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Coronavirus Disease 2019 (COVID-19) is caused by the novel severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), which primarily targets the human respiratory

system and may lead to severe pneumonia and ultimately death. Mortality rate is

particurlarly high among people beyond the sixth decade of life with cardiovascular

and metabolic diseases. The discovery that the SARS-CoV-2 uses the renin-angiotensin

system (RAS) component ACE2 as a receptor to invade host epithelial cells and cause

organs damage resulted in a debate regarding the role of ACE inhibitors (ACEIs) and

angiotensin receptor blockers (ARBs) therapies during COVID-19 pandemic. Some

authors proposed the discontinuation of ACEIs and ARBs for cardiovascular, kidney,

and metabolic diseases, while expert opinions have discouraged that due to limited

empirical evidence of their negative effect on COVID-19 outcomes, and that withdrawing

treatment may contribute to clinical decompensation in high-risk patients. Moreover,

as cardiovascular and metabolic diseases are associated with neurodegenerative

and psychiatric disorders, especially among older adults, a critical appraisal of the

potential positive effects of ACEIs and ARBs is highly needed. Herein, we aim to

discuss the conundrum of ACEIs and ARBs use in high-risk patients for COVID-19,

and their potential protective role on the development and/or progression of geriatric

neuropsychiatric disorders.
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INTRODUCTION

Coronavirus Disease 2019 (COVID-19, named by WHO on Feb 11, 2020) outbreak was officially
reported in December 2019 in Wuhan, Hubei Province, China, and rapidly reached a pandemic
status (1–3). The COVID-19 is caused by a novel positive-sense single-stranded RNA virus
known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (2, 4). Similar to other
coronavirus like the SARS-CoV-1, the novel SARS-CoV-2 primarily targets the human respiratory
system and may cause severe pneumonia and ultimately death. The mortality rate ranges from
2 to 4% of the cases, being particurlarly high among those beyond the sixth decade of life with
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cardiovascular (CVD) and metabolic diseases like diabetes (5–7).
Less severe clinical manifestations include fever, fatigue, chills,
dry cough, rhinorrhoea, sneezing, and sore throat (8, 9).

Apart from the respiratory and systemic symptoms, there
is growing evidence that the 2019-nCoV may also affect the
central nervous system (CNS). Approximately, 36.4% (78/214)
of patients diagnosed with COVID-19 experienced neurological
symptoms like dizziness, headache, impaired arousal, ataxia, and
seizure. It is worthing noticing that these symptoms were mainly
related to other severe symptoms of the disease (10). Anosmia
and dysgeusia have also been reported, and may proceed
the typical respiratory symptoms (11). The first case of viral
meningoencephalitis caused by the 2019-nCoV was reported
in a 24-years-old man admitted to a hospital with seizures
accompanied by impaired arousal, with the virus genome being
identified in the cerebrospinal fluid (CSF) (12). Further evidence
provided by systematic reviews and meta-analysis has supported
the occurrence of neurological manifestations in patients with
COVID-19 (13, 14).

Like the SARS-CoV-1, the SARS-CoV-2 seems to exploit
the angiotensin-converting enzyme 2 (ACE2) receptor to entry
the host cells (15). The evidence mainly from pre-clinical
studies suggesting that ACE inhibitors (ACEIs) and angiotensin
receptor blockers (ARBs), drugs often prescribed for CVD,
kidney, and metabolic diseases, might up-regulate circulating
and tissue expression of ACE2 (16–20), raised the question
whether those therapies increase SARS-CoV-2 infectivity and
COVID-19 severity. Accordingly, some researches proposed the
discontinuation of ACEIs and ARBs, both prophylactically and
in the context of suspected Covid-19 (6, 21–23). In a period
when all information, especially with alarmist content, spreads
fast in social media, this suggestion increased the anxiety among
people using those medications. However, expert opinions have
discouraged treatment discontinuation due to limited evidence
on the potential effects of this strategy in COVID-19 outcomes,
and that withdrawal may contribute to clinical decompensation
of high-risk patients (24).

