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Mortality in COVID-19 patients predominantly results from an acute respiratory distress

syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality

in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the

HSP70 chaperone. A natural rise of body temperature during mild fever can naturally

accumulate high cellular levels of HSP70 that can arrest apoptosis and protect alveolar

lung cells from inflammatory damages. However, beyond 1–2 h of fever, no HSP70 is

being further produced and a decreased in body temperature required to the restore

cell’s ability to produce more HSP70 in a subsequent fever cycle. We suggest that

antipyretics may be beneficial in COVID-19 patients subsequent to several hours of

mild (<38.8◦C) advantageous fever, allowing lung cells to accumulate protective HSP70

against damages from the inflammatory response to the virus SARS-CoV-2. With age,

the ability to develop fever and accumulate HSP70 decreases. This could be ameliorated,

when advisable to do so, by thermotherapies and/or physical training.

Keywords: acute respiratory distress syndrome, COVID-19, SARS-CoV-2, fever, Hsp70, heat- shock response

THE EFFECT OF ELEVATED ENVIRONMENTAL TEMPERATURES
ON THE COVID-19 PANDEMIC

In February 2020, many health and political officials across the world were still grossly
underestimating the severity of the developing COVID-19 pandemic, in part because of the
scientifically unproven belief that like seasonal influenza, COVID-19 would disappear by April
2020 with the rise of temperatures in the Northern Hemisphere. Aside from being scientifically
improper to extrapolate information from other seasonal viruses to a novel virus propagating in
populations lacking prior immune defenses (1), SARS-CoV-2 was since proven to resist warm
summer temperatures in countries of the northern hemisphere, experiencing dramatic deadly
second waves of infections (https://coronavirus.jhu.edu/map.html). Moreover, the outbreak of
another closely related coronavirus, MERS-CoV, occurred in Saudi Arabia despite scorching spring
and summer temperatures (2). Unless strong measures are taken against the COVID-19 pandemic
through social distancing and by developing effective vaccines and anti-viral drugs, it is likely to
become an ongoing plague. Nonetheless, as previously suggested for SARS-CoV-1 (3), warmer
temperatures and higher humidity may reduce SARS-CoV-2’s viability ex vivo on infective surfaces,
thereby mitigating the spread (4, 5). In vivo evidence is lacking on mitigating or aggravating effects
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of high fever on SARS-CoV-2 replication. Yet, cycles of mild
harmless (<38.8◦C) fever may have strong effects on the disease
pathology, as a result of the accumulation of heat-shock proteins
(HSPs), in particular of the HSP70 chaperone, which can help
the respiratory cells to sustain stress from both the virus and the
human inflammatory response to the virus.

ACUTE RESPIRATORY DISTRESS
SYNDROME IS THE MAJOR CAUSE OF
DEATH FROM SARS-COV-2 INFECTION

By early September 2020, COVID-19 has already caused over
870,000 deaths worldwide. In the most severe cases, the disease
progresses into acute respiratory distress syndrome (ARDS),
which is among the top three complications after sepsis,
causing respiratory failure and death (6). ARDS occurs when
protein-rich inflammatory edema fluid builds up in the alveolar
space as a result of lung damage, leading to non-cardiogenic
pulmonary edema and decreased arterial oxygenation that
necessitates mechanical ventilation (7). Early phases of lung
pathology in COVID-19 pneumonia show a rather classic
edema, with proteinaceous exudates as large protein globules,
multinucleated giant cells and hyperplasia of pneumocytes, as
with other types of sepsis-induced ARDS. Vascular congestion,
combined with inflammatory clusters of fibrinoid material have
also been reported, indicating that vascular inflammation and
coagulopathymay bemore particular hallmarks of the disease (8).

The pulmonary alveoli, which are the main sites of gas
exchange with the blood, are composed of a thin alveolar
epithelium that covers 99% of the lung surface and includes
thin, squamous type I cells (AT1) and cuboid-shaped type
2 cells (AT2). The general hallmark of initial ARDS-induced
lung injury is increased capillary leakage and intra-alveolar
edema. The AT1 cells that enable gas exchanges undergo
irreversible programmed cell death or necrosis, whereas AT2
cells, rather than undergoing limited division and differentiating
into new functional AT1 cells, undergo unchecked division and
do not differentiate. They accumulate into so-called “ground-
glass opacities,” filling the lung cavities and leading to lung
failure (9). Treatment of severe ARDS from COVID-19 is an
ongoing challenge. Protective mechanical ventilation remains
the pillar of ARDS management to facilitate oxygenation with
the goal of improving oxygenation through the damaged lungs
while reducing ventilator-induced lung injury. If mechanical
ventilation fails, extracorporeal membrane oxygenation has
been used in COVID-19 ARDS patients with promising
results (10).

