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Von Willebrand factor (VWF) is a mechano-sensitive protein with crucial functions

in normal hemostasis, which are strongly dependant on the shear-stress mediated

defolding and multimerization of VWF in the blood stream. Apart from bleeding disorders,

higher plasma levels of VWF are often associated with a higher risk of cardiovascular

diseases. Herein, the disease symptoms are attributed to the inflammatory response

of the activated endothelium and share high similarities to the reaction of the

host vasculature to systemic infections caused by pathogenic bacteria such as

Staphylococcus aureus and Streptococcus pneumoniae. The bacteria recruit circulating

VWF, and by binding to immobilized VWF on activated endothelial cells in blood flow,

they interfere with the physiological functions of VWF, including platelet recruitment and

coagulation. Several bacterial VWF binding proteins have been identified and further

characterized by biochemical analyses. Moreover, the development of a combination

of sophisticated cell culture systems simulating shear stress levels of the blood flow with

microscopic visualization also provided valuable insights into the interaction mechanism

between bacteria and VWF-strings. In vivo studies using mouse models of bacterial

infection and zebrafish larvae provided evidence that the interaction between bacteria

and VWF promotes bacterial attachment, coagulation, and thrombus formation, and

thereby contributes to the pathophysiology of severe infectious diseases such as infective

endocarditis and bacterial sepsis. This mini-review summarizes the current knowledge of

the interaction between bacteria and the mechano-responsive VWF, and corresponding

pathophysiological disease symptoms.
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INTRODUCTION

Vascular hemostasis is a live-saving mechanism, which balances coagulation, thrombogenesis,
and fibrinolysis in response to vascular injuries and inflammatory processes. Key element
of the hemostasis are the Weibel Palade bodies (WPBs), which represent defense vesicles,
constitutively produced by the endothelium of the vessel walls. The vesicles are filled with vasoactive
substances, immune defense modulators, and proteins involved in coagulation (1, 2). In addition
to megakaryocytes, endothelial WPBs are the main source of Von Willebrand factor (VWF).
This glycoprotein mediates platelet activation, anchorage of thrombocytes to the subendothelial
collagen, and induction of plasma haemostasis via factor VIII (3, 4). Moreover, VWF promotes
cell migration in angiogenesis via interaction with different cell surface receptors and induction of

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.00543
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.00543&domain=pdf&date_stamp=2020-09-03
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:simone.bergmann@tu-bs.de
https://doi.org/10.3389/fmed.2020.00543
https://www.frontiersin.org/articles/10.3389/fmed.2020.00543/full


Steinert et al. Von Willebrand Factor and Bacteria

signaling pathways (5). The high importance of VWF for
balanced hemostasis is conveyed by the appearance of bleeding
disorders such as the von Willebrand disease caused by an
inherited quantitative or functional VWF deficiency (3).

VWF constantly circulates in the bloodstream at
concentrations between 8 and 14.0µg/mL (3, 6). But, vasoactive
hormones such as epinephrine and vasopressin as well as the
plasma proteins thrombin, histamine, and numerous other
mediators of inflammation and/or thrombosis induce the release
of VWF in response to vascular injury or inflammatory stimuli.
The released VWF increases the plasma levels of this protein,
and some proportion of VWF is temporarily retained on the
cell surface and binds to collagen of the exposed subendothelial
matrix (7, 8). This subendothelial immobilization is also
significantly strengthened by the endothelial glycocalyx in a
heparanase-sensitive manner (9). VWF is a mechano-sensitive
protein, which responds to shear stress-mediated forces by
conformational changes.

Shear stress is defined as the force exerted by the blood flow on
blood vessel walls. This stress generates a response in the vascular
wall, characterized by release of endothelial mediators, which in
turn stimulate structural remodeling through activation of gene
expression and protein synthesis (10). The shear stress-derived
conformational changes of VWF are crucial for the biological
function of VWF in hemostasis. Upon exposition to the shear
forces in the bloodstream, the immobilized VWF unfolds to large
protein strings, thereby exposing further functionally important
binding sites (7, 11, 12). In particular, the defolded A1 binding
site mediates adhesion of platelets and recruits them via binding
to the platelet glycoprotein GP?bα (11, 13, 14). This VWF-
platelet interaction finally results in a factor VIII-induced fibrin-
incorporation and in stabilization of generated thrombi.