In this rapidly evolving scenario, herein, we aim to discuss
the use of ACEIs and ARBs in high-risk patients for COVID-
19. We propose that beyond the risk of clinical complications
with the discontinuation of ACEIs and ARBs, these drugs might
exert a potentially protective role against the emergence and/or
progression of geriatric neuropsychiatric disorders. To support
our proposal, we first address the dilemma of discontinuation
of RAS blockers during the COVID-19 pandemic. Second, we
review the role of renin-angiotensin system (RAS) components
in neurodegenerative and neuropsychiatry disorders. Finally, we
discuss the potential protective role of ACEIs and ARBs on the
development and/or progression of geriatric neuropsychiatric
disorders in high-risk patients for COVID-19.

ACEIS AND ARBS USE DURING COVID-19:
FOE OR FRIEND?

Coexisting conditions such as older age, CVD and diabetes seem
to be key prognostic determinants in response to the infection

with 2019-nCoV. Severe symptoms of COVID-19 and high
mortality have been associated with these conditions (6, 7, 25, 26).

ACEIs and ARBs are frequently prescribed for older adults
with CVD, kidney and metabolic diseases. Among multiple
biological effects, ACEIs, and ARBs seem to increase the
expression of ACE2 (17, 18, 20). The increase in ACE2
expression in response to ACEIs and ARBs treatments has
been shown mostly in pre-clinical studies (17–20). There are
only few human studies specifically addressing this issue, with
conflicting results. The ARB olmesartan increased urinary levels
of ACE2 in hypertensive patients (20) and patients with diabetic
nephropathy (27). Conversely, no effect in ACE2 urinary levels
was found with the ACEI enalapril or other ARBs (losartan,
candesartan, valsartan, and telmisartan) (20). Although ACE2
shows a 40% structural homology with ACE, they present a
different conformational structure of the catalytic site, whichmay
explain why ACEI in clinical use do not directly affect ACE2
activity or expression (28, 29). The failure of most ARBs in
changing ACE2 urinary levels revealed that such effects might
not be uniform across RAS blockers even considering the same
drug class (20). Moreover, no changes in ACE2 activity was found
in the plasma of patients with heart failure, atrial fibrillation,
aortic stenosis, and coronary artery disease under ACEIs or ARBs
therapy compared with untreated patients (30–33). Importantly,
there is no available experimental or clinical evidence regarding
the effects of ACEIs or ARBs on the expression of ACE2
in the lung, the primary tissue target by SARS-CoV-2
infection (34).

The recent discovery that the 2019-nCoV uses the renin–
angiotensin system (RAS) component ACE2 as a receptor to
invade host epithelial cells and cause organs damage, prompted
the debate regarding ACEIs and ARBs use during COVID-
19 pandemic. Based on the debatable claim that ACEIs and
ARBs would increase ACE2 expression in humans, some authors
proposed the discontinuation of ACEIs and ARBs for CVD,
kidney, and metabolic diseases (6, 21–23). However, in the
absence of clinical evidence, professional societies have advocated
their continued use (24). Supporting this position, a clinical
study conducted at the Central Hospital of Wuhan, China,
with 362 hypertension patients hospitalized with COVID-
19, demonstrated that ACEIs and ARBs therapies were not
associated with increase in COVID-19 severity or mortality.
The comparison among patients under ACEI/ARBs combined
or monotherapy (115, 31.8%), patients taking other hypertensive
drugs, especially calcium-channel blockers (168, 46.4%), or
not receiving any drug treatment (65, 18%) showed no
significant differences in laboratory results, including blood
counts, inflammatorymarkers, renal, and liver function tests, and
cardiac biomarkers, or clinical outcomes (35). Later other studies
conducted in selected health care systems in North America
(36, 37) and Europe (38, 39) supported the concept that ACEIs
and ARBs are not associated with worst clinical outcomes. Taken
together, these studies provide convincing evidence against the
discontinuation of ACEIs and ARBs use in patients with or at risk
for COVID-19.

