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Cardiopulmonary exercise testing (CPET) has traditionally included ventilatory and

metabolic measurements alongside electrocardiographic characterization; however,

research increasingly acknowledges the utility of also measuring inspiratory neural drive

(IND) through its surrogate measure of diaphragmatic electromyography (EMGdi). While

true IND also encompasses the activation of non-diaphragmatic respiratory muscles, the

current review focuses on diaphragmatic measurements, providing information about

additional inspiratory muscle groups for context where appropriate. Evaluation of IND

provides mechanistic insight into the origins of dyspnea and exercise limitation across

pathologies; yields valuable information reflecting the integration of diverse mechanical,

chemical, locomotor, and metabolic afferent signals; and can help assess the efficacy

of therapeutic interventions. Further, IND measurement during the physiologic stress

of exercise is uniquely poised to reveal the underpinnings of physiologic limitations

masked during resting and unloaded breathing, with important information provided

not only at peak exercise, but throughout exercise protocols. As our understanding

of IND presentation across varying conditions continues to grow and methods for its

measurement become more accessible, the translation of these principles into clinical

settings is a logical next step in facilitating appropriate and nuancedmanagement tailored

to each individual’s unique physiology. This review provides an overview of the current

state of understanding of IND measurement during CPET: its origins, known patterns

of behavior and links with dyspnea in health and major respiratory diseases, and the

possibility of expanding this approach to applications beyond exercise.

Keywords: inspiratory neural drive, CPET cardiopulmonary exercise testing, diaphragmatic electromyogram

EMGdi, respiratory muscles, respiratory disease (RD), chronic obstructive pulmonary disease, diaphragm

INTRODUCTION

Measuring diaphragmatic electromyography (EMGdi) as a surrogate of inspiratory neural
drive (IND) has a tradition extending over 100 years. Its ability to reveal the mechanistic
underpinnings of exercise limitation and dyspnea during cardiopulmonary exercise testing (CPET)
has popularized its use in research; however, IND is rarely measured in non-research clinical
settings. With aims of familiarizing a broad audience with the fundamental principles of IND
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measurement and its presentation in health and respiratory
disease, this review outlines the valuable insights provided by
IND measurement during the physiologic stressor of exercise,
what these reveal beyond standard testing approaches, and
emerging areas of interest in applying IND in diverse research
settings. It also reflects on current barriers to the clinical adoption
of IND assessment and how these might be overcome.

FUNDAMENTALS OF IND MEASUREMENT

Muscles of Inspiration
The inspiratory muscles fall into two categories: primary (i.e.,
diaphragm, external intercostal, scalene, and parasternal internal
intercostal muscles) and accessory (e.g., sternocleidomastoid,
pectoralis minor, etc.) (1, 2). The diaphragm is the foremost
driver of inspiration at rest and during exercise, accounting for
∼2/3 of lung volume change (3, 4). The scalene and external
intercostal muscles show lesser activation during healthy quiet
breathing but play an increasingly important role in loaded,
high-volume, or distressed breathing patterns (5, 6), while the
parasternal internal intercostal muscles are active during resting
eupneic breathing, assisting with upper thoracic expansion as
well as stabilizing the thorax to the effects of diaphragmatic
movement (7, 8). The accessory muscles contribute to inspiration
in conditions with higher ventilatory requirements or where
breathing pattern is altered (e.g., more rapid) as a result
of impaired respiratory mechanics (1). Diaphragmatic IND
is the focus of this review. While not discussed herein,
the expiratory muscles (i.e., abdominal muscles and internal
intercostals) also play an active role in forced exhalations and in
supporting the increased ventilation of exercise (9, 10). This is
especially critical in conditions of gas trapping, where expiratory
recruitment supports subsequent inspiration through elevation
of the diaphragm at end-expiration (11, 12).

It is worth noting that rather than being a singular entity,
as implied by the nomenclature, the diaphragm consists of
two distinct regions: the costal diaphragm, apposing the ribs,
and the crural diaphragm, the electrically active region of
which is located medially and forms the esophageal hiatus
(13, 14). Whereas, the costal diaphragm is involved in the
displacement of both abdominal contents and the ribcage, the
crural diaphragm displaces abdominal contents only in its caudal,
inspiratory descent (13). Thus, the crural diaphragm has a
lesser role in thoracic expansion and force generation than the
costal diaphragm.