Elevated VWF-levels are directly associated with
cardiovascular diseases (CD) of high-risk groups such as
the elderly and diabetes patients (15). Alongside with tissue
plasminogen activator (t-PA), and D-dimer of fibrinogen, VWF
is characterized as one out of three biomarkers directly associated
with atherosclerotic lesions and coronary heart disease (16, 17).
This unveils the thrombus-generating activity of elevated VWF-
concentrations as one of the dominant causative factors for
coronary heart disease (18).

In addition to the role of VWF in CD, VWF serves as a
ligand binding site for bacteria, which cause live-threatening
local and systemic infection diseases, such as Staphylococcus
aureus and Streptococcus pneumoniae (19, 20). S. aureus is a
human pathogenic bacterium causing, among others, infective
endocarditis and heart valve prosthetic infection (21, 22). In
this respect, shear-force-mediated adhesion of staphylococci to
VWF is directly associated with coagulation and typical disease
symptoms (23, 24). Similarly, S. pneumoniae, a commensal
colonizing the upper respiratory epithelium and a major
cause of community-acquired pneumoniae in elderly and
immunocompromised patients (25, 26), has also been recurringly
isolated from heart valve endocardium of patients suffering
from subacute endocarditis (27, 28). Furthermore, an increasing
amount of clinical case studies report that up to one-third
of patients suffer from major adverse cardiac effects (MACE)

and vascular impairments within months and even years
after recovering from severe pneumococcal infections such
as pneumoniae and septicemiae (29–31). The observation of
similarities between the association of CD with VWF-release,
and symptoms induced by bacterial infections initiated an
increasing need to develop infection models and sophisticated
visualization techniques in the last decade. With these models,
the pathomechanistical function of some crucial bacterial
virulence factors in VWF-mediated disease progression could
be deciphered.

BACTERIAL BINDING TO VWF UNDER
SHEAR FLOW

The release of VWF from endothelial WPBs is induced by host-
derived hormones such as epinephrine and histamine and other
plasma factors and is also triggered by pathogenic bacteria (32).
For example, in 1991, Sporn et al. were the first to observe that
the intracellular pathogen Rickettsia rickettsii, the main cause
of the Rocky Mountain spotted fever, induces the release of
VWF out of WPB of cultured endothelial cells [(33), Table 1].
Moreover, in our previous studies, we demonstrated that
luminal VWF secretion from WPB of human lung endothelial
cells is significantly increased in response to pneumococcal
adherence and the cytotoxic effects of the pneumococcus toxin
pneumolysin (45). These results strongly suggest that in vivo, the
interaction between circulating bacteria in the bloodstream and
the endothelial vasculature might directly lead to elevated VWF
plasma levels.

In this respect, the scientific question was raised whether
the released VWF is directly subverted by the bacteria for their
own benefit, i.e., as a binding site at the host endothelium, for
platelet aggregation, or interference with the host coagulation.
Indeed, Herrmann et al. were the first to demonstrate the
binding of S. aureus bacteria to VWF coated surfaces and
VWF in suspension (46). A short time later, a heparin-sensitive
bacterial binding to soluble VWFwas also reported for coagulase-
negative Staphylococcus species, often associated with infections
of prosthetic devices [(40), Table 1].