It is also important to consider the multiple roles of ACE2
as a component of RAS, a cascade of vasoactive peptides that
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regulates key physiological functions, including blood pressure
and hydroelectrolyte balance (40, 41). Apart from acting as
a circulating hormonal system, RAS components are locally
expressed in several organs and tissues, including kidney, brain,
and lung, exerting physiological actions through tissue-specific
mechanisms (42, 43). In the RAS pathway, angiotensinogen
mainly produced by the liver is cleaved by renin, synthesized
by the kidneys, in Ang I (pro-angiotensin). The angiotensin
converting enzyme (ACE) cleaves the deca-peptide Ang I to the
8-amino acid peptide Ang II, which exerts its effects mainly
through the Ang II type 1 (AT1) receptor. Ang II is also a
substrate for ACE2, a cell membrane protein with a 17-amino
acids N-terminal signal peptide and a C-terminal membrane
anchor that acts as monocarboxypeptidase with a catalytically
active ectodomain located at the extracellular side of the cell
(44, 45). Importantly, the C-terminal domain of ACE2 shares
significant homology with Collectrin, a type I membrane protein
highly expressed on renal proximal tubules. Collectrin is involved
in the process of vesicle transport and membrane fusion,
properties that ACE2 also owns, which may facilitate the use of
ACE2 as a receptor for SARS-CoV-2 gain entry in the host cells
resulting in COVID-19 (46). As a RAS component, ACE2 directly
converts Ang II in the seven-amino-acid heptapeptide Ang-(1-
7), which activates G protein-coupled MAS receptor. This type 1
transmembrane glycoprotein also cleaves the C-terminal amino
acid of Ang I to the non-peptide Ang-(1-9), which in turn is
converted to Ang-(1-7) by ACE and Neprilysin, an enzyme also
known as neutral endopeptidase. The catalytic efficiency of ACE2
is 400 times higher on Ang II than on Ang I, favoring the direct
production of Ang-(1-7) (44, 45).

The RAS is composed traditionally categorized into two arms:
the classical one, including ACE, Angiotensin (Ang) II, Ang
type 1 (AT1) receptor (ACE/AngII/AT1), and the “alternative”
one, comprising ACE2, Ang-(1-7), Mas receptor (ACE2/Ang1-
7/Mas). The classical arm mediates pro-inflammatory, pro-
thrombotic, and pro-fibrotic processes, mainly through the
activation of AT1 receptors (47). On the other hand, the
alternative arm seems to play protective roles by frequently
opposing Ang II actions through Mas receptors activation (41,
48, 49). For instance, pre-clinical and clinical evidence revealed
that up-regulation of ACE2 expression protects acute lung injury
at least in part by decreasing AT1 receptors activation (50).
Accordingly, therapeutic strategies have been designed to inhibit
ACE/Ang II/AT1 axis and to stimulate ACE2/Ang-(1-7)/Mas
receptor activities (41, 51).

SARS-CoV-2 binds to ACE2 in order to gain initial
entry in host lung epithelial cells. Theoretically, this process
promotes down-regulation of ACE2 expression on epithelial cell
surface, which in turn contributes to up-regulation of Ang II
inflammatory signaling, enhancing the acute lung injury (52, 53).
These findings were observed in a murine model of SARS-CoV-1
induced by administration of Spike (S318-510)-Fc. In this model,
acute severe lung injury was associated with decreased tissue
expression of ACE2 and enhanced levels of Ang II. Importantly,
the ARBs losartan (15 mg/kg) rescued mice from SARS-CoV-
1 Spike–mediated lung failure, potentially by restoring ACE2
levels in the lung and favoring the conversion of Ang II in

Ang-(1-7) (54). Supporting these findings, administration of
the ACE2 agonist diminazene aceturate to mice submitted to
hyperoxic lung injury increased lung ACE2 expression/activity
and decreased Ang II/Ang-(1-7) ratio, which in turn reduced
inflammation and severity of lung failure (55). While no study
has replicated these results in experimental models of SARS-
CoV-2, elevated plasma levels of Ang II were positively correlated
with viral load and lung injury scores in patients diagnosed with
COVID-19 (53). Together these results suggest that an imbalance
between ACE/AngII/AT1 and ACE2/Ang1-7/Mas axes toward
the activation of the former might play a pathophysiological role
in COVID-19.

