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Chest radiography is a critical tool in the early detection, management planning, and

follow-up evaluation of COVID-19 pneumonia; however, in smaller clinics around the

world, there is a shortage of radiologists to analyze large number of examinations

especially performed during a pandemic. Limited availability of high-resolution computed

tomography and real-time polymerase chain reaction in developing countries and regions

of high patient turnover also emphasizes the importance of chest radiography as both a

screening and diagnostic tool. In this paper, we compare the performance of 17 available

deep learning algorithms to help identify imaging features of COVID19 pneumonia.

We utilize an existing diagnostic technology (chest radiography) and preexisting neural

networks (DarkNet-19) to detect imaging features of COVID-19 pneumonia. Our

approach eliminates the extra time and resources needed to develop new technology and

associated algorithms, thus aiding the front-line healthcare workers in the race against the

COVID-19 pandemic. Our results show that DarkNet-19 is the optimal pre-trained neural

network for the detection of radiographic features of COVID-19 pneumonia, scoring

an overall accuracy of 94.28% over 5,854 X-ray images. We also present a custom

visualization of the results that can be used to highlight important visual biomarkers of

the disease and disease progression.

Keywords: chest X-ray radiography, artificial intelligence, image classification, neural network, convolutional

neural networks, corona virus, transfer learning

1. INTRODUCTION

On March 11, 2020, the World Health Organization declared the COVID-19 virus as an
international pandemic (1). The virus spreads among people via physical contact and respiratory
droplets produced by coughing or sneezing (2). The current gold standard for diagnosis of
COVID-19 pneumonia is real-time reverse transcription-polymerase chain reaction (RT-PCR).
The test itself takes about 4 h; however, the process before and after running the test, such as
transporting the sample and sending the results, requires a significant amount of time. Pertaining
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to PCR testing is not a panacea, as the sensitivities range from
70 to 98% depending on when the test is performed during
the course of the disease and the quality of the sample. In
certain regions of the world it is simply not routinely available.
More importantly, the RT-PCR average turnaround time is 3–6
days, and it is also relatively costly at an average of CA$4, 000
per test (3). The need for a faster and relatively inexpensive
technology for detecting COVID-19 is thus crucial to expedite
universal testing.

The clinical presentation of COVID-19 pneumonia is very
diverse, ranging from mild to critical disease manifestations.
Early detection becomes pivotal in managing the disease and
limiting its spread. In 20% of the affected patient population,
the infection may lead to severe hypoxia, organ failure, and
death (4). In order to meet this need, high-resolution computed
tomography (HRCT) and chest radiography (CR, known as chest
X-ray imaging) are commonly available worldwide. Patterns of
pulmonary parenchymal involvement in COVID-19 infection
and it’s progression in the lungs has been described in multiple
studies (5). However, despite the widespread availability of X-
ray imaging, there is unfortunately a shortage of radiologists
in most low-resource clinics and developing countries to
analyze and interpret these images. For this reason, artificial
intelligence and computerized deep learning that can automate
the process of image analysis have begun to attract great
interest (6). Note that X-ray costs about CA$40 per test
(3), making it a cost effective and readily available option.
Moreover, the X-ray machine is portable, making it versatile
to be utilized in all areas of the hospital even in the Intensive
Care Unit.

Since the initial outbreak of the COVID-19, a few attempts
have been made to apply deep learning to radiological
manifestations of COVID-19 pneumonia. Narin et al.
(7) reported an accuracy of 98% on a balanced dataset
for detecting COVID-19 after investigating three pre-
trained neural networks. Sethy and Behera (8) explored 10
different pre-trained neural networks, reporting an accuracy
of 93% on a balanced dataset, for detecting COVID-19
on X-ray images. Zhang et al. (9) utilized only one pre-
trained neural network, scoring 93% on an unbalanced
dataset. Hemdan et al. (10) looked into seven pre-trained
networks, reporting an accuracy of 90% on a balanced
dataset. Apostolopoulos and Bessiana (11) evaluated five
pre-trained neural networks, scoring 98% of accuracy on an
unbalanced dataset.

However, these attempts did not make clear which existing
deep learning method would be the most efficient and robust
for COVID-19 compared to many others. Moreover, some of
these studies were carried out on unbalanced datasets. Note
that an unbalanced dataset is a dataset where the number of
subjects in each class is equal. Our study aims to determine
the optimal learning method, by investigating different types
of pre-trained networks on a balanced dataset, for COVID-
19 testing. Additionally, we attempt to visualize the optimal
network weights, which were used for decision making, on top
of the original X-ray image to visually represent the output of
the network.