Bacterial adhesion to the vascular endothelium is of high
importance for the pathology of blood-born infections, since this
promotes bacterial settlement, induces inflammatory responses,
and facilitates bacterial transmigration and dissemination into
deeper tissue sites. It became obvious that blood-flow induced
conformational changes of the VWF molecule, which are crucial
for the physiological function of VWF in the bloodstream,
might also be of high relevance for VWF-mediated bacterial
adhesion. For a long time, it remained a technically challenging
task to unreveal details of the bacterial interaction with the
mechano-sensitive VWF under shear stress condition. But
meanwhile, a variety of model systems have been established
that enable the simulation of different physiological shear stress
situations including sophisticated visualization techniques [for
review, please refer to Bergmann and Steinert (47)]. The first
experimental studies on the binding of multimerized VWF to
platelets were performed with “Cone-and-Plate” viscometers
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TABLE 1 | Bacterial VWF-binding proteins and function in adhesion and infectious

diseases.

Species VWF

binding

factor

Function of VWF

binding

References

Staphylococcus

aureus

SPA Bacterial attachment

to VWF strings in flow

and collagen-rich

subendothelium via

catch bond

mechanisms

(19, 34–36)

VWbp Flow-independent

VWF binding of

bacteria, coagulase

activity, activation of

host prothrombin,

induction of fibrin

formation, involved in

pneumonia

progression

(37–39)

Coagulase-

negative

Staphylococci

N.D. Binding of soluble

VWF to S. epidermidis,

S. haemolyticus, and

S. hominis

(40)

Staphylococcus

lugdunensis

VWFbl Attachment to

endothelium under

flow, adherence to

cardiac valves and

induction of

endocarditis

(41, 42)

Streptococcus

pneumoniae

enolase Mediating adherence

to endothelium and

bacterial aggregation

in blood

(20)

Rickettsia

rickettsii

N.D. Induction of VWF

release

(33)

Helicobacter

pylori

N.D. Increase in VWF

plasma levels,

Induction of platelet

aggregation

(43, 44)

(N.D, not determined).

in combination with flow cytometric quantifications (48).
Viscometer-generated shear stress application was also combined
with ristocetin-incubation of VWF. Ristocetin is an antibiotic
produced by Amycolatopsis lurida, and is still used as the
Gold standard in diagnostics of von Willebrand-disease (49).
Ristocetin binds to VWF in a shear-stress-independent manner,
thereby inducing the exposure of the VWF-mediated platelet
binding site for thrombocyte recruitment and aggregation
(49). Following the objective to quantitatively analyse the
specific protein ligand-interaction with VWF under a defined
medium flow, several surface-coating technologies have been
established that create so-called “functionalized surfaces.” For
example, Mascari and Ross have quantified the detachment of
staphylococci from collagen in real–time using a parallel plate
flow chamber combined with phase-contrast video–microscopy
and digital image processing (50). The results provided evidence
that staphylococci adhere directly to multimerized VWF strings

and attach to collagen of the exposed subendothelium in blood-
borne infections (34).

In addition to the biochemical interaction studies, several in
vivomouse infection models employing vwf gene-deficient mice
and platelet-depleted mice enable evaluation and monitoring
of systemic consequences associated with hemostatic processes.
The in vivo analyses revealed that S. aureus bacteria directly
attach to cell-bound VWF of the endothelial vasculature
(23, 51). Moreover, visualization of bacterial mouse infection
via intravital microscopy confirmed that bacteria, which
attached to VWF strings, resist shear stress-mediated clearance
by the blood flow [(19), Figure 1]. Deeper insight into
the pathophysiological consequences of the pneumococcus
interaction with VWF was also provided by infection analyses
using zebrafish larvae. Danio rerio serves as a suitable in vivo
model, sharing high morphologic and functional similarity
to the human endothelial tissue and both, intrinsic and
extrinsic coagulation pathways (52–54). Microscopic real-time
visualization of larval infection confirmed the recruitment
of endothelial-derived VWF to circulating pneumococci
and VWF-mediated attachment to the endothelial vessel
walls (20).

