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Radiation-induced pulmonary fibrosis is a common severe long-time complication of

radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic

include only supportive managements strategies, such as anti-inflammatory treatment

using steroids, their efficacy, however, is far from being satisfactory. Recent studies

have demonstrated that the development of lung fibrosis is a dynamic and complex

process, involving the release of reactive oxygen species, activation of Toll-like receptors,

recruitment of inflammatory cells, excessive production of nitric oxide and production of

collagen by activated myofibroblasts. In this review we summarized the current state

of knowledge on the pathophysiological processes leading to the development of lung

fibrosis and we also discussed the possible treatment options.
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INTRODUCTION

Radiation therapy is an integral part of the treatment of various malignant neoplasms (1), including
tumors of the thorax (2–4). Radiation induced pulmonary fibrosis is a common complication of
this therapy affecting 5–50% of patients, which significantly limits available treatment options even
after successful eradication of the tumor itself (5). Radiation-induced lung injury can be divided
into two distinct forms: (1) classical radiation pneumonitis, which is restricted to the irradiated
area and leads to fibrosis and (2) sporadic radiation pneumonitis, affecting much broader area
than the tissue which was subjected to irradiation and resulting in bilateral lymphocytic alveolitis,
mediated by various immunological processes (6, 7). Currently, corticosteroids, azathioprine, and
cyclosporin A are used as first line treatment for post-radiation pneumonitis (8, 9). Ambroxol and
angiotensin-converting enzyme inhibitors are suggested as additional drugs to prevent or attenuate
the extent of pneumonitis (10, 11). Lung fibrosis, however, is an end stage of radiation-induced
pneumonitis and in most of the cases it is resistant to all currently known pharmacological
interventions. Previously only symptomatic treatment with antitussive agents, oxygen therapy, and
mechanical ventilation was available (9). More recently, it was shown that nintedanib, a multiple
tyrosine kinase inhibitor, and pirfenidone, a TGF-β inhibitor, exhibit anti-inflammatory and anti-
fibrotic effects in experimental murine irradiation models (12, 13) and these drugs are now in
clinical use for treatment of pulmonary fibrosis (13, 14).
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The aim of this review is to summarize and analyse the
currently available data on the pathophysiological mechanisms
leading to lung fibrosis. Hopefully it will allow identifying
promising directions for further research, which will lead to the
development of effective preventive and/or treatment approaches
to tackle post-radiation pulmonary fibrosis.

CLINICAL PERSPECTIVE

The lung parenchyma is one of the most radiation-sensitive
tissues with the alveolar-capillary unit being the most vulnerable
part of the lung (15). The likelihood of developing side
effects of radiation therapy, like difficulty swallowing, shortness
of breath, breast or nipple soreness and shoulder stiffness
depends on many factors like patient-related variables, the
nature of the tumor itself and the parameters of radiation
therapy (16–18). Specifically, it has been demonstrated that
age above 65 years, smoking, presence of co-morbidities and
poor pulmonary function tests (decreased forced expiratory
volume and poor diffusing capacity of the lungs for carbon
monoxide) have been associated with increased incidence of
radiation pneumonitis (19, 20). Additionally, radiation therapy
administered for mid and lower lobe lung tumors, breast cancer
with tangential fields and esophageal cancer are also correlated
with significantly increased incidence of radiation pneumonitis
(20). Other risk factors include more than 30% of the planned
target volume receiving 20Gy or more, and the use of certain
medications like bleomycin, cyclophosphamide, vincristine,
taxanes, doxorubicin, dactiomycin, mitomycin, gemcitabine,
erlotinib and bevacizumab (21–25). There are also certain
molecular markers reported, which could be used to improve
individualized treatment. For example, patients with elevated
post treatment serum TGF-β1 (transforming growth factor beta
1) levels above baseline exhibit a significantly higher risk of
radiation induced lung injury (26, 27). Furthermore, persistently
elevated IL1a (interleukin 1 alpha) and IL6 (interleukin 6),
ICAM 1 (intercellular adhesion molecule 1), SP-A (surfactant
protein A) and SP-D (surfactant protein D) serum levels are
predictive for the development of radiation pneumonitis (28–30).
Furthermore, certain ATM (ataxia telangiectasia mutated) gene
polymorphisms have been associated with increased risk of
radiation pneumonitis (31). Finally, there are also studies
showing that the risk of severe radiation pneumonitis is increased
in patients with pre-existing idiopathic pulmonary fibrosis (IPF)
(32–34). Nonetheless, there are no formal guidelines limiting the
eligibility of IPF patients for thoracic radiotherapy, even though
according to the recommendations of the EuropeanOrganization
for Research and Treatment of Cancer radiotherapy for lung
cancer should be avoided in IPF patients (35). The decision of
whether or not to treat these vulnerable patients with irradiation
of the thorax should be made after a careful evaluation of a
multidisciplinary team taking into account a comprehensive risk
assessment. Clearly more research is needed to establish the
safest treatment options. The group of Yoshitake and colleagues
investigated the side effects of thoracic stereotactic body
radiotherapy (SBRT) in patients with interstitial lung changes