2. METHOD

We investigated 17 pre-trained neural networks: AlexNet,
SqueezNet (12), GoogleNet (13), ResNet-50 (14), DarkNet-53
(15), DarkNet-19 (15), ShuffleNet (16), NasNet-Mobile (17),
Xception (18), Place365-GoogLeNet (13), MobileNet-v2 (19),
DenseNet-201 (20), ResNet-18 (14), Inception-ResNet-v28 (21),
Inception-v3 (22), ResNet-101 (14), and VGG-19 (23).

All the experiments in our work were carried out in MATLAB
2020a on a workstation (GPU NVIDIA GeForce RTX 2080Ti 11
GB, RAM 64 GB, and Intel Processor I9-9900K @3.6 GHz). The
dataset was divided into 80% training and 20% validation.

The last fully connected layer was changed into the new task to
classify two classes. The following parameters were fixed for the
17 pre-trained neural networks: learning rate was set to 0.0001,
validation frequency was set to 5, max epochs was set to 8, and
the min batch size was set to 64.

The class activation mapping was carried by multiplying the
image activations from the last ReLU layer by the weights of
the last fully connected layer of the DarkNet-19 network, called
“leaky18,” as follows:

C(x, y) =
∑

Wl=61Fl=60(x, y) (1)

where C is the class activation map, l is the layer number, F is
the image activations from ReLu layer (l = 60) with dimensions
of 8 × 8 × 1, 024. Here, W refers to the weights at l = 61 with
dimensions of 1× 1× 1, 024. Thus, the dimensions of C is 8× 8.
We then resized C to match the size of the original image and
visualized it using a jet colormap.

3. DATASET USED

Two datasets are used, the first dataset is the publicly
available CoronaHack-Chest X-Ray-Dataset which can
be downloaded from this link: https://www.kaggle.com/
praveengovi/coronahack-chest-xraydataset. This dataset
contains the following number of images: 85 COVID-19, 2,772
bacterial, and 1,493 viral pneumonias. The second dataset is a
local dataset collected from an accredited Level I trauma center:
Vancouver General Hospital (VGH), British Columbia, Canada.
The dataset contains only 85 COVID X-ray images.

3.1. Dataset 1: Training and Validation
The CoronaHack -Chest X-Ray-Dataset contains only X-ray
85 images for COVID, and to balance the dataset for neural
network training, we had to downsize the sample size from 85
to 50 by random selection. To generate the “other class,” we
downsized the samples, by selecting 50 radiographic images that
were diagnosed as healthy to match and balance the COVID-19
class. Radiographs labeled as bacterial or other viral pneumonias
have also been included in the study to assess specificity. The
number of images used in training and validation to retrain the
deep neural network is shown in Table 1.
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TABLE 1 | Number of X-ray images used for training, validation, and testing in this study.

Dataset Class 1 Class 2

Name Purpose Location of origin COVID Healthy Pneumonia bacterial Pneumonia viral

Dataset 1 Training CoronaHack -Chest X-Ray-Dataset 40 13 13 14

Dataset 1 Validation CoronaHack -Chest X-Ray-Dataset 10 3 3 4

Dataset 2 Testing CoronaHack -Chest X-Ray-Dataset and Vancouver General Hospital 58 1,560 2,761 1,475

Total number of X-ray images 108 1,576 2,777 1,493

FIGURE 1 | COVID-19 detection framework using pre-trained neural networks.

3.2. Dataset 2: Testing
Data collected from the Vancouver General Hospital (VGH)
contained 58 chest radiographs with pulmonary findings
ranging from subtle to severe radiographic abnormality, which
was confirmed by two radiologists individually on visual
assessment with final interpretations with over 30 years of
radiology experience combined. These 58 radiographs were
obtained from 18 RT-PCR-positive COVID-19 patients. Serial
radiographs acquired during a patient’s hospital stay showing
progressive disease were also included in the data set. The data
set contained anteroposterior and posteroanterior projections.
Portable radiographs acquired in intensive care units with lined
and tubes in place were also included in the data set. The images
(true positive) submitted for the analysis by the VGH team were
anonymized and mixed with an equal number of normal chest
radiographs to create a balanced data set.

The remaining from the CoronaHack-Chest X-Ray-Dataset
was used to test the specificity of the algorithm. Dataset 2 was
used an external dataset to test the robustness of the algorithm,
with a total of 5,854 X-ray images (58 COVID-19, 1,560 healthy,

2,761 bacterial, and 1,475 viral pneumonias), as shown inTable 1.
Note that there is no overlap between Dataset 1 and Dataset 2.