BACTERIAL VWF BINDING PROTEINS AND
BINDING MECHANISMS

The bacterial interaction with components of the hemostasis in
vivo augurs the presence of specific bacterial surface proteins,
which mediate binding to VWF. The protein A (SPA) of
S. aureus was identified as a bacterial VWF-binding protein.
SPA elicits binding activities to both, the soluble and the
surface-immobilized VWF [(35), Table 1]. Six years later, the
VWF binding sites of protein A were narrowed down to the
IgG-binding domain (55). Using single-molecule atomic force
microscopy (AFM), Viela et al. further demonstrated that VWF
binds very tightly to SPA via a force-sensitive catch bond
mechanism, which involves force-induced structural changes in
the SPA domains (36, 56). Meanwhile, protein similarities led to
the assumption that several bacterial virulence factors may use
this binding mechanism to resist clearance by high shear stress
during infections (57).

In addition to SPA, a second staphylococcal VWF binding
protein (VWbp) with coagulase activity was identified from a
phage display-library screen in 2002 [(37, 38), Table 1]. Studies
using functionalized surface-technology revealed that in contrast
to SPA, VWbp appears to be of significant relevance for VWF
recruitment rather than under static conditions (58). Likewise,
pneumococci bind VWF under static conditions, and also recruit
globular circulating VWF via the surface-exposed enolase [(20),
Table 1]. This protein also mediates binding of pneumococci
to plasminogen and to extracellular nucleic acids, which both
promotes bacterial attachment to epithelial and endothelial cells
(59). Moreover, similar to the staphylococcal VWbp, the VWF
binding site for the pneumococcal enolase is located within the
defolded A1 domain of VWF (19, 20, 60). All bacterial VWF-
binding proteins identified so far are listed in Table 1.
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FIGURE 1 | Schematic illustration of bacterial vascular infections and diseases associated with VWF-mediated adhesion of S. aureus and S. pneumoniae to activated

endothelium. The section at the upper left represents a magnification of the heart pulmonary arerty with the artrioventricular valve. (A) An infective endocarditis is

associated with VWF-mediated bacterial attachment to the activated valve endocard leading to the formation of inflammation-inducing bacterial vegetations

containing platelets and fibrin. (B) During sepsis, bacterial adhesion to the inflamed vasculature is promoted via elongated VWF strings and induces the formation

thrombi, which might lead to occlusions of the microvasculature. (C) Severe systemic bacterial infections are accompanied with recurring endothel activation leading

to a longterm dysbalanced hemostasis, which increases the risk of cardiovascular complications such as major adverse cardiac effects. The figure was generated

using bioRender Software.
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In addition to the analyses of perfused VWF protein-coated,
functionalized surfaces, the group of Schneider et al. established
an air pressure-driven, unidirectional, and continuous pump
system manufactured by the company ibidi R© (19). In contrast to
the formerly described flow systems that are employed to analyse
protein-protein-interactions under shear stress conditions, the
ibidi R© pump technology enables sterile long term cultivation
of VWF-producing endothelial cells, which can be incubated
with bacteria and microscopically analyzed in real-time. As a
result, this air-driven microfluidic pump device enabled the
analyses of staphylococcal interaction with VWF on endothelial
cell surfaces under shear stress conditions (19) and was also
used to establish a pneumococcus cell culture infection model
of primary endothelial cells in flow (20, 61). With this system,
the attachment of pneumococci to multimerized VWF strings
on the endothelial cell surface was successfully visualized and
quantitatively evaluated. In accordance with the VWF binding
characteristics of S. aureus, VWF binding to pneumococci is
heparin-sensitive and depends on the amount of polysaccharide
capsule expression (20). It is of note that pneumococcal
attachment to VWF strings is also characterized by remarkable
bond stability for longer time periods even at high shear flow
parameters, which might be promoted by a concerted action
of several additional, yet unidentified VWF-binding proteins
(20). In addition, results of surface plasmon resonance binding
studies and cell culture infections studies in flow revealed that the
pneumococcus enolase interacts with both, globular circulating
VWF and with VWF strings with comparable avidity. Based on
the observation that multi adhesive proteins such as the bacterial
enolase are already detected on the surface of various bacterial
species, it can be assumed that the bacterial interaction with
VWF is part of a general mechanism with pivotal relevance
for pathophysiology.