(ILC) and found that the risk of radiation pneumonitis grade
2 or more was increased in patients with subclinical ILC (36).
Even though the topic still requires more research, dose limits
for SBRT in patients with pre-existing ILC are recommended
(37). There is an increasing body of evidence suggesting that
proton beam therapy could be a safer option in patients with
IPF than conventional radiotherapy or SBRT (38–41). However,
prospective, multicentre studies with large number of patients
enrolled are still needed. Nintedanib is a relatively new drug
that can be used to slow the progression of IPF. It is a tyrosine
kinase inhibitor affecting tyrosine phosphorylation on platelet-
derived growth factor, vascular endothelial growth factor and
fibroblast growth factor leading to suppression of inflammation,
angiogenesis and fibroblast activation (42). The drug has been
shown to prevent/retard acute exacerbations in patients with IPF
(43, 44), however it was not effective in alleviating bleomycin-
induced pulmonary fibrosis in an animal model (45).

Apart from causing pneumonitis and pulmonary fibrosis,
radiotherapy is also thought to contribute to activation of cancer-
associated fibroblasts (CAF), at least in some conditions. CAFs
are a heterogeneous group of stromal cells inside a tumor, which
differ epigenetically and phenotypically from normal fibroblasts.
The major cellular origin of CAFs are normal fibroblasts that
are transformed by the tumor microenvironment, however,
smooth muscle cells, pericytes, adipocytes, mesenchymal stem
cells and endothelial cells are also demonstrated to be the source
of CAFs (46, 47). Those cells modulate the composition of
the extracellular matrix through secretion of growth factors
and cytokines which lead to regulation of tumor proliferation,
invasion and the potential for metastasis. Interestingly, there
are also studies demonstrating that CAFs can slow down tumor
progression by formation of a physical barrier which limits tumor
growth and the possibility to migrate (48). Radiotherapy affects
the proliferation of CAFs at the genetic level, but does not limit
the ability of these cells to sustain a microenvironment which
supports tumor growth (49). The influence of radiotherapy on
the CAFs is a matter of ongoing investigations. On one hand,
there is data supporting the idea that irradiation can modify
the CAFs leading to abrogation of tumor promoting ability (50),
however, there are also studies showing that irradiated fibroblasts
can induce epithelial-to-mesenchymal transition (EMT) in
cancer cells and promote invasiveness through elevation of
TGF-β levels (51, 52). In line with this data, the group of
Ohuchida et al. showed that irradiated CAFs increase the
invasiveness in pancreatic cancer cells (53). In another study it
was demonstrated in the same type of cancer that CAFs after
irradiation induce EMT and invasiveness by activation of the P38
pathway (54).