4. RESULTS AND DISCUSSION

To determine the optimal existing pre-trained neural network for
the detection of COVID-19, we used the CoronaHack-Chest X-
Ray-Dataset. The chest X-ray images dataset contains 85 images
from patients diagnosed with COVID-19 and 1,576 images from
healthy subjects. Five X-ray images collected from the Lateral
position were deleted for consistency. We then balanced the
dataset to include 50 RT-PCR positive COVID-19 patients and
50 healthy subjects. From the group of 85 RT-PCR positive
cases patients were randomly selected with varying extent of
pulmonary parenchymal involvement. After creating a balanced
dataset, which is important for producing solid findings, 17 pre-
trained networks were analyzed following the framework shown
in Figure 1.

The 17 pre-trained neural networks were trained on a large
data set by using more than a million images, as a result the
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algorithms developed can classify new images into 1,000 different
object categories, such as keyboard, mouse, pencil, and various
animals. Through artificial intelligence and machine learning
each network can detect images based on unique features
representative of a particular category. By replacing the last fully
connect layer, as shown in Figure 1, and retraining (fine-tune

TABLE 2 | Performance of 17 pre-trained neural networks on Dataset 1.

Network Training

accuracy

Validation

accuracy

Overall

performance

DarkNet-19 100.00 100.00 100.00

ResNet-50 100.00 100.00 100.00

AlexNet 100.00 95.00 97.50

DenseNet-201 100.00 95.00 97.50

GoogleNet 100.00 95.00 97.50

ResNet-101 100.00 95.00 97.50

ResNet-18 100.00 95.00 97.50

SqueezeNet 100.00 95.00 97.50

DarkNet-53 100.00 90.00 95.00

MobileNet-v2 100.00 90.00 95.00

VGG-19 100.00 90.00 95.00

VGG-16 90.91 95.00 92.95

Xception 90.91 95.00 92.95

Inception-ResNet-v2 81.82 100.00 90.91

NASANet-Mobile 81.82 100.00 90.91

Inception-v3 100.00 80.00 90.00

ShuffleNet 90.91 85.00 87.95

The neural networks are ranked in descending order based on the overall performance

on the training and validation images.

deeper layers) the neural network with the new dataset (50
COVID-19 and 50 other), the neural network can detect COVID-
19 and other populations.

The performance of 17 pre-trained neural networks using the
same dataset (50 COVID-19 and 50 other), is shown in Table 2.
Interestingly, we found that the following two pre-trained neural
networks achieved an accuracy of 100% during the training and
validation phases using Dataset 1: ResNet-50 and DarkNet-19.

Inception-v3 and ShuffleNet achieved an overall validation
accuracy below 90% suggesting that these neural networks are
not robust enough for detecting COVID-19 compared to, for
example, ResNet-50 and DarkNet-19. Despite that the Inception-
ReNet-v2 was pre-trained on trained on more than a million
images from the ImageNet database (21), it was not ranked the
highest in terms of the overall performance, suggesting it is not
suitable to use for detecting COVID-19.

Each pre-trained network has a structure that is different
from others, e.g., number of layers and size of input. The most
important characteristics of a pre-trained neural network are
as follows: accuracy, speed, and size (24). Greater accuracy
increases the specificity and sensitivity for COVID-19 detection.
Increased speed allows for faster processing. Smaller networks
can be deployed on systems with less computational resources.
Therefore, the optimal network is the network that increases
accuracy, utilizes less training time, and that is relatively small.
Typically, there is a tradeoff between the three characteristics,
and not all can be satisfied at once. However, our results show
that it is possible to satisfy all three requirements. DarkNet-19
outperformed all other networks, while having increased speed
and increased accuracy in a relatively small-sized network, as
shown in Figure 2. A visual comparison between all investigated
pre-trained neural networks is presented, with respect to the
three characteristics. The x-axis is the training time (logarithmic

FIGURE 2 | Overall performance of 17 pre-trained neural networks for detecting COVID-19 using Dataset 1.
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TABLE 3 | Comparison between optimal pre-trained neural networks proposed for detecting COVID-19 to date.