History of Neural Drive Measurement
EMG measurement via intramuscular needle electrodes has
been used to investigate ventilatory mechanisms since the
early 20th century (15–19). These earliest observations in dogs
and rabbits demonstrated the direct link between phrenic
nerve activity and diaphragmatic activation: namely, that action
potentials of the phrenic nerve result in electrical activation
of the diaphragm (20). Later work ultimately determined the
origin of this phrenic activity to be ventilatory drive from
the respiratory medulla (21–23). However, the invasive nature
and contamination of intramuscular EMGdi with adjacent

intercostal muscle activation and breathing movement artifact
limited the uptake of this approach in human populations
(24). This spurred the development of less invasive techniques
using either surface electrodes to measure costal or parasternal
EMGdi (25–28) or nasally inserted esophageal catheters to
measure crural EMGdi (29–33). Although appealingly non-
invasive and relatively easy to use, surface measurements can
underestimate EMG activity (vs. esophageal recordings), be
contaminated by the electrical activity of neighboring accessory
muscles (34–36), or be vulnerable to position and limb muscle
mobilization (37, 38). By contrast, esophageal measurements
of crural EMGdi are relatively robust, but more technically
demanding and potentially uncomfortable for patients. However,
the authors’ own experiences using this technology, as well
as the documented experiences of others, support esophageal
catheters being well-tolerated by most patients when skillfully
utilized (39).

Contemporary catheter designs build off of earlier designs
that utilized a single electrode pair (40, 41). These were prone
to artifactual changes in EMG activity due to the relative
movement of the diaphragm during breathing as compared with
the fixed catheter electrode. Current designs employ multiple
electrode arrays arranged as overlapping pairs, which help with
positioning the electrodes across the electrically active region
(EAR) of the crural diaphragm via cross-correlation analysis
as well as compensate for movement of the EAR relative to
the electrode during breathing (42–44). [For a more detailed
review of esophageal EMGdi measurement, please refer to
Luo et al. (45)].

Recent findings suggest that while crural and
costal diaphragmatic activation is similar at rest, costal
activation (measured by intramuscular recording) increases
disproportionately to crural activation when ventilation
increases either voluntarily or involuntarily (46–48). This
differs from earlier studies that measured costal activity via
surface EMG and found parallel increases in costal and crural
activity during increase ventilation; however, this difference in
findings may be attributable to the greater contamination of
surface costal EMGdi with intercostal and abdominal muscle
activity (14–16). Thus, while there is significant methodological
appeal in the robustness of relatively non-invasive esophageal
measurements, it is worth considering that crural recordings
may not fully represent IND to the diaphragm, especially during
increased ventilatory demand. Parasternal intercostal surface
EMG has also gained recent attention as a potential alternative to
esophageal crural measurements of IND (49, 50), with emerging
data showing strong congruence in baseline activation and
profiles of increasing activation in response to increasing IND
between surface parasternal intercostal and esophageal crural
measurements (28, 50–53).

Contemporary Approaches to Measuring
Neural Drive
Modern IND assessment increasingly combines multipair
esophageal EMGdi with invasive (esophageal/gastric
manometry) or non-invasive (please see accompanying
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review by (54): “Non-invasive evaluation of dynamic respiratory
mechanics”) measurement of respiratory mechanics (45, 55).
EMGdi now routinely replaces traditional IND estimates
during CPET, such as minute ventilation (VE), esophageal
(Pes), transdiaphragmatic (Pdi), or mouth occlusion pressures
(37). While these are influenced by obesity (56) or disease-
altered respiratory mechanics (57–61), measuring the initiating
contractile signal rather than resulting mechanical response
provides a more direct assessment of IND. Measuring centrally
originating IND with the resulting mechanical (e.g., Pdi)
or ventilatory [VE, tidal volume/vital capacity (VT/VC), or
VT/VCpred] response of the system additionally enables direct
investigation of neuromechanical and neuroventilatory coupling
or dissociation, respectively (55, 62). Whereas coupling is used to
refer to the efficiency with which the electrical signal is converted
into a mechanical or ventilatory response, dissociation refers to
EMGdi not translating into a mechanical or ventilatory response
as efficiently as in health. While there is some variation in how
EMGdi is reported alongside mechanical or ventilatory outcomes
between authors, in the present work, these are represented by
the commonly employed EMGdi:Pdi and EMGdi:VT/VCpred,
respectively, unless stated otherwise.