It is worth mentioning that ACE2 levels decline with age,
which may predispose to a pro-inflammatory profile as the result
of RAS classical arm activation (56, 57). A pro-inflammatory
profile also underlies hypertension and diabetes pathophysiology,
conditions highly prevalent with aging (57). A possible decrease
in ACE2 induced by the SARS-CoV-2 infection in older people,
especially those with CVD and diabetes, may exacerbate the
pro-inflammatory background, leading to greater COVID-19
severity and mortality (58). Therefore, beyond the risk of
clinical decompensation, discontinuation of ACEIs and ARBs is
potentially harmful because the subsequent enhanced ACE/Ang
II/AT1 receptor activity can worsen inflammatory lung injury
and other organs damage. In fact, experimental suppression
of ACE2 through genetic deletion or inhibitors was associated
with myocardial damage and severe acute lung injury (59–
61). Conversely, strategies focused in increasing ACE2 levels or
activity such as administration of recombinant human ACE2
(rhACE2), have shown protective effects in CVD and pulmonary
diseases (59, 60, 62) and have been suggested as a potential
biological therapy against SARS-CoV-2 infection (63, 64).

ACE2-ANGIOTENSIN (1-7)-MAS
RECEPTORS AXIS ROLE IN
GERIATRIC-RELATED
NEUROPSYCHIATRIC DISORDERS

Over the past decades, accumulating evidence has pointed out
the role for RAS components in neuropsychiatric disorders
[for review see (49, 51, 65, 66)]. Our research group
has extensively investigated the profile of RAS molecules
in the blood and/or cerebrospinal fluid (CSF) of patients
with different neurodegenerative and psychiatric conditions,
including Parkinson’s disease (67), Alzheimer’s disease (AD) (68),
and schizophrenia (69). For example, patients with Parkinson’s
disease presented decreased circulating levels of Ang II and
Ang-(1-7) along with increased severity of depressive symptoms
(67). Lower CSF levels of ACE were found in patients with
AD compared with healthy controls. A significant positive
correlation between ACE and Aβ42 levels among patients was
also observed, reinforcing the hypothesis that ACE is associated
with amyloid-β pathology in AD (68).

The protective effects exerted by ACEIs and ARBs treatments
in pre-clinical and clinical settings have supported the
involvement of RAS in neuropsychiatric conditions as well
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(51, 70, 71). In animal models of Parkinson’s disease induced
by MPTP or 6-hydroxydopamine, administration of AT1
receptor antagonists like losartan and ACEIs such as perindopril
preventedmotor dysfunction and resulted in increased dopamine
striatal levels and neuronal survival (72–76). In a mouse model of
AD induced by intracerebroventricular injection of amyloid-β,
administration of the ARB telmisartan improved cognitive
decline, increased cerebral blood flow, and attenuated brain
inflammation and oxidative stress (77). Similar findings were
reported following intranasal administration of the ARB losartan
in the transgenic APP/PS1 model of AD (78). Epidemiological
studies also revealed that ACEIs and ARBs significantly reduced
the risk of AD and aging-associated cognitive decline (79). A
6-months treatment with the ARB telmisartan in hypertensive
patients with AD resulted in more positive effects in cognition
and cerebral blood flow than other anti-hypertensive drugs such
as amlodipine (80).

Based on the role of RAS components in regulating
hemodynamic functions, a wide range of studies have also
supported the involvement of RAS in cerebrovascular diseases,
especially stroke (49). Experimental studies with animal models
of cerebral ischemia-reperfusion injury demonstrated that
central or systemic infusions of Ang II decrease blood flow
in the penumbra and increase cerebral inflammation, oxidative
stress and edema, which in turn increase stroke-associated
mortality (81–84). Administration of the ACEI captopril in rats
following hemorrhagic stroke attenuated cerebral herniation and
hematoma expansion, prevented new hemorrhage formation,
and restored cerebral blood flow regulation (85). Additionally,
clinical trials conducted with ARBs including losartan and
eprosartan revealed decrease of ∼25% in stroke incidence
compared with other anti-hypertensive drugs like atenolol and
nitrendipine. The effectiveness of ARBs in stroke prevention
could not be explained only by blood pressure reduction,
indicating that other mechanisms like anti-inflammatory and
antioxidant effects may underly their neuroprotection (86, 87).