In the absence of prior effective vaccination (11), another
important treatment direction is the prevention or reduction
of cell infection by the virus through the repurposing of drugs
such as remdesivir, chloroquine, lopinavir/ritonavir, which have
different mechanisms of action and are still under development
and experimental evaluation (12). Additional therapies aiming
at enhancing the natural cellular defenses against the onset of
ARDS should be considered. Importantly, mortality from SARS-
CoV-2 infections is extremely low among young patients and

increasing dramatically in patients aged above 65 (13). For
example, official numbers from the end of July 2020 showed that
the mortality risk in Switzerland is 150-fold higher for COVID-
19 patients aged 70–80+ (1,519 deaths), compared to patients
aged 30–49 (10 deaths) [data as from July 28 of the Federal
Office of Public Health (FOPH), https://www.bag.admin.ch/bag/
en/home.html]. This is evidence that strong natural cellular
defenses against the virus are at work in youth which, for
reasons yet to be clarified, become progressively less effective in
late adulthood possibly in association with genetic parameters,
such as gender and blood type (14) and are aggravated by
health preconditions, such as obesity, smoking, diabetes and
heart diseases.

The Mitigating Effect of Mild Fever on
ARDS
The heat-shock response (HSR) is an example of the buildup
of such natural cellular defenses that are highly effective in
youth and become progressively less effective in late adulthood.
The HSR is defined by the transient accumulation of so-
called heat-shock proteins (HSPs), most of which belonging
to the conserved chaperone families HSP70, HSP90, HSP60,
and HSP40, in response to a temperature rise. HSPs play a
general cytoprotective role, among others, in lung inflammation
(15). An effective HSR protects thermolabile proteins and
membranes from damage caused by excessive variations in the
environment, such as heat stress, oxidative stress, UV light, or
infection (16, 17). It typically leads to the onset of acquired
thermotolerance, i.e., to the transient resistance to a subsequent
otherwise deadly dose of elevated temperature (18). It has been
shown that, as with externally applied high temperatures, mild
fever also activates the HSR in mammals, thereby accelerating
healing and preventing apoptosis of respiratory epithelial cells
(19, 20). Fever is a major hallmark of inflammatory diseases.
Despite its high metabolic cost, it has been an integral part
of vertebrate’s immune response to infections for the last 400
million years (21), suggesting that fever provides a strong
evolutionary advantage for the survival of the fittest. Yet, for over
a century, caregivers generally considered fever dangerous and
a source of patient discomfort, leading to the systematic use of
antipyretics. There is, however, growing evidence that allowing
the onset of mild fever leads to better outcomes (19, 22, 23)
and higher survival to infectious diseases, especially in cases of
ARDS (24, 25).

High Cellular Concentrations of HSP70s
(HSPA1A) Can Repress Inflammation-
Induced ARDS
HSP70s belong to a highly conserved family of molecular
chaperones constituting up to 1% of the total protein mass of
healthy mammalian cells (26). HSP70s can use the energy from
ATP hydrolysis to forcefully unfold and dismantle different types
of aggregated and functional protein oligomers in the cell. Hence,
it can drive conformational changes in various large cytotoxic
protein aggregates and convert them into soluble, harmless,
functional proteins (27). Interestingly, HSP70s can also drive the
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FIGURE 1 | Scheme showing the mechanism of heat-induced HSR and its protective effects. Upon heat-stress such as fever, the fluidized plasma membrane triggers

the transient opening of heat sensory calcium channels, such as TRPV1. The ensuing specific calcium-mediated heat-shock signal induces the hyperphosphorylation

of cytosolic inactive monomeric HSF1, that trimerizes and translocates to the nucleus where it binds promotor regions of HSP-encoding genes. The mRNA of HSP70

is translated in the cytosol into HSP70 acting to repress sepsis-induced ROS-mediated pro-apoptosis signals (red cross sticks), leading to survival of pre-existing

alveolar type 1 cells and to the differentiation of alveolar type 2 cells, into functional, new alveolar type 1 cells.

