3A (ubiquitin
associated and SH3 domain containing A) were associated with
inflammatory bowel disease (55–57). PKIB(cAMP-dependent
protein kinase inhibitor beta) was reported as a key regulator
of the PI3K/Akt pathway involved in tumor aggressiveness
in NSCLC (non-small cell lung cancer) and prostate cancer
(58, 59). MIR3609 (microRNA 3609) had been proven to
improve the immune response in breast cancer by blocking the
programmed death-ligand 1 immune checkpoint (60). PLEKHA4
(pleckstrin homology domain containing A4) might be involved
in the progression of a tumor through the Wnt pathway (61).
CEACAM19 (CEA cell adhesion molecule 19), DIO3OS (DIO3
opposite strand upstream RNA), and PCAT6 (prostate cancer
associated transcript 6) were verified as associated with the
prognosis of different cancers, including gastric cancer, breast
cancer, liver cancer, and lung cancer (62–64). KCNE5 (potassium
voltage-gated channel subfamily E regulatory subunit 5) was
more closely related to heart disease (65). How they play a
role in HCC progression requires further study. XCR1 (X-C
motif chemokine receptor 1) and XCL1 (X-C motif chemokine
ligand 1) had been reported to enhance proliferation of antigen-
specific CD8+ T cells and their anti-tumor immunity (66, 67).
ANKRD24 (ankyrin repeat domain 24) and CCDC184 (coiled-
coil domain containing 184) lack research information. CD4-
GZMA cell specific genes with a prognostic value in our model
might shed new light on the progression and prognosis of HCC
and help obtain better outcomes in clinical combination therapy.

There are some limitations to our study. First, the datasets we
analyzed are based on the public database. Thus, the information
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FIGURE 6 | Construction of the immune risk score model. (A) Kaplan-Meier curve for overall survival by risk score group in TCGA cohort. Time was calculated by

month. (B) Time-dependent ROC curve in the TCGA cohort. The area under the ROC curve were 0.748, 0.759, 0.752, and 0.747 for the risk score at 2, 3, 4, and 5

years, respectively. (C) The nomogram to visualize the prognostic value of the immune risk score in the TCGA cohort. (D–F) The calibration curves to assess the

predicted probabilities in comparison with the best predictive line at 3, 4, and 5 years, respectively.

is insufficient, especially regarding the lack of clinical details
to improve prognostic accuracy. We also lack ground truth
data to further validate our results with CIBERSORTx. The
exact regulatory mechanisms of these new TILs remain unclear.
Whether immune characteristics we found in HCC are indictive
of suitable immunotherapies needs further study. Finally, we
mainly re-analyzed CD4+ and CD8+ T cell clusters identified
by a scRNA-seq dataset and the risk score is limited in scope to
reflect a comprehensive immune status in HCC tissue.

In sum, using a machine learning method CIBERSORTx,
we evaluated the infiltration of new immune subsets identified

by a scRNA-seq date in TCGA HCC samples. Effective CD8+

T cell subsets generally had a low proportion in tumor sites,
leading to an ineffective immune response. Yet, the new
subset CD4-GZMA cell may exert significant levels of anti-
tumor immunity. Considering their Th1-like characteristics,
there may be tissue-specific neoantigen in HCC still to discover.
Thus, the CD4-GZMA cell type could be a potential target
of immunotherapies. Further study is needed to explore the
exact mechanism during anti-tumor immunity and find out the
neoantigens in HCC. Moreover, the outstanding CIBERSORTx
algorithm provides us opportunities regarding cell-specific
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FIGURE 7 | Validation of the immune risk score model in the ICGC cohort. (A) Kaplan-Meier curve for overall survival by risk score group in the ICGC cohort. Time

was calculated by month. (B) Time-dependent ROC curve in the ICGC cohort. The area under the ROC curve were 0.686, 0.686, 0.748, and 0.762 for the risk score

at 2, 3, 4, and 5 years, respectively. (C) The nomogram to visualize the prognostic value of the immune risk score in the ICGC cohort. (D–F) The calibration curves to

assess the predicted probabilities in comparison with the best predictive line at 2, 3, and 4 years, respectively.

gene expression. We located several key genes associated
with prognosis and built a useful model for predicting HCC
patient’s outcome.
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Supplementary Figure 2 | Association between survival and four immune cell

subsets in ICGC and GSE14520 cohorts. (A,B) Survival plots of immune cell

subsets (CD4-GZMA, CD4-CTLA4, CD8-CX3CR1, CD8-LEF1) in ICGC (A) and

GSE14520 (B) cohorts. Time was calculated by month. Depicted p-values are

from log-rank tests.

Supplementary Figure 3 | The frequency and coefficients of representative

genes during 1,000 iterations of LASSO Cox regression. (A) Frequency of

representative genes investigated in 1,000 iterations of LASSO Cox regression.

(B) Box plot for mean and confidence intervals of coefficients.

Supplementary Figure 4 | The evaluation of the performance of the nomogram

from TCGA cohort in predicting OS in different years. (A) Time-dependent ROC

curve of the nomogram. The area under the ROC curve were 0.764, 0.786, and

0.775 for the risk score at 3, 4, and 5 years, respectively. (B–D) The Decision

Curve Analysis (DCA) of the nomogram.

Supplementary Figure 5 | The evaluation of the performance of nomogram from

ICGC cohort in predicting OS in different years. (A) Time-dependent ROC curve of

the nomogram. The area under the ROC curve were 0.764, 0.786, and 0.775 for

the risk score at 2, 3, and 4 years, respectively. (B–D) The Decision Curve Analysis

(DCA) of the nomogram.

Supplementary Table 1 | Signature matrix with CIBERSORTx based on a

scRNA-seq study (GSE98638).

Supplementary Table 2 | Clinical information of TCGA LIHC samples.
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