The expression of RAS components seems to be influenced
by ACEIs and ARBs. For instance, patients with hypertension
and chronic kidney diseases taking ACEI or ARB presented
enhanced circulating levels of Ang-(1-7) (43). As Ang-(1-7)
exerts beneficial effects by opposing Ang II actions (41), it is
tempting to hypothezise that ACEIs and ARBs neuroprotection
may involve in part the activation of the ACE2/ Ang-(1-7) / Mas
receptor arm. Supporting this hypothesis, mice overexpressing
ACE2 had lower infarct volume and increased cerebral blood
flow and neurological function compared to wild type mice.
The neuroprotective effects were associated with increased
Ang (1-7)/Ang II ratio, angiogenic factors, and attenuated
oxidative stress in the brain (88). Moreover, several studies
employed pharmacological and/or genetic strategies in order
to increase ACE2/Ang-(1-7)/Mas axis activity and revealed
protective effects of those RAS components in neuropsychiatric
and cerebrovascular conditions [for review see (49, 51, 89)].
For instance, intracerebroventricular infusion of Ang-(1-7)
for 4 weeks significantly improved cognitive function and
cerebrovascular reactivity in 5XFAD mice, a model of AD
(90). Intracerebroventricular infusion of Ang-(1-7) for 2 weeks

also prevented cognitive decline and decrease the expression
of hippocampal phospho-tau, amyloid-ß oligomer, and both
soluble (Aβ 1-42) and insoluble (Aβ 1-40) ß- amyloid peptide
in an AD-like rat model resulting from streptozotocin-induced
diabetes. Importantly, the beneficial effects of Ang-(1-7) infusion
were hampered by the coadministration of A-779, an antagonist
of Mas receptors, suggesting that Ang-(1-7) protective activity
was mediated by the activation of Mas receptors (91). A
more recent study provided evidence that ACE2 activation
also exerts protective effects in a transgenic mouse model
of AD. Chronic intraperitoneal administration of DIZE (15
mg/kg/day), an established activator of ACE2, restored cognitive
decline in Tg25676 mice, which was associated with reduced
hippocampal levels of soluble Aβ 1-42 and of pro-inflammatory
mediator IL-1ß alongside increased expression of Mas receptor.
DIZE also reinstated the balance of hippocampal RAS activity,
by increasing the ACE2/ACE activity ratio. Moreover, DIZE-
mediated protection was abolished when co-administered with
C16, an ACE2 inhibitor, indicating that neuroprotective effects
resulted specifically from the enhancement of ACE2 activity (92).

Finally, a post-mortem study revealed that low activity of
ACE2 in mid-frontal cortex of patients with AD negatively
correlated with Aβ expression and phosphorylated tau pathology.
The ratio of Ang II to Ang (1-7) was also reduced in the
brain of patients compared with age-matched non-demented
controls (93), while low circulating levels of Ang-(1-7) correlated
with cognitive decline severity in patients with AD (94). The
inverse correlation between concentrations of Ang-(1-7) and tau
hyperphosphorylation was also reported in the cerebral cortex
and hippocampus of the senescence-accelerated mouse prone 8
(SAMP8) mice, a model of sporadic AD and of the P301S mice,
an animal model of tauopathy (95). Taken together these studies
corroborate the view that potentiating the systemic or local
expression of ACE2 and/or Ang-(1-7) is potentially beneficial
under several pathological conditions.