Although modern esophageal EMGdi is relatively robust to
movement artifact or neighboring muscle activity, two technical
notes are warranted. (1)While crural EMGdi necessarily contains
electrocardiographic artifact, its regularity and distinct profile
allows for ready isolation (visual or computational) from the
surrounding respiratory signal (45, 63). (2) Between-individual
(or within-individual, when measured during different sessions)
differences in electrode: muscle fiber orientation, impedance,
muscle blood flow, and distance (or amount of tissue) between
electrode and muscle surface necessitate signal standardization
(64). As per the values reported in this review, this is
typically achieved by presenting EMGdi as a percentage of
maximum voluntary activation (EMGdi%max) obtained during
inspiratory capacity (IC) or sniff maneuvers (65, 66). Such
maximum maneuvers show strong between-visit reliability (67);
however, it is worth mentioning evidence that EMGdi%max may
most appropriately be used to normalize for between-group
differences, while normalization to ECG R-wave amplitude or
to resting tidal EMGdi may be more reliable when investigating
intra-individual, inter-visit differences (68).

NEURAL DRIVE IN THE EVALUATION OF
THE BREATHLESS PATIENT

The Spectrum of Normal
In healthy adults, resting tidal EMGdi represents only 7–10%
of maximum voluntary activation (39, 69). However, this range
belies variations. Resting EMGdi can double to 22%max in
obesity, for example, due to increased ventilatory load and effort
(Pes) (70). Healthy aging’s impact on baseline IND is also an
important consideration, especially when assessing individuals
with chronic respiratory diseases. This is particularly relevant
considering the strong relationship between IND and dyspnea
(71, 72), i.e., the “subjective experience of breathing discomfort

that consists of qualitatively distinct sensations that vary in
intensity” (73). Unlike the VE:dyspnea relationship, which is
limited when respiratory mechanics are impaired, EMGdi%max

robustly correlates with dyspnea in health and across disease
severity (50, 74). Dyspnea is thought to reflect awareness of
the mismatch that results when increased IND does not or
cannot result in an adequate mechanical or ventilatory response
(75). While not present during resting tidal breathing in health,
the stressor of exercise or pathophysiologic processes of disease
typically provoke sensations of dyspnea (76).

Aging induces emphysema-like changes in the lung (increased
pulmonary compliance) while decreasing chest wall compliance
(77, 78). Aging additionally reduces inspiratory muscle strength,
decreases diffusing capacity, decreases the proportion of Type
II muscle fibers in the diaphragm, and decreases the number of
phrenic motoneurons (79–81). Investigation into whether these
changes translate into altered IND found that resting crural
EMGdi was 40% greater in individuals > 51 years than those
< 50 years (39); however, these findings standardized EMGdi
to maximum voluntary activation, which may be reduced (e.g.,
inability to achieve—or motivation to perform—truly maximal
maneuvers) (82, 83). Recent work specifically investigating
motor unit discharge rate (monopolar needle recording of costal
diaphragm) found no changes across age groups at rest, despite
neurogenic changes in motor unit potential area and discharge
time that may become more relevant at higher ventilation
(84). Interestingly, despite known sex differences in pulmonary
structure [smaller lungs, narrower airways (85)] and function
[increased resistive work of breathing and greater propensity for
expiratory flow limitation and exercise-induced hypoxemia (86)],
resting EMGdi does not vary between age-matched healthy males
and females (87, 88).