specific dismantling of various active protein oligomers, such
as clathrin cages, active heat-shock transcription factor (HSF1)
trimers, and active pro-apoptotic IκB oligomers, which become
reversibly inactivated upon HSP70-mediated de-oligomerization
(28, 29) (Figure 1). Using a rat model for ARDS, it has been
shown that an adenoviral vector expressing the stress-inducible
form of HSP70, HSPA1A, can effectively protect against sepsis-
induced ARDS by limiting neutrophil accumulation in the lungs
and causing the inactivation of IκB complexes (30). HSP70
over-expression is also known to efficiently prevent caspase
activation, and the heat-induced accumulation of mitochondrial
HSP70, HSPA9, also can protect stressed mitochondria (31,
32), thereby conferring cells challenged by pathogens, cytotoxic
chemicals, or abiotic stresses, with resistance from ROS-
induced mitochondrial- and IκB-associated apoptosis. Hence,
cancer cells often resist chemo- and thermo-therapies by over-
expressing HSP70 chaperones, HSPA1A in particular (26).
Conversely, degenerative neuronal and muscular tissues in
aging nematodes and humans that systematically express lower
cellular levels of HSP70s than young individuals (33) are
particularly fragile and stress-sensitive. Cells with low HSP70
levels tend to spontaneously undergo apoptosis, and consequent
tissue losses in aging humans lead to progressive degenerative
diseases (34).

The HSR develops once cells have initially sensed a mild rise
in temperature by way of converting small fluidity increments

in their plasma membrane, into a specific cellular signal that
activates HSF1 and ultimately de-represses HSP-encoding genes,
leading to the accumulation of HSPs, the foremost of which
being HSPA1A (35, 36) (Figure 1). Noticeably, beyond 2–3 h
of continuous heat-shock, cells become ineffective at further
accumulating heat-shock proteins and need to stay several hours
back at low temperature to reset their ability to effectively
respond again to a temperature rise. This implies that under
continuous high fever, in the long term, the protective HSP70
molecules will gradually degrade without being replenished
and will possibly reach a critically low level that cannot
arrest apoptosis (Figure 2A). Interestingly, young COVID-19-
infected patients develop ARDS much less frequently than
older patients (Figure 2B), mirroring the fact that the HSR
and the onset of acquired thermotolerance in humans are
optimally effective in youth and progressively fail post puberty,
in aging adults (Figure 2C). This can be attributed, in part,
to the gradual stiffening of the plasma membranes in aging
individuals as a result of decreased physical activity and the
excessive intake of highly caloric food containing saturated
lipids and cholesterol (37). In addition, the HSR may become
impaired with age in particular in neural, liver and muscle tissues
(38–42), likely in response to a hormonal signal that initiates
at puberty (33, 43).

The combination of insufficiently elevated fever and a
less effective HSR in the lung cells of the elderly may thus
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FIGURE 2 | The cellular levels of HSP70s determine the fate of alveolar cells,

leading to survival or to ARDS and death. (A) Although it initially protects cells

from ARDS, a continuous high fever in the long term leads to HSP70

depletion, ARDS, and death. (B) In youth, a cyclic mild fever up to 38.8◦C (red

line) causes in the first hours a strong beneficial accumulation of HSP70s (blue)

that can potentially arrest sepsis-induced ARDS in young COVID-19 patients.

Because long-term continuous fever leads to HSP70 depletion, the use of

antipyretics after 2 h of fever is recommended. Iterative cycles of mild fever can

thus maintain and even accumulate high cellular levels of protective HSP70s

above a critical threshold (dashed line), preventing ARDS. (C) In seniors, the

baseline temperature is often lower than 37◦C, fever is often less intense, and

less protective HSP70s accumulate. However, iterative fever cycles can

accumulate protective HSP70s above the critical threshold (dashed line),

arresting ARDS even in seniors.

lead to insufficient cellular amounts of protective HSP70s
and the consequent failure to repress apoptosis in ARDS
(Figure 2C) (44).

The HSR Is Transient
Whereas, SARS-CoV-2-infected patients experiencing mild fever
may optimally accumulate HSP70s in both AT1 and AT2 cells,
it should be noted that the HSR is transient. Following the
rapid synthesis of HSP70 mRNA within the first ∼2 h of
a temperature rise and the consequent cellular accumulation
of HSPs, mRNA levels start decreasing despite the ongoing
elevated temperature (Figure 3A) (45, 46). Hence, HSPA1A
mRNA stops accumulating after about 2 h of high fever, and
HSPA1A protein levels peak at around 4 h and thereafter start
slowly decreasing, despite the ongoing heat shock (Figure 3A)
(45). Remarkably, the cells need to return to 37◦C for several
hours in order for additional HSPA1A to be synthetized in a
subsequent fever cycle, to replace the degraded chaperones and
thus maintain apoptosis arrest. This behavior results from the
fact that the initial step of the heat-shock signaling pathway is
the transient opening of heat-sensory calcium channels, called
transient receptor potential cation channel subfamily V member
type 1 (TRPV1), that become depolarized in response to the
heat-induced fluidization of the plasma membrane in which they
are embedded (18, 47). Similar to unresponsive pain-depolarized
nociceptive channels, and like their heat-sensing plant cognates,
the cyclic nucleotide gated channels 2 and 4 (48), the heat-
depolarized animal TRPV1 channels need to be returned for
several hours at lower temperatures in order to regenerate into
fully re-polarized, potent heat-responsive calcium channels (49).