CASCADE OF PATHOPHYSIOLOGICAL
PROCESSES LEADING TO LUNG FIBROSIS

Primary and Secondary Damage to
Macromolecules
Exposure to radiation causes both direct and indirect
macromolecular damage and also triggers the generation of
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various reactive oxygen species (ROS), including superoxide
(O2−), hydrogen peroxide (H2O2) and hydroxyl radical
(•OH) (55, 56). The combination of irradiation itself and
the generation of ROS affect all types of macromolecules,
including DNA, proteins, proteoglycans and lipids. However,
double-strand breaks in DNA have most severe consequences
for the cells (57). Primary and secondary damage triggers
cascades and networks of biochemical reactions and
the balance between them determines if normal lung
tissue will be restored or if the fibrotic response will be
initiated (58).

DAMPs-TLRs-Pro-Inflammatory Cytokines
Cell damage caused by irradiation leads to the accumulation
of damage-associated molecular patterns (DAMPs) in the
intercellular space of the lungs. The most prevalent types
of DAMPs include extracellular DNA, extracellular ATP,
high mobility group box chromosomal protein B1, heat-
shock protein 70, uric acid and low-molecular hyaluronan
(59). These DAMPs are generated in aseptic conditions
and activate cell surface-bound TOLL-like receptors (TLR)
2 and 4 (18). TLRs are expressed in many cells, including
alveolar epithelial cells of type II (60), endothelial cells,
alveolar macrophages, fibroblasts, dendritic cells, monocytes,
lymphocytes, neutrophils and natural killer cells (18, 61, 62)
and their activation triggers sequential release of different
mediators, including pro-IL-1β, pro-IL-18 and type I interferon
(63). Interestingly, studies on the development of post-radiation
pulmonary fibrosis in mice with global deficiency of TLR2
and TLR4, as well as with the knockout of MyD88 (Innate
Immune Signal Transduction Adaptor) showed that these mice
developed more severe pulmonary fibrosis compared to wild-
type mice (60, 64, 65). This fact indirectly indicates that these
signaling cascades promote regeneration of lung tissue rather
than damage.

Pyroptosis Pathways of Inflammasome
Activation
Simultaneously with the stimulation of synthesis of pro-IL1β,
pro-IL18, and type I interferons, irradiation causes pyroptosis,
a highly inflammatory form of programmed cell death (66).
Specifically, irradiation can activate non-active multi-protein
signaling complexes NLRP3 (NLR family, pyrin domain-
containing 3) present in inflammasomes of various lung cells
(18, 67, 68). The activation can occur directly through ROS (69)
or indirectly through DAMPs like ATP, ADP, and adenosine
which bind to P2XR, P2YR, and P1R (ATP-gated ion channels)
(70) and through low molecular weight hyaluronan activating
the surface receptors CD44 (69). Another possible pathway of
activation is through the outflow of cell content, particularly uric
acid, caused by irradiation-mediated damage to cell membranes
(18, 68). Activated inflammasomes initiate activation of caspase-
1 which cleaves pro-IL-1β and pro-IL-18 with the formation of
active IL-1β and IL-18 (71–73) and also disrupts the integrity of
the outer cytoplasmic membranes, which leads to osmotic lysis
of cells and increases the amount of DAMPs in the intercellular
milieu (73, 74). These processes lead to increased synthesis

of proinflammatory cytokines and pyroptosis in lung tissue.
IL-1β also plays an important role in initiation of the acute
inflammatory responses by binding to its ubiquitously expressed
receptor (IL-1R-1) and stimulation of the production of TGF-β,
pro-IL-1β, TNF-α, and IL- 6. Together these cytokines promote
the recruitment and activation of innate immune cells, as well
as trigger and enhance cascades of aseptic inflammation in the
damaged part of the lung (18, 71).