Healthy Responses to Exercise
Two common exercise protocols that are used to study IND are
constant work rate (i.e., constant load; CWR), where a constant
submaximal output is maintained, and incremental (ICR), where
work rate increases in stepwise fashion at predetermined time
intervals. The ability of ICR protocols to interrogate the IND
profile to the boundaries of maximal exercise capacity offers
unique advantages over CWR protocols, including continually
increasing IND in concert with continually increasing dyspnea
from rest to symptom limitation. This is in contrast with CWR
protocols, where IND initially increases before maintaining a
submaximal plateau until end exercise (Figure 1A). EMGdi
activation during exercise typically plateaus at submaximal values
<80%max, with some variability reported between studies and
populations (55, 69, 89, 90). This begs the question: is this
submaximal activation appropriate for the required output or
reflective of central inhibition (69, 91, 92)? The maintenance
of maximal voluntary IND as achieved through IC maneuver
throughout various exercise protocols suggest that the former
interpretation of task-appropriate IND is true, rather than neural
inhibition (69).

Ventilation and dyspnea parallel EMGdi during exercise: all
three increase with exercise time and intensity [Figures 1C,D;
2A–C; (57, 69)]. Neuroventilatory and neuromechanical
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FIGURE 1 | EMGdi behavior during incremental (ICR) and constant work rate (CWR) exercise in health and COPD. Panel (A) shows the gradual increase in EMGdi

(%max) associated with ICR and the rapid increase in EMGdi (%max) and subsequent plateau associated with CWR exercise in health (*p < 0.05). A similar pattern of

behavior is seen in COPD (B). The relationship between EMGdi and VE (C) and between VE and VO2 (D) is maintained regardless of exercise type (ICR vs. CWR) or

intensity (CWR at 60, 80, or 90% of maximum work rate). While VE/EMGdi is maintained in health during CWR (E), and Pdi/EMGdi is maintained in COPD (F), there is

uncoupling of VE and EMGdi in COPD during exercise (E,F). Panels (A), (C), and (D) were adapted from (69); panel (B) was adapted from (57); panel (E) was adapted

from (89); and panel (F) was adapted from (90). Panels (A), (C), and (D) are reprinted from Resp Physiol Neurobiol, 189(1), Zhang D, Gong H, Lu G, Guo H, Li R,

Zhong N, et al. Respiratory motor output during an inspiratory capacity maneuver is preserved despite submaximal exercise, 87–92, Copyright 2013, with permission

from Elsevier. Panel (B) is reprinted from Respiration 81(4), Luo YM, Li RF, Jolley C, Wu HD, Steier J, Moxham J, et al., Neural respiratory drive in patients with COPD

during exercise tests. 294–301, Copyright 2011, with permission from S. Karger AG, Basel. Panel (E) is reprinted from Chest, 138(6), Qin YY, Steier J, Jolley C,

Moxham J, Zhong NS, Luo YM. Efficiency of neural drive during exercise in patients with COPD and healthy subjects, 1309–1315, Copyright 2010, with permission

from Elsevier. Panel (F) is adapted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. All rights reserved. Cite: Sinderby

C, Spahija J, Beck J, Kaminski D, Yan S, Comtois N, et al. (2001) Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit

Care Med 163(7):1637–41. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American Thoracic Society. Readers are

encouraged to read the entire article for the correct context at https://doi.org/10.1164/ajrccm.163.7.2007033. The authors, editors, and The American Thoracic

Society are not responsible for errors or omissions in adaptations.
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FIGURE 2 | Response to incremental cycle exercise in health (Controls), COPD, and ILD. Values are mean ± SEM, and squares represent VT-VE inflection points. *p

< 0.05 (ILD vs. Control);
†
p < 0.05 (COPD vs. Control);

‡
p < 0.05 (COPD vs. ILD); §p < 0.05 for for differences in VE/(EMGdi/EMGdi,max) slopes between patient

groups and control participants. Panel (A) shows IND as EMGdi (%max) increasing throughout ICR, panel (B) shows the associated ventilatory response (VE), and

panel (C) shows the coupling of EMGdi with VE. Respiratory efficiency is decreased (D) (i.e., VE/VCO2 increased) in respiratory disease relative to Control, in part due

to significant ventilatory constraints occurring alongside dynamic hyperinflation [(E), VT expansion during exercise and earlier attainment of inspiratory reserve volume

threshold, (F)]. Figure adapted from (55). Figure is adapted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. All rights

reserved. Faisal A, Alghamdi BJ, Ciavaglia CE, Elbehairy AF, Webb KA, Ora J, et al. (2016) Common Mechanisms of Dyspnea in Chronic Interstitial and Obstructive