Study Optimal network COVID-19 sample size Other sample size Cross validation (%) Validation accuracy (%)

This work DarkNet-19 and ResNet-50 50 50 80–20 100

Narin et al. (7) ResNet-50 50 50 80–20 98

Sethy and Behera (8) ResNet-50 + SVM 25 25 80–20 95

Zhang et al. (9) ResNet-50 70 30 NC 96

Hemdan et al. (10) VGG19 and DenseNet201 25 25 80–20 90

Apostolopoulos and Bessiana (11) VGG-19 224 504 90–10 98.75

SVM refers to Support Vector Machine while NC refers to not clear.

scale) in seconds, the y-axis is the overall validation accuracy and
the bubble size represents the network size. Note that DarkNet-19
and ResNet-50 achieved an accuracy of 100%; however, DarkNet
is much faster and requires less memory.

A comparison of optimal neural networks recommended
in previous studies, along with the optimal neural network
suggested by this work, is shown in Table 3. Narin et al. (7)
used a balanced sample size of 100 subjects (50 COVID-19
and 50 healthy). They investigated three pre-trained neural
networks: ResNet50, InceptionV3 and InceptionResNetV2, with
a cross validation ratio of 80–20%. They found that ResNet50
outperformed the other two networks, scoring a validation
accuracy of 98%.

Sethy and Behera (8) used a balanced sample size of 50 subjects
(25 COVID-19 and 25 healthy). They extracted features from
pre-trained neural networks and fed them to Support vector
Machine (SVM) for classification. They explored the following
pre-trained neural networks: AlexNet, DenseNet201, GoogleNet,
Inceptionv3, ResNet18, ResNet50, ResNet101, VGG16, VGG19,
XceptionNet, and Inceptionresnetv2, with a cross validation
ratio of 80–20%. Again, ResNet50 in combination with
SVM outperformed the other networks, with a validation
accuracy of 95%.

A similar study by Hemdan et al. (10) used a balanced
sample size of 50 subjects (25 COVID-19 and 25 healthy). The
following pre-trained neural networks were evaluated: VGG19,
DenseNet201, InceptionV3, ResNetV2, InceptionResNetV2,
Xception, and MobileNetV2, with a cross validation ratio of 80–
20%. Both VGG19 and DenseNet201 scored the same validation
accuracy of 90%.

Two studies reported results based on unbalanced datasets:
Zhang et al. (9) and Apostolopoulos and Bessiana (11). Zhang
et al. (9) created a deep learning network based on ResNet-50,
which achieved an accuracy of 96% with a dataset of 70 COVID-
19 and 30 Healthy subjects. Apostolopoulos and Bessiana
(11) used a sample size of 224 COVID-19 and 504 healthy
subjects. They tested five pre-trained neural networks: VGG19,
InceptionV3, InceptionResNetV2, Xception, and MobileNetV2.
They found that VGG19 scored highest accuracy of 98.75%, with
a cross validation ratio of 90–10%.

It is worth noting that the studies discussed in Table 3

did not use other populations, such as pneumonia bacterial
to test specificity. Moreover, they did not use an external
dataset to test reliability. In other words, they had only

FIGURE 3 | Learning performance of DarkNet-19 and ResNet-50.

training and validation datasets. Note that we used two
datasets: Dataset 1 for training and validation and Dataset 2
for testing. Interestingly, ResNet-50 network achieved a high
accuracy in three different studies. Note that these studies
only compared ResNet-50 to a select few neural networks,
whereas here we compared a total of 17. One possible reason
that our ResNet-50 achieved 100% is that the dataset (Dataset
1) in our study differed from the datasets in other studies.
Another reason is the network’s parameter settings (e.g.,
learning rate). However, DarkNet-19 also achieved a validation
accuracy of 100%, and it is not clear which network is more
accurately detect radiographic abnormalities associated with
COVID-19 pneumonia.

5. DARKNET-19 VS. RESNET-50

Two approaches will be used to compare the performance
between the DarkNet-19 and ResNet-50 networks: (1) model
fitting and (2) performance over Dataset 2.
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1. Model fitting: Achieving a good model fitting is the target
behind any learning algorithm by providing a model that
does not suffer from either over-fitting and under-fitting
(25). Typically, a “good fitted” model is obtained when both
training and validation loss curves decrease to a stability zone
where the gap between the loss curves is minimal (25). This
gap is referred to as the “generalization gap,” and it can be
seen in Figure 3; the gap between the loss curves in DarkNet-
19 is smaller than the gap in ResNet-50. This suggests that
DarkNet-19 is more optimal when compared to ResNet-19
even though both achieved 100% accuracy of the training and
validation images using Dataset 1.

2. Performance over the testing dataset: In this step, the
reliability and robustness of DarkNet-19 and ResNet-50 over
Dataset 2 will be examined. As can be seen in Table 4,
both neural networks were able to differentiable the pattern

TABLE 4 | Performance comparison between DarkNet-19 and ResNet-50 over

the testing dataset (Dataset 2).