P2X Purinoreceptor 7
The NLRP3 inflammasome might be also involved in the
pathogenesis of radiation-induced fibrosis by activating
purinergic P2X and P2Y receptors (purinergic signaling).
Purinergic signaling is involved in ionizing radiation-induced
biological effects (75). An important protein in these pathways is
the ATP-stimulated P2X purinoreceptor 7 (P2X7R), selectively
present in alveolar macrophages and in alveolar epithelial type
I cells in lungs and known to regulate the activation of the
NLRP3 inflammasome. A rapid increase in the extracellular
ATP concentration, for example after damage of a tissue or
after cell death, causes an endogenous signal of danger and
activates the NLRP3 inflammasome by binding of ATP to P2X7R
which functions as ligand-controlled ion channel (76). The
effect of ATP may be transmitted by P2X7R, which causes the
formation of pannexin-1 pores. Their opening leads to a fast
outflow of K+-ions from the cytosol (77). The decrease in the
cytoplasmic K+ concentration causes assembly and activation
of the inflammasome leading to an auto- catalytic cleavage of
the inactive procaspase-1 to its active form. The inflammasome
transmitted caspase-1-dependent proteolytic cleavage of inactive
proforms of cytokines of the IL-1-family (pro-IL-1β, pro-IL-18)
results in biological active forms, which are released from cells as
a part of the inflammatory reaction. Further, the involvement of
the connexin43 hemichannel in the ATP release downstream of
the P2X7R in response to irradiation has to be taken into account
(78). An upregulation of connexin43 in alveolar epithelial cells
of rats with radiation-induced pulmonary fibrosis has been
described earlier (79). Furthermore, P2X7R knockout mice
exhibited dramatically reduced lung inflammation and fibrosis,
underlining the important role of P2X7R in fibrotic diseases (80).

Inducible Nitric Oxide Synthase (iNOS),
Asymmetric Dimethyarginine (ADMA) and
Dimethyarginine Dimethyaminohydrolase
(DDAH)
IL-1β, TNF-α, and other cytokines activate iNOS, which starts
to produce large quantities of NO. When nitric oxide is
produced, it can bind to O2− with the formation of peroxynitrite
(ONOO−) causing secondary damage to macromolecules
(DNA, proteins, glucosaminoglycan hyaluronan, etc.) (81). The
importance of peroxynitrite in lung fibrosis development has
been demonstrated in animal studies where is was shown that
iNOS knockout mice had significantly less fibrotic changes in
the lungs compared to wild-type mice after bleomycin treatment
(81–83). The activity of iNOS in vivo is regulated by asymmetric
dimethylarginine (ADMA), its endogenous inhibitor. It has been
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shown that at concentrations exceeding 10µM ADMA not only
decreases NO production by iNOS but also uncouples it with
the production of O2− (84). Therefore, it was speculated that
the addition of ADMA to already fully active iNOS cannot
reduce the damage to the lung tissue mediated by NO, but
paradoxically can lead to further exacerbation of the damage due
to the peroxynitrite formation. This assumption was confirmed
by Wells and colleagues in in vitro and in vivo studies (84). They
showed that ADMA elevates collagen production in primary
mouse lung fibroblasts and that ADMA infusion via osmotic
minipumps for 2 weeks caused collagen deposition in mice
lungs (85). In the same manuscript the authors proposed
an interesting pathway of pro-fibrotic ADMA activity where
ADMA increases arginase activity leading to elevated levels
of ornithine and urea; ornithine is a precursor of proline, an
amino acid essential for collagen synthesis (85). In line with
these observations, other study demonstrated that 21 days after
bleomycin injury there was no difference in the fibrotic response
in mice supplemented with ADMA and those given placebo
(83). Concentration of ADMA is regulated by the activity of
dimethylarginine dimethylaminohydrolase (DDAH), an enzyme
which cleavages ADMA (86, 87). DDAH expression and activity
increase in course of lung fibrosis development, through TGF-
β and IL- 6 which increase mRNA levels of DDAH2 (one of
two DDAH isoforms) (83); and through IL-1β which enhances
DDAH activity and rises its intracellular concentrations (88).
Increased DDAH expression and activity in turn reduces ADMA
concentration in lung tissue, which results in greater amounts
of NO produced by iNOS, contributing to further damage of
lung tissue.