Lung Disorders. Am J Respir Crit Care Med, 193(3):299–309. The American Journal of Respiratory and Critical Care Medicine is an official journal of the American

Thoracic Society. Readers are encouraged to read the entire article for the correct context at https://doi.org/10.1164/rccm.201504-0841OC. The authors, editors,

and The American Thoracic Society are not responsible for errors or omissions in adaptations.

relationships (EMGdi relative to VE or Pdi) are maintained
throughout exercise in health (69, 89, 90). This is especially
relevant in the context of healthy aging, which is accompanied
by decreased ventilatory efficiency (i.e., increased VE/VCO2)
and increased ventilatory demand (80). These changes are
thought to occur as a result of increased physiologic dead space,
i.e., ventilation–perfusion (V/Q) inequalities (93, 94), decreased
PaCO2 setpoint (95–97), increased anatomic dead space (95), and
greater likelihood of terminal airway closure at higher closing
volumes (98). Exertional dyspnea also increases alongside loss
of static muscle strength in aging, and older females report
greater dyspnea than older males for a given absolute VE (99).
While you will recall the lack of sex differences in healthy resting
EMGdi, exercise protocol type seems to influence the occurrence

of sex-specific exercise responses in young adults. Specifically,
while EMGdi does not vary between healthy young males and
females during CWR protocols performed at the same relative
intensity (87), females have higher EMGdi%max and dyspnea
for given absolute workloads during ICR exercise (88). This
likely reflects the higher ventilation (as a fraction of maximum
ventilatory capacity) required to sustain a given absolute work
rate in females vs. males (85, 88, 100, 101).

Neural Drive and Dyspnea Are Elevated in
Respiratory Disease
Many respiratory conditions with diverse underlying
pathological mechanisms result in elevated resting tidal
IND and dyspnea. In chronic obstructive pulmonary disease

Frontiers in Medicine | www.frontiersin.org 5 September 2020 | Volume 7 | Article 483

https://doi.org/10.1164/rccm.201504-0841OC
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Domnik et al. Measuring Neural Drive in Exercise

(COPD), resting IND is increased 2-fold (EMGdi%max >20%)
vs. age-matched health (39, 90). Similar magnitudes of increase
are seen in interstitial lung disease (ILD) (55, 102) and cystic
fibrosis (49). This is linked to pathophysiologic alterations in
mechanical and chemical factors (103) and can already appear
in very early disease, as detailed in the accompanying review by
(104): “Dyspnea and Exercise Limitation in COPD: the value
of CPET.”

In obstructive disease, mechanically characterized by
increased compliance, gas trapping, hyperinflation, and reduced
IC, IND correlates with the severity of airflow limitation
(decreased forced expired volume in 1 s; FEV1) and degree of
hyperinflation (39, 49), due to reduced pressure-generating
ability of the diaphragm (105). Mechanical impairment
causing increased IND is experimentally supported by acutely
increased EMGdi alongside loss of FEV1 post-histamine
bronchoprovocation challenge in asthmatic children (106).
IND is also increased in restrictive diseases like ILD, where
decreased compliance and low lung volumes decrease IC. Thus,
in both obstructive and restrictive conditions, IND typically
increases alongside increasing mechanical impairment (39). Such
situations of increased diaphragmatic loading or impairment
also increase recruitment of non-diaphragmatic inspiratory
muscles (5, 6).