Apart from ACE2, Neprilysin or neutral endopeptidase, a type
II membrane protein that belongs to the family of zinc dependent
metalloproteases and is expressed in several tissues such as
kidney, brain, heart, and lungs, also potentiates the alternative
arm of RAS (ACE2/Ang1-7/Mas receptors) by converting Ang-
(1-9) in Ang-(1-7) (44). The combination of anti-hypertensive
drugs like ARBs with neprilysin inhibitors seems to be protective
in hypertension, a risk factor for AD (96). Based on the fact
that Neprilysin plays a pivotal role as an amyloid β peptide
(Aβ)- degrading enzyme (97), the effect of Neprilysin in AD
goes in opposite direction. Therefore, an anti-AD therapeutic
strategy should rely on potentiating Neprilysin actions (96). It is
worth mentioning that to the best of our knowledge, no strategy
combining Neprilysin activation with RAS blockers has been
investigated as a potential treatment for AD.

DISCUSSION: CHALLENGES AND
OPPORTUNITIES

ACEIs and ARBs are commonly prescribed for hypertension,
myocardial infarction, heart failure, and diabetic nephropathy
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(98–100). The discovery of the expression of RAS components
in the brain stimulated the investigation of the potential
effects of ACE inhibition and AT1 receptor antagonism on the
physiopathology of neuropsychiatric disorders (71).

A low-grade pro-inflammatory profile has been associated
with aging, a process that has been called “inflammaging” (101).
This pro-inflammatory profile has been associated with late-
life depression and neurocognitive disorders, and increased risk
for the development of neurodegenerative diseases (101–103).
For instance, patients with mild neurocognitive disorder who
progressed to major neurocognitive disorder had significantly
higher baseline levels of inflammatory mediators compared to
those who retained the diagnosis of mild neurocognitive disorder
on follow-up (104).

Recent studies have shown that SARS-CoV-2 can induce
a severe systemic inflammatory response, which has been
associated with multiple organ failure and, as consequence,
a large number of fatalities (105–107). Increased circulating
levels of interleukin (IL)-6 were positively correlated with
pneumonia severity in patients diagnosed with COVID-19
(107). It is worth mentioning that cytokines like IL-6 are
important mediators of the continuous cross-talk between the
periphery and the brain (108). Increased levels of systemic
cytokines can lead to cognitive and behavioral changes in
response to viral infections like influenza (109–112). Mice
infected intranasally with live influenza A/PR8/34 (H1N1)
exhibited loss of body weight, decreased locomotor activity,
and hippocampal-dependent memory impairment. Behavioral
and cognitive symptoms were associated with enhanced mRNA
expression of inflammatory cytokines (IL-1β, IL-6, IFN-α, and
TNF-α) alongside increased microglia reactivity and alterations
in neuronal architecture in the hippocampus (111, 112). Patients
with influenza-associated acute encephalopathy/encephalitis
exhibited neurological symptoms like seizure, altered arousal,
and abnormal behaviors, which were associated with increased
concentrations of IL-1β, IL-6, and TNF-α in serum and CSF
(110). High serum levels of IL-6 in patients with influenza virus-
associated encephalopathy were associated with poor clinical
prognosis including neurological sequelae and death (109). To
date these effects have not been systematically reported and/or
studied in the COVID-19 as all efforts have been dedicated to
battle the epidemic and minimize its death toll. Therefore, this
unchartered area must be explored.

It is highly possible that, after the epidemic is controlled
or over, post-COVID-19 neuropsychiatric conditions, notably
neurocognitive disorders, will be unveiled. As older adults with
CVD and/or diabetes display a more intense pro-inflammatory
profile than older adults without these comorbidities (56, 57),
and seem to be more vulnerable to the systemic inflammation
induced by SARS-CoV-2 (58), they are at higher risk of
CNS dysfunction and neurodegeneration as well. Besides these
indirect effects, SARS-CoV-2 may also invade the CNS through
the olfactory trait, but it remains to be established whether the
virus can directly damage neurons and glial cells (113, 114).

The neuroprotective effects of ACEIs and ARBs seem
to rely on the anti-inflammatory response exerted by the
activation of ACE2/Ang-(1-7) /Mas axis and the decrease in

FIGURE 1 | Potential mechanisms by which ACE inhibitors (ACEIs) and

angiotensin receptor blockers (ARBs) may protect the development and/or

progression of neuropsychiatric diseases in older adults with cardiovascular

(CVD) and metabolic diseases during COVID-19 pandemic. By increasing the

expression of angiotensin-converting enzyme 2 (ACE2), ACEIs, and ARBs

decrease angiotensin II (Ang II) inflammatory signaling and vascular damage

induced by the novel severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection, which in turn may protect the central nervous system

damage.