EXTRINSIC HEAT TREATMENTS AND
CO-INDUCERS OF THE HSR AS
POTENTIAL PROPHYLACTIC AND
THERAPEUTIC APPROACHES

Amild fever episode of 2–3 h, not exceeding 38.8◦C is considered
harmless by most of the medical community (53). Moreover,
practitioners of traditional medicine on all continents have
customarily provided treatments involving controlled mild rising
of body temperature, either environmentally applied, as with
warm bath therapy (54) that triggers HSP70 accumulation after
1 h at 40◦C. Celastrol, a plant triterpene from the Chinese
pharmacopeia, has been shown to have cytoprotective effects
in autoimmune and inflammatory diseases (55) and could have
protective effects against ARDS (56) through HSF1 activation.
Defective heat-induced HSP70 production in seniors could
be ameliorated prophylactically by increasing their physical
training, during which body temperature naturally increases, or
by sauna therapy, which can boost the HSR and is reported to
reduce the risk for respiratory diseases (57) and for systemic
inflammation in this population (58). The protective effects
of iterative thermal exercise and increased heat training in
marathon runners, in correlation with the induction of heat-
shock proteins such as HSP70s and HSP90s, is well-documented
(59). During exercise, the accumulation of HSP70s occurs
widely across the organism and is measured up to 8-fold
in muscle tissues and in lungs (60). However, because heat
treatments may be excessively stressful to severely ill SARS-CoV-
2 patients, one might expect them to be considered principally
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FIGURE 3 | Expression of heat shock proteins (HSPs) in human cells following heat-treatment at 42◦C or MERS-CoV infection. (A) HSPA1A mRNA (pink) and protein

(green) expression in Jurkat cells during a 4 h HS at 41◦C, followed by 6 h at 37◦C [data from (45)]. HSPA1A mRNA induction is maximal at 2 h HS and thereafter

decreases despite the ongoing HS for another 2 h. (B) Normalized induction levels of the 30 most heat-induced genes by heat shock (42◦C) in U2OS cells (pink) [data

from (50)], by MERS-CoV infection (black) of human bronchial epithelial Calu-3 cells (black bars) [data from (51)], or by SARS-CoV-2 infection of Calu-3 cells (green

bars) [data from (52)]. Cytosolic HSP70s are indicated in orange.

as prophylactic, in anticipation of a possible infection. In the
context of SARS-CoV-2-induced viral pneumonia, the strategy
of increasing cellular HSP70 levels by chemical compounds that
could induce or co-induce with mild fever a strong HSR, may
be of particular interest, given that both MERS-CoV and SARS-
CoV-2 infection was found to specifically and significantly reduce
HSPA1A, HSPA1B, and HSPA2 mRNAs in bronchial epithelial
cells infected with the virus (Figure 3B) (51, 52).

In the absence of a vaccine at this stage for the COVID-
19 pandemic, drug repurposing of FDA-approved molecules
could be a timesaver. Several of these, such as carbenoxolone
and arimoclomol, have been shown to have beneficial effects
in various diseases, mainly by enhancing the heat-induced
expression of HSPs (61–63). Glutamine, a conditionally essential
amino acid that also triggers the HSR, can improve survival after
sepsis and attenuate ARDS symptoms in a mouse model (64).

Were physicians wrong aiming at reducing moderate fever
in sepsis? The current knowledge suggests that the answer
is yes and no. On the one hand, fever is discomforting to
patients and may have adverse effects, especially above 38.8◦C.
In addition, fever increases oxygen demand, thereby increasing