EFFECT OF STAPHYLOCOCCAL AND
STREPTOCOCCAL INTERACTION WITH
VWF ON COAGULATION AND VASCULAR
DISEASES

As summarized in Table 1, VWF binding to bacteria has only
been studied to detail for staphylococci and streptococci. Taking
clinical symptoms into account, different functional aspects of
the bacterial interaction with VWF can be directly or indirectly
correlated with at least three severe infection diseases: infective
endocarditis, bacterial sepsis, and cardiovascular complications.

Infective endocarditis is regarded as a paradigm of bacterial
diseases associated with vascular inflammation and VWF-
interaction (24). Most of the acute infective endocarditis are
caused by S. aureus and are associated with up to 100%
mortality rate if left untreated (21, 22). Compared to that,
infective endocarditis caused by S. pneumoniae is rare but no
less severe (27, 28). Infection of the heart valves is initiated by
the attachment of circulating bacteria to the endocardium and
the formation of bacterial vegetations, which are embedded in
fibrin and platelets (Figure 1A). During disease progress, the
vegetations induce further inflammatory processes, which result

in ulceration, rupture, and necrosis of the valve cusps (62, 63).
Experimental shear stress determination using native porcine
aortic valve models revealed that even in a healthy human
vasculature, the systolic shear stress at the heart valve leaflet can
reach up to 21.3 dyn/cm2 at the aortic site and up to 92 dyn/cm2

at the ventricular site (64, 65). Similar to the activation of specific
proinflammatory and procoagulant protein expression patterns
of endothelial cells, the hemodynamic forces also promote the
activation of endocardial Notch-dependent signaling pathways
in the endocardial cells of the atrio-ventricular valve (66). The
observed magnitude of shear stress is sensed by the mechano-
responsive VWF and induces stretching and multimerization of
VWF proteins. Thereby, VWF displays crucial binding sites for
bacterial surface adhesins and mediates bacterial attachment to
the heart valve. In line with this, visualization of staphylococcal
mouse infection via 3D confocal microscopy confirmed the
adhesion of fluorescent S. aureus to murine aortic valves (23).
The mouse infection studies further demonstrated that following
valve damage, VWF and fibrin are both deposited on the
damaged valve endocardium and serve as attachment sites
for S. aureus [(23, 51), Figure 1A]. Moreover, endothelial cell
culture infections and intravital microscopy of bacterial mouse
infection confirmed that staphylococci and pneumococci resist
shear stress-mediated clearance by the blood flow by binding to
VWF strings at the endothelial vessel walls (19, 20, 51). Following
disease progress, the VWF-mediated bacterial attachment also
promotes the recruitment of large amounts of platelets, capturing
S. aureus to the valve surface [(23, 24, 67, 68), Figures 1A,B].
The observation that among the staphylococci, only S. aureus
and S. lugdunensis are able to bind VWF might, in part, explain
why these bacteria are more effective in causing endocarditis than
other staphylococci (41).