Sources of Fibroblasts:
Epithelial-Mesenchymal Transition (EMT),
Endothelial-Mesenchymal Transition
(EndMT) and Recruitment of Fibrocytes
and Myofibroblasts
Increased concentrations of TGF-β1 in course of development
of lung fibrosis induce EMT (epithelial-mesenchymal transition)
of alveolar epithelial cells type II (AET II cells) (89) and
EndMT (endothelial-mesenchymal transition) of microvascular
endothelial cells (90). During EMT and EndMT, the polarized
epithelial and endothelial cells loose their polarity and specific
markers such as E- or VE-cadherin, tight junction proteins
etc., increase expression of mesenchymal markers (vimentin,
collagens I and III, α-SMA etc), move to the interstitium and gain
phenotype like mesenchymal cells (89). A convincing proof of
EMT in vivowas demonstrated in lineage-tracing studies (91–93)
where mice with selective expression of β-galactosidase (β-gal)
only in lung epithelial cells were used. After induction of lung
fibrosis by TGF-β1 (92), thorax irradiation (91) or by bleomycin
treatment (93) the authors reported the appearance of expression
of different mesenchymal markers (α-SMA, vimentin, S100A4)
in β-gal-positive cells and the co-expression of mesenchymal
markers and pro-surfactant C (a marker of AET II cells) (91–
94). There is a controversy about the contribution of epithelial
cells to myofibroblast population and to the physiological role

FIGURE 1 | Molecular pathways triggered by irradiation leading to lung

fibrosis. ROS, reactive oxygen species; DAMP, damage-associated molecular

pattern; IL, interleukin; iNOS, inducible nitric oxide synthase; TGF-β,

transforming growth factor beta; EMT, epithelial-mesenchymal transition;

EndMT, endothelial-mesenchymal transition.

of EMT in vivo (95, 96). Moreover, recent findings suggest
that AET II cells undergoing EMT promote a pro-fibrotic
microenvironment through paracrine signaling activating local
fibroblasts (97). An EMT of AET I cells is unknown. The
various cytokines produced during aseptic inflammation also
promote the recruitment of fibrocytes from the peripheral
blood and their differentiation into fibroblasts in the lung
tissue, where they produce extracellular matrix (93, 98). The
last step in the development of radiation-induced pulmonary
fibrosis is the formation of myofibroblasts from fibroblasts (99).
The cellular source of myofibroblasts has been a subject of
debate in recent years. It was suggested that the myofibroblasts
pool is heterogeneous and derives from multiple sources,
such as resident fibroblasts, circulating fibroblasts, perivascular
mesenchymal cells, and alveolar epithelial cells (95, 100–102).
However, recent studies using genetic lineage tracing identified
the resident lipid-droplet-containing interstitial fibroblasts, as a
precursor cell for the myofibroblast, at least in the bleomycin
model of lung fibrosis in mice (103). Regardless of the source, the
differentiation of fibroblast into myofibroblasts is driven by TGF-
β1 (103). Upon activation these cells produce excessive amounts
of extracellular matrix (ECM) (fibronectin, collagen etc), which
causes contraction of the lung tissue (104, 105) and increase the
thickness of the alveolar-capillary membrane together leading to
irreversible compromised diffusing capacity of the lung (106) and
restrictive ventilatory insufficiency.

The various processes leading to irradiation-induced lung
fibrosis are summarized in Figure 1.
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RESEARCH TARGETS REGARDING LUNG
FIBROSIS PREVENTION AND TREATMENT

Minimizing Protein Damage
Since the primary and secondary damage to macromolecules is
the starting point for the development of all pathophysiological
mechanisms of lung fibrosis, one of the therapeutic approaches
considered was the use of a non-toxic anti-ulcer drug
geranylgeranlyacetone (GGA), which induces the expression of
intracellular chaperone heat shock protein 70. The plausibility of
this approach was shown by the group of Kim and colleagues
in a study where they treated mice with GGA before and after
irradiation and found out that after 6 months the animals had
less pronounced lung fibrosis and had less signs of EMT in lung
tissue compared with the placebo group (107). However, one
possible drawback in using this drug in clinical practice is that
it can also reduce the efficacy of irradiation as an anti-tumor
treatment (108).