Increased IND can reflect underlying mechanical impairment,
but how chemical impairment (e.g., gas exchange abnormalities)
might also be reflected is of increasing interest. For example,
it has been demonstrated that increased physiologic dead
space (i.e., V/Q mismatch), necessitating increased VE,
reducing ventilatory efficiency, and ultimately resulting in
earlier attainment of mechanical constraints, contributes
to the increased IND observed in disease (107, 108). This
is experimentally supported by increased IND during dead
space loading (109) or acute increases in PaCO2 in health,
with the EMGdi-PCO2 relationship suggested as an index of
chemosensitivity (68). Data suggest that IND also increases
linearly with increasing CO2 during rebreathing in COPD
(110); however, the impact of chronic hypercapnia on IND and
CO2 responsiveness in respiratory disease is equivocal. While
some groups report blunted CO2 responsiveness in hypercapnic
COPD (111), others report increased IND in hypercapnic COPD
with equivalent mechanical impairment to normocapnic COPD
(112). These differences may arise from methodological or
group differences (acute CO2 exposure vs. chronic hypercapnia;
degree of mechanical impairment; analysis of the EMG signal
through integration, moving average, or peak) and highlight
the need for further studies to clarify the role of chronic
hypercapnia, increased physiologic dead space, and diffusion
impairment on IND. Increased IND secondary to hypercapnia
is likely attributable to a combination of chemosensory inputs,
resultant ventilatory changes and the mechanical limitations they
precipitate, and afferent signals from mechanically overloaded
inspiratory muscles (113). Finally, patients with hypercapnic
COPD tend to also experience chronic hypoxia, which may
further contribute to IND via chemo-afferent pathways
(114, 115) and through diaphragmatic fatigue (116).

Diaphragmatic Responses to Exercise in
Respiratory Disease
Despite different pathophysiologic underpinnings, there is
interesting similarity in the diaphragmatic and ventilatory
responses to exercise seen in obstructive and restrictive
diseases, both of which are exaggerated compared with health
[Figures 2A–C; see also (117)]. As in health, baseline IND
increases with increasing exercise and metabolic CO2 output
in respiratory disease (57, 89, 90), either to a plateau
in CWR protocols or until end exercise is achieved in
ICR protocols [Figure 1B; (57, 89)], but the relative IND
is elevated for an absolute work rate vs. health. Further,
whereas EMGdi is maintained relative to VE throughout
CWR exercise in health, both VE and Pdi gradually decline
relative to EMGdi throughout exercise in COPD [Figures 1E,F;
(89, 90)], indicative of a declining efficiency of IND during
exertion in this population. A similar pattern is seen in
the neuromechanical and neuroventilatory dissociation of
EMGdi/Pdi and EMGdi%max:VT/VCpred during ICR, with
persistently increasing IND in the face of earlier constraints in
increasing Pdi or VT.

The higher ventilatory requirements of exercise stress the
physiologic tolerances of the respiratory system, exposing
underlying impairments. For example, in COPD, baseline CO2

retention occurring due to ventilation–perfusion mismatch at
rest is further exaggerated during exercise by the inability of
the mechanically disadvantaged system to meet the increased
metabolic demands of exercise (Figures 2C,D) (118). This,
in turn, further increases IND and ventilation. When paired
with a rapid, shallow breathing pattern increasing dead space,
and underlying expiratory flow limitation leading to dynamic
hyperinflation and encroachment of tidal volume on critical
inspiratory reserve (Figure 2E) (119, 120), early cessation of
exercise and a higher symptom burden for a given work
rate ensue (75). In ILD, low diffusing capacity and low
pulmonary compliance result in increased ventilatory drive and
a rapid, shallow breathing pattern due to limited VT expansion,
ultimately also leading to premature termination of exercise and
exaggerated dyspnea (55).

The exercise limitations observed in obstructive and
restrictive disease are due to an inadequate mechanical response
to the higher IND, with the lower IC of both populations
limiting VT expansion and causing earlier attainment of
the lowest critical inspiratory reserve volume, IRV, and a
reliance on increases in breathing frequency to increase VE

[Figures 2E,F; (90, 119–121)]. Whether resulting from the
hyperinflation-disadvantaged length–tension relationships of
the diaphragm (122, 123) and impaired ability to generate
inspiratory pressure in situations of increased inspiratory flow
(41, 124, 125) in COPD or due to low compliance and low
operating lung volumes in ILD, mechanical impairments prevent
the efficient translation of drive into ventilatory response. Thus,
in both obstructive and restrictive disease, the slope of the
relationship between EMGdi%max and work rate is increased
relative to health, as is the slope of the dyspnea: work rate
relationship (55).