Testing dataset DarkNet-19 ResNet-50

Dataset 2 Accuracy (%) Accuracy (%)

COVID (n = 58) 96.55 86.21

Other (Healthy, n = 1, 560) 94.53 95.29

Other (Pneumonia bacterial, n = 2, 756) 92.60 97.82

Other (Pneumonia viral, n = 1, 475) 93.44 95.44

Overall 94.28 93.69

of COVID-19 pneumonia from other patterns labeled as
bacterial and other viral pneumonia with an accuracy >90%.
However, DarkNet-19 achieved an accuracy of 96.55% while
ResNet-50 achieved an accuracy of 86.21% in detecting
COVID-19. In other words, DarkNet-19 outperformed
ResNet-50 in terms of sensitivity. On the other hand, ResNet-
50 slightly outperformed DarkNet-19 in terms of specificity.

As we are interested in finding the model that achieved high
sensitivity with minimal generalization gap, the optimal neural
network to be used is the DarkNet-19.

6. CLINICAL PERSPECTIVE

Availability of efficient algorithms to detect and categorize
abnormalities on chest radiographs into subsets can be a useful
adjunct in the clinical practice. Darknet-19’s accuracy to detect
radiographic patterns associated with COVID-19 in portable
and routine chest radiographs at varied clinical stages makes
it a robust and useful tool. Use of such efficient algorithms
in everyday clinical practice can help address the problem
of shortage of skilled manpower, contributing to provision of
better clinical care. More institution-based research is, however,
required in this area.

While the DarkNet-19 algorithm can distinguish COVID-19
patients from other populations with 94.28% accuracy, we note
the following limitations:

1. The COVID sample size used in the training and validation
phase was relatively small, 50 images.

FIGURE 4 | Performance examples of visualization diagnosis using class activation mapping.
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2. The images were not segregated based on the technique of
acquisition (portable or standard supine AP chest radiograph)
or positioning (posteroanterior vs. anteroposterior). Thus,
any possible errors that might arise because of the patient’s
positioning have not been addressed in the study. Lateral chest
radiographs were excluded from the data set.

3. Our investigation compared radiographic features of COVID-
19 patients to healthy individuals. As a next step in our
investigation, the radiographic data from COVID-19 patients
should also be compared with other respiratory infections in
order to improve the specificity of the algorithm for detection
of COVID-19.

An important component to the automated analysis of the
X-ray data is the visualization of the X-ray images, using
colors to identify the critical visual biomarkers as well as
indication of disease progression. This step can make disease
identification more intuitive and easier to understand, especially
for healthcare workers with minimal knowledge about COVID-
19. The visualization can also expedite the diagnosis process.
As shown in Figure 4 (True Positive), COVID-19 subjects were
identified based on the activation images and weights. Also,
examples for false positive (a non-COVID subject identified as
a COVID), false negative (a COVID subject identified as non-
COVID), and true negative (a non-COVID subject identified as a
non-COVID subject) were shown.

Note that the main purpose of this paper is not to investigate
the difference between pre-trained and trained neural networks;
the purpose is rather to provide a solution that is based on
already existing and proven technology to use for COVID
screening. If the accuracy achieved by the pre-trained neural
network is not acceptable by radiologists, then exploring different
untrained convolutional neural networks could be worth doing.
Also, including the patient’s demographic information, D-Dimer,
oxygen saturation level, troponin level, neutrophil to lymphocyte
ratio, glucose level, heart rate, degree of inspiration, and
temperature may improve the overall detection accuracy.

7. CONCLUSION

In conclusion, fast, versatile, accurate, and accessible tools
are needed to help diagnose and manage COVID-19 testing
infection. The current gold standard laboratory tests are time
consuming and costly, adding delays to the testing process.

Chest radiography is a widely available and affordable tool
for screening patients with lower respiratory symptoms or
suspected COVID-19 pneumonia. Addition of computer-aided
radiography can be a useful adjunct in improving throughput
and early diagnosis of the disease; this is especially true during
a pandemic, particularly during the surge, and in areas with a
shortage of radiologists. In this paper, we have reviewed and
compared many deep learning techniques currently available in
the market for detecting radiographic features of COVID-19
pneumonia. After investigating 17 different pre-trained neural
networks, our results showed that DarkNet-19 is the optimal
pre-trained deep learning network for detection of imaging
patterns of COVID-19 pneumonia on chest radiographs. Work
to improve the specificity of these algorithms in the context of
other respiratory infections is ongoing.
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