Ang-II inflammatory signaling (51, 89). Therefore, the anti-
inflammatory effects induced by ACEIs and ARBs may constitute
a protective mechanism not only for the lung but also for other
organs, including the brain, especially at high-risk subjects as
older adults with comorbities (Figure 1).

Respiratory-related infections like influenza seem to be an
independent risk factor for stroke (115–117). Patients with
severe symptoms of COVID-19 presented elevated levels of D-
dimer and significant platelet reduction, which also pedispose
these patients to acute cerebrovascular events (118). As ACE2
is a cardio-cerebral vascular protection molecule (41, 49), the
dysregulation of ACE2 induced by SARS-CoV-2 infection may
lead to abnormally elevated blood pressure and increase the risk
of cerebral hemorrhage. Moreover, by binding to ACE2 receptors
expressed on the capillary endothelium, the SARS-CoV-2 may
disrupt the blood-brain barrier and get access into the CNS
(113). ACEIs and ARBs may prevent or attenuate the deleterious
vascular events induced by the SARS-CoV-2, also minimizing its
potential damage to CNS in older adults.

Another aspect that must be considered during the COVID-
19 pandemic is the development of post-traumatic stress disorder
(PTSD). Besides emotional aspects including fear to be ill or
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die as well as the impact of isolation may significantly account
for the development of PTSD, neurobiological factors must be
taken into account. PTSD has been associated with CVD and
changes in the RAS (119, 120). For instance, a cross-sectional
study revealed that patients diagnosed with PTSD undergoing
ACEIs or ARBs treatment for hypertension presented less PTSD
symptoms including hyperarousal symptoms, avoidance, and
intrusive thoughts when compared with PTSD patients not on
ACEIs or ARBs treatments. Of note, other anti-hypertensive
drugs, including beta-blockers, calcium channel blockers, and
diuretics, were not significantly associated with reduced PTSD
symptoms (119). This is particularly relevant for high-risk
patients taking ACEIs and/or ARBs, further supporting the
potential harmful effects of discontinuation of these drugs
during the treatment of COVID-19. It remains to be answered
whether there is any benefit of prescribing ACEIs or ARBs for
older adults not taking these medications in order to minimize
the complications related to the COVID-19, including the
neuropsychiatric ones.

CONCLUDING REMARKS

The discovery that SARS-CoV-2, the virus responsible for the
COVID-19, enters the host cells by binding ACE2 receptors,
generated a debate regarding the discontinuation or not of
ACEIs and ARBs in patients with CVD and diabetes. These
comorbities are prevalent among older adults, also being
associated with COVID-19 severity and mortality. At first, some
authors proposed the discontinuation of ACEIs and ARBs based
on the evidence that those drugs can enhance ACE2 levels,
supposedly facilitating virus infection. However, this generated a
significant backlash with expert opinions recommending against
the discontinuation due to the lack of empirical evidence to

support the proposal and the potential risk of cardiovascular
complications. Moreover, from a theoretical perspective, ACEIs
and ARBs may stimulate the anti-inflammatory properties of
ACE2/Ang-(1-7)/Mas axis and, therefore, improve COVID-19
associated severity and mortality.

Besides potentially inducing severe systemic inflammatory
response, SARS-CoV-2 also seems to present neurotropism,
although the exact extension and mechanisms by which the
virus affect the CNS is unclear. In this scenario of enhanced
systemic inflammation and potential neuroinflammation, older
adults, especially those with CVD and diabetes, are more
likely to develop cognitive and behavioral changes alongside
neurodegenerative diseases in response to SARS-CoV-2
infection. Given the vascular and anti-inflammatory properties
of ACE2 and Ang (1-7), beneficial not harmful effects are
expected from ACEIs and ARBs, so these medications should
not be withdrawn in older adults.
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