Influence on DDAH-ADMA-iNOS-NO Axis
The second possible therapeutic approach is based on the
rationale that activated iNOS in the development of lung fibrosis
is the source of excess of nitric oxide, which causes secondary
injury to the lung. Studies in mice showed that at least in
the bleomycin model the use of iNOS inhibitors resulted in
significant reduction in the degree of lung fibrosis compared
to animals from the placebo groups (81, 83). Pullamsetti
and colleagues demonstrated a protective role of a selective
DDAH inhibitor L-291 in the development of bleomycin-
induced lung fibrosis. Interestingly, the inhibitor seemed to affect
both ADMA-independent (antifibrotic) and ADMA-dependent
(antiproliferative) pathways of lung fibrosis development (83).

Reducing TGF-β1-Mediated Effects
According to the current state of knowledge, TGF-β1 plays a key
role in the development of lung fibrosis (108). Therefore, many
efforts are concentrated on different ways to interfere with the
pathways triggered by TGF-β1 activity. One possibility would
be to block signal transduction mediated by TGF-β1 and the
feasibility of this approach was demonstrated in rodents where
the use of small molecules inhibiting TGF-β1 receptors resulted
in decreased severity of lung fibrosis induced by irradiation
(26, 109). Another approach to limit the activity of TGF-β1 is to
use specific small interfering RNA (siRNA). In a study performed
by Lu and co-workers it was demonstrated that in a mouse model
the use of TGF-β1-siRNA significantly attenuated the increase
in TGF-β1 serum levels after the entire thorax irradiation and
that the treatment improved histological signs of inflammation
and lung oedema (110). Another possibility considered is the
use of a replication-defective adenoviral vector (AdTβ-ExR) that
increases the levels of soluble TGF-β type II receptor (111).
This approach has been tested in irradiated rats where it was
shown that the adenoviral vector reduced TGF-β expression,
myofibroblast proliferation, and macrophage infiltration in the
lungs (111). Interestingly, there is already a drug – ambroxol –
which affects TGF-β1 production. Clinical studies showed that
oral treatment with ambroxol from the beginning of radiotherapy

significantly attenuated the rise of TGF-β1 concentration in the
blood, protected patients from declining lung diffusion capacity,
and reduced the incidence of pneumonitis and lung fibrosis (11).

Another therapeutic option and promising approach is
the application of pirfenidone, an oral synthetic molecule
with antifibrotic, antioxidant and anti-inflammatory effects.
Pirfenidone inhibits TGF-β1 (112) and has been successfully
used in clinical studies (14, 113–115). Recently the use of
this drug in a murine model of radiation-induced pulmonary
fibrosis revealed an extendedmedian survival time and decreased
accumulation of collagen and fibrosis in lung tissues. Pirfenidone
also reduced TGF-β1 levels and phosphorylation of Smad3 under
experimental conditions (12). Further, pirfenidone has been
efficiently used in combination with sunitinib and radiotherapy
in Lewis lung carcinoma (116).

Regulation of Immune Response
One of main component in the development of lung fibrosis is
the disbalance of the immune system. It can be speculated that a
shift in the immune response from a pro-fibrotic pathway could
attenuate and/or prevent lung fibrosis. There is a promising drug,
cytosine-phosphate-guanine oligodeoxyribonucleotides (CpG-
ODNs), which stimulates the production of pro-inflammatory
cytokines and demonstrated a protective effect on post-radiation
lung fibrosis development in a mouse model (117, 118). The
attenuation of lung fibrosis was associated with reduction
of serum concentrations of TGF-β1 and lower amount of
hydroxyproline in the lung tissue (117, 118).