Frontiers in Medicine | www.frontiersin.org 6 September 2020 | Volume 7 | Article 483

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Domnik et al. Measuring Neural Drive in Exercise

Using Exercise to Reveal Impairments
Hidden at Rest
The utility of CPET as an adjunct to resting pulmonary function
testing is further highlighted by respiratory conditions with
normal or relatively preserved resting IND, such as exercise-
induced laryngeal obstruction (EILO), which presents primarily
in young individuals during high-intensity exercise (126).
Here, normal resting IND becomes progressively augmented
relative to health at increasing work rates, reflecting increasing
inspiratory resistive work of breathing, with a significantly
elevated IND approaching end exercise (127). Thus, in contrast
to the possible beneficial effects of exercise-associated laryngeal
closure associated with obstructive pulmonary conditions
(128), the laryngeal closure observed in EILO causes both
mechanical impairment and increased IND (127). Interestingly,
individuals with EILO and those with obstructive pulmonary
disease report “unsatisfied inspiration” at high work rates, a
convergence of symptoms despite markedly different underlying
pathophysiological mechanism contributing to each group’s
increased IND (117, 127).

IND measurement and CPET are particularly valuable in
smokers at risk of COPD and individuals with mild COPD.
Despite relatively preserved resting spirometry, subtle decreases
in diffusive capacity, increases in dead space, and changes in
pulmonary mechanics translate into increased IND at rest,
helping to explain the symptoms experienced by these individuals
despite relatively preserved lung function (108, 129). These
resting differences are exaggerated throughout exercise, with
decreased exercise endurance, increased IND, and increased
dyspnea in smokers-at-risk and mild COPD vs. health (108, 129).
This increased dyspnea has recently been linked to ventilatory
inefficiency causing premature mechanical constraint, with
individuals with DLCO lower than the lower limit of normal
(LLN) experiencing a higher ventilatory requirement and thus
greater dyspnea and exercise intolerance than patients with
DLCO > LLN despite equivalent spirometry (130). This topic is
covered in greater detail in the accompanying review by (104).
“Dyspnea and Exercise Limitation in Mild COPD: the value
of CPET.”

NEW FRONTIERS FOR NEURAL DRIVE
MEASUREMENT

Evaluating Responses to Interventions
In addition to providing insight into the mechanisms of
exercise intolerance, IND measurement enables a more detailed
mechanistic assessment of pharmacotherapeutic and other
interventions. For example, bronchodilator-based improvements
in neuromechanical coupling mirroring improvements in
dyspnea during exercise challenges are documented in COPD
(131, 132), while respiratory system unloading (i.e., helium
unloading) independent of airway tone is similarly associated
with improved indices of neuromuscular output (133, 134).
Other interventions, such as supplemental O2 therapy or
opiates, are specifically targeted at decreasing IND rather
than altering respiratory mechanics (135, 136). Thus, the

measurement of EMGdi in research settings can provide valuable
information about IND, ultimately helping to better inform
clinical approaches targeted at improving exercise performance
and/or dyspnea. A possible application would include the
measurement of EMGdi alongside respiratory mechanics (e.g.,
as outlined in the accompanying review by (54) “Non-invasive
evaluation of dynamic respiratory mechanics”) to help evaluate
pulmonary rehabilitation interventions targeting sarcopenia or
the deconditioning of aging or chronic respiratory disease.