cardiac and respiratory rates (65). A rise of 1◦C can increase
metabolic demand by 10% (66) and may therefore be detrimental
to patients with heart failure or neurological impairment (67).
Moreover, antipyretics that are also anti-inflammatory drugs
are expected to reduce lung damage caused by an excessive
inflammatory response in the lungs, caused by the viral infection.
On the other hand, moderate fever, up to 38.8◦C, has been
reported to inhibit the replication of viruses, such as influenza
and other pathogens, promote immunity and most importantly,
cause the beneficial accumulation of anti-apoptotic HSP70s that
can repress sepsis-induced ARDS. Yet, owing to the transient
nature of the heat sensors in the plasma membrane that
become depolarized and unresponsive to the heat beyond 2 h
of continuous fever, maintaining a fever beyond that time is
vain, as the HSP70 molecules that naturally degrade cannot be
replenished (Figure 2A). Thus, physicians were not wrong at
aiming to reduce fever, as several hours at a low temperature are
necessary for the cells to regenerate their heat/fever-depolarized
heat sensors and to fully respond again to a new cycle of fever
(18, 45). Therefore, based on the above, we hypothesize that
the optimal treatment of COVID-19 patients with antipyretic
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drugs, such as acetaminophen, would be applied only following a
couple of hours of moderate fever (Figures 2B,C). Then, several
hours at a low temperature would be maintained to allow cells
to reset their optimal HSR. Iterative repetitions of such fever
cycles, each lasting 8–12 h, may be expected to maintain the
highest cellular levels of HSP70s to protect lungs from ARDS
damage in COVID-19 patients (Figure 2B) and possibly protect
the elderly from ARDS and lung failure (Figure 2C). Prior to any
implementation, our hypothesis must be tested in randomized
clinical trials with large samples of patients in confinement of
similar age and sex with mild symptoms. Antipyretics and their
doses should be standardized and the length of the proposed
delay before antipyretic intake, allowing mild fever to develop,
should be standardized.

One additional avenue of research would be to take advantage
of the tissue samples from the nasopharyngeal epithelial mucosa
that are routinely used for PCR-based diagnosis of SARS-Cov-
2. Quantitative RNAseq of various HSPs, HSP70s in particular,
as well as of hallmark genes for ARDS, such as the pro-
inflammatory cytokines (IL-1β, IL-6, KC, and MCP-1) (68) and
metalloproteinase 9, which is involved in the degradation of
extracellular matrix during ARDS (69), and CBIRC3 which
inhibits apoptosis (70, 71), may thus be addressed in correlation
with the temperature of the patient at the time of sampling,
his/her age, gender, the ongoing evolution and final outcome of
the disease.

CONCLUSION AND SUGGESTIONS

A large body of scientific evidence now indicates that the
accumulation of cellular HSP70s, especially HSPA1A, in lung
alveolar cells is beneficial against ARDS-induced lung damage, as
in the case of the most severe COVID-19 pathologies. Because
mild fever induces the HSR and the accumulation of cellular
HSP70s, one would predict that a therapeutic strategy for fever
should not be readily decreased by antipyretics. However, fever
would optimally need to be thereafter artificially reduced by
antipyretics because several hours at 37◦C are needed to restore
the cellular ability to produce more protective HSP70s in a
subsequent fever cycle. Given that age and viral infection may
decrease the basal cellular levels of anti-apoptotic HSP70s and
further reduce the ability of lung alveolar cells to accumulate
HSP70s under stress, we speculate therapeutic strategies should
be sought to restore high HSP70 levels in the lung cells of

COVID-19 patients. Prophylactic treatments in anticipation
of the disease in the elderly could involve natural repetitive
stimulations of the HSR in the whole body through controlled
intense physical exercise (72–74), sauna therapies and the regular
maintenance of calorie-restricted diets (75) containing minimal
amounts of saturated lipids and cholesterol.

Interestingly, a prior period of heat acclimation was found in
exercising humans to reduce physiological strain and improve
physical performance when exercising in moderate normobaric
hypoxia (76). Similar effects were shown in rats for which
hypobaric hypoxia invoked a cardioprotective heat shock
response, consisting of a significant upregulation of HSP70,
HSP90, HSP60, and HSP27 that strongly contributed to their
survival under acute sub-lethal hypoxia (77). It is tempting
to hypothesize that seniors undergoing prior prophylactic
treatments of both mild heat-shock and moderate hypoxia, as
in daily intense exercising, might increase their ability, once
infected, to withstand the increasing hypoxia associated to the
acute phases of the disease.

For lack of yet an effective vaccine, the fundamental role
in primary care of the COVID-19 crisis is the diagnosis of
the suspected COVID-19 patients. In most developed countries
this happens via phone calls to detect warning signs, mainly
based on the detection of ARDS components and rarely based
also on body temperature fluctuations. Given the emerging
key role of fever-induced HSP70 expression in the possible
mitigation of ARDS damages in SARS-CoV-2 patients, we
more pragmatically advocate a systematic research to set
precise criteria for temperature monitoring, as a diagnostic
feature for initial telemedicine advises and periodic evaluations
during self-isolation.
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