Bacterial VWF binding is also involved in the formation of
large platelet aggregates within the blood circulation. In this
respect, the formation of bacterial-induced platelet aggregates
and the depletion of clotting factors from blood represents
a crucial pathomechanism, which is directly attributed to
disease symptoms typical for bacterial sepsis. For example,
staphylococcal sepsis is associated with an increase in coagulation
activity and an enhanced thrombosis (Figure 1B; Table 1). It is
assumed that the Staphylococcus-induced dysregulated activation
of systemic thrombosis leads to thrombotic microangiopathy,
which is associated with an accelerated fibrinolysis and bleeding
tendency, referred to as disseminated intravascular coagulation
[DIC, (69)]. Moreover, this bacterial mechanism is also assumed
to directly induce the formation of abscesses [(39, 70–73),
Figure 1B]. A similar formation of blood clots, reaching up to
10µm in diameter, was observed in pneumococcus infection
of Danio rerio larvae (20). Based on these data, we suppose
that the VWF-mediated bacterial aggregate formation in the
blood circulation of the zebrafish cause a partial or complete
occlusion of the larval microvasculature. Thus, in severe cases
of staphylococcal and pneumococcal septicaemiae, the vascular
occlusion of small blood vessels throughout the body represents
a life-threatening disease symptom, which might lead to multi-
organ failure, resulting in high mortality rates of up to 50%
[(74–77), Figure 1B]. Bacterial aggregate formation in sepsis and
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infective endocarditis, in particular, are also prime examples of
the strong connection between the hemostatic system and innate
immunity, which is referred to as immune thrombosis (78). It
is coincidently proposed that the infection-induced coagulase
activity mediates bacterial capture within a fibrin meshwork,
which enables this pathogen to disseminate via thromboembolic
lesions and to resist opsonophagocytic clearance by host immune
cells (73). On the other hand, platelets are the crucial mediators of
the innate defense against staphylococci by releasingmicrobicidal
proteins from alpha granules that kill the bacteria (79). On the
first view, it appears to be contradictory that bacteria induce a
clotting mechanism, which is originally developed as an anti-
bacterial immune defense mechanism of the host. However, the
biochemical and physiological attributes of the fibrin meshwork
formed by staphylocoagulases are thought to be distinct and less
solid than those generated by thrombin (80). Therefore, instead
of containing the infection, immune thrombosis might rather
create the optimal environment for bacteria to survive and to
evade the immune defense of the host (24).

It is supposed that the bacterial infection mechanism leading
to vascular dysfunction and enhanced activation of inflammation
might also be implicated in developing cardiovascular
complications (Figure 1C). An increasing number of clinical
studies solidify the observation that pneumococci induce
vascular inflammation of the endothelial vessel wall, including
the aorta (81), and that severe pneumococcal infections such
as pneumoniae and septicemiae lead to a higher risk for major
adverse cardiac effects (MACE) such as myocardial infarction,
ischemic stroke, and arterial thrombosis (29–31).

Since elevated VWF plasma levels are known to be associated
with an increased risk for MACE (15), the endothelial
VWF release induced by pneumococcal attachment and by
pneumolysin activity might be partially responsible for the
pathologic effects on the cardio vasculature (45). As further
explanation, functional variants of VWF have been identified,
which elicit differences in the protein conformation and shear
sensitivity. These variants are associated with increased platelet
aggregate size and the occurrence of these VWF variants
correlates with a higher risk of thromboembolisms including
myocardial infarction and stroke (82). In line with these
observations, it can be assumed that bacterial interaction with
VWF might effect the hemostatic function in various ways, i.e.,

by sterical hindrance of the platelet binding site, by alteration
of the VWF conformation, and by inhibition of dimerization
and multimerization activities, thereby increasing the risk for
cardiovascular complications.

CONCLUSIONS

VWF is a live-saving key component of coagulation and immune
thrombosis in response to vascular injury and inflammation.
Bacterial interaction with VWF is of high medical and scientific
importance since this interaction is directly associated with
specific clinical manifestations and long-term complications of
infectious diseases. It has been demonstrated that binding of
S. aureus and S. pneumoniae to VWF strings is controlled
by hydrodynamic flow conditions. So far, at least three
bacterial pathomechanisms involving host-derived VWF can
be named: (i) binding to multimerized VWF strings mediates
bacterial attachment to endothelial surfaces in blood flow–a
major prerequisite of bacterial colonization, inflammation, and
dissemination. (ii) VWF recruitment facilitates bacterial capture
within clotted blood, thereby preventing bacterial clearance
via immunothrombosis; (iii) recruitment of intravascular VWF
induces bacterial aggregate formation, which leads to occlusion
of microcapillaries and impaired blood supply. Although several
sophisticated technologies such as microfluidic systems and
binding force determinations already provided most valuable
insights into the cell biological and biochemical details, the
multifactorial complexity of the bacterial interaction with VWF
still remains a challenging subject of ongoing scientific research.
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