One application where this approach has been increasingly
applied is in the evaluation of improvements in dyspnea and
reductions in IND following inspiratory muscle training (IMT),
proposed to occur due to improved neuromechanical coupling
(137). As different IMT protocols have been assessed in diverse
populations, these studies have yielded equivocal results. This
includes no improvements in IND despite improvements in
dyspnea and maximum inspiratory pressure when used by
healthy young adults (138) or improved (decreased) IND
despite maintained VE and breathing pattern in COPD with
baseline inspiratory muscle weakness (137). Differences in IMT
study outcomes may also in part be due to the preferential
recruitment of accessory muscles of inspiration during different
IMT approaches and resulting breathing patterns (51, 138).
Use of EMGdi measurement during IMT performed with
inspiratory threshold training has shown this approach to
generate better diaphragmatic recruitment and activation than
IMT performed using inspiratory resistive devices in severe
COPD with inspiratory muscle weakness (74, 139), while
focused instruction outlining diaphragmatic breathing strategies
similarly improves diaphragmatic activation during IMT in
health (140). Pursed-lip breathing, a commonly employed
intervention linked with improved symptoms of dyspnea and
resulting in deeper and slower breathing patterns, has also
been associated with reduced diaphragmatic recruitment and
increased engagement of accessory muscles in advanced COPD
(141). These types of targeted investigations may help optimize
future rehabilitation approaches (142), and further investigation
is needed to clarify those results attributable to training protocol
vs. those linked directly to between-population differences.

Applying IND Measurement in Non-CPET
Settings
Emerging interest lies in the measurement of IND within
novel areas of research. Two with promise are sleep and acute
exacerbations of COPD. IND measurement can successfully
differentiate periods of central vs. obstructive sleep apnea
(143), while continuous monitoring of overnight EMGdi shows
greater decreases in IND in the transition from wakefulness to
non-rapid eye movement (NREM) and REM sleep in COPD vs.
health, possibly holding clues to the nocturnal hypoventilation
commonly observed in COPD (144). More recent work has
shown the benefits of nocturnal bronchodilator therapy in
improving overnight IND and respiratory mechanics (145).
IND monitoring has also generated interest as a possible means
of predicting recovery from acute exacerbations, with failure
of acutely increased parasternal EMGdi to return to baseline
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conditions after hospitalization for exacerbation strongly
correlated with failure to experience subjective improvements in
dyspnea (Borg), lack of clinical improvement, and likelihood of
readmission (146).

Overcoming Barriers to Clinical Adoption
The integration of IND measurement into clinical settings
has historically been limited by the cost of one-time use
electrodes, the relative invasiveness and complexity of
crural measurement approaches, challenges in standardizing
measurements between visits or between individuals, and
the significant technical complexities and time requirements
associated with existing manual analysis approaches (39, 70).
Advances in surface assessment of parasternal EMG hold
significant promise for overcoming the technical barriers
and patient burden associated with esophageal catheter use.
This has already been successfully employed in diverse and
vulnerable populations, including pediatric asthma (147),
and may form the foundation of more routine adoption
of IND assessment in clinical practice. The reporting of
normalized values, regardless of approach, also helps to account
for possible differences in signal detection between testing
sessions (64).

Addressing concerns surrounding complex and time-
consuming analysis approaches, significant computational
advances now enable semi-automated analyses of crural
EMGdi (63) as well as novel approaches to IND assessment via
diaphragmatic signal entropy (148, 149), significantly improving
analysis speed and consistency. Further, there is promise in
the fully automated, real-time integration of IND information
to inform mechanical ventilation approaches through EMGdi-
based or non-invasive Neurally Adjusted Ventilatory Assist
(150–152). The ongoing refinement of these approaches
provides fertile ground for a more seamless integration of IND

measurement into standard care. A final requirement for the
translation of IND from research to clinical laboratories is the
establishment of normative resting and exercise values of EMGdi
in both sexes across age groups. Until such values are available,
the use of age- and sex-matched comparator populations is
essential in the investigation of disease.

CONCLUSIONS

As far back as 1929, the Lancet submitted a “plea for a careful
clinical study of the diaphragm in chest disease” (153). In the
century that has followed, significant progress has been made in
elucidating not only the structure, but increasingly the function,
of our primary pump muscle. The foundation that has been laid
surrounding the utility of EMGdi as a marker of IND and its
associated sequelae of dyspnea and exercise limitation is now
well-positioned for translation into clinical practice. The ability
of IND to reflect alterations in ventilatory load and capacity holds
significant promise for its possible use as a global marker of
disease severity and ventilatory dysfunction, as well as a useful
target for monitoring the success of therapeutic interventions.
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