Preventing Alveolar Epithelial Injury
Earlier studies on the role of the alveolar epithelium in the
pathogenesis of radiation-induced fibrosis concluded that the
development of pneumonitis and pulmonary fibrosis is caused
by the disruption of the balance between various cell populations
of the pulmonary parenchyma (119). The myofibroblasts of
the alveolar wall were formerly expected as the most active
cell during fibrogenesis; however, AET I cells, endothelial cells,
and the alveolar macrophages are the primary target of injury
(108). Subsequently, products of all these cells, particularly of
AET I cells, and signals from disturbed intercellular epithelial
adhesion and other factors stimulate the AET II cells to
proliferate faster, and to secrete many cytokines in autocrine and
paracrine mode (119). This results in accelerated proliferation
and differentiation of AET II cells into AET I cells (120). This
presumably impaired transdifferentiation process includes an
increased presence of an intermediate cell type that is cuboidal
or flat and expresses both AET I and AET II cell markers
(121). The underlying mechanisms which include apoptosis and
senescence of alveolar epithelial cells are poorly understood.
AET I cells seem to die rather by necrosis than by apoptosis as
shown in ultrastructural studies (122, 123). Knockout of AET
I-specific proteins (for example PAI-1, Cav-1, RAGE, P2X7R,
ICAM-1) in mice show signs of resistance to lung injury and
fibrosis (80, 124–127), thus indicating the importance and
involvement of the alveolar epithelial cells, namely the AET I cells
in fibrogenesis. Preventing alveolar epithelial injury implicates
the maintenance of alveolar barrier function e.g., to stabilize
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epithelial tightness by proper tight junctions as predominant
structures between alveolar epithelial cells (128). Disruption
of TJs with subsequent loss of alveolar epithelial integrity
plays an important role in the development of pulmonary
fibrosis (129). Despite the alveolar epithelial barrier function
being more resistant to radiation than that of the pulmonary
capillary endothelium, intact alveolar epithelial permeability is
of critical importance in keeping the alveolar space relatively
free of fluid during acute radiation-induced lung injury (130).
Promising tools for restoration of alveolar epithelial barrier
function in radiation-induced pulmonary fibrosis, however,
are missing.

New Techniques of Radiotherapy
Radiotherapy techniques have changed significantly over the
past few decades due to improvements in engineering and
computing. The use of state-of-the art equipment employing the
recent advances in radiation oncology has a huge potential to
limit the risk of radiation induced pulmonary damage. By the
end of the 90s, 3-dimentional conformal radiotherapy (3DCRT)
was developed, where 3D imaging data is used before the
irradiation to design a minimum number of radiation beams
with a predefined fixed shape and uniform dose distribution
matching the shape of the tumor mass (131). Later this approach
was improved into IMRT (intensity-modulated radiotherapy),
which allows variation of dose within each beam and typically
uses more beams than 3DCRT which leads to more conformal
dose distribution (132). This technique was made possible by the
use of computer-controlled multi-leaf collimators and advanced
treatment planning algorithms that are capable of creating the
desired dose variation inside the radiation field (133). In the past
decade this approach was further developed into techniques like
VMAT (volumetric modulated arc therapy) where the irradiation
is carried out while rotating the irradiator around the patient
and the radiation dose is accurately shaped to the tumor while
minimizing the dose received by the surrounding tissues (134).
Further advances include the stereotactic body radiotherapy
(SBRT), where immobilization devices and improved real-time
imaging have allowed clinicians to administer high ablative
doses to precisely target the tumor. The effectiveness of SBRT
arises from the cumulative biologically effective dose that can

be achieved while maintaining a sharp dose gradient fall off
outside the target, preventing dose to critical structures (135).
However, this technique is not free of side effects, including
airway toxicity and consequent atelectasis, stenosis/stricture,
airway necrosis and/or fistula formation (more prominent in
patients with centrally located tumors) (136–138), spontaneous
pneumothorax (139, 140), pneumonitis (141), chest wall pain
and rib fracture (142, 143). Parallel to the development of these
photon-based irradiation techniques, research is also focused on
particle therapy, which is based on the use of protons and carbon
ions to further reduce the radiation dose received by the healthy
tissue. In contrast to photons, particle therapy aims to achieve
proper radiation dose concentrated predominantly at a precise
depth, which allows additional protection to the normal tissue
(144, 145).

CONCLUSION

Post-radiation lung fibrosis is a common and currently
untreatable adverse event of radiation therapy. To date,
much is known about the pathophysiological processes of the
development of lung fibrosis and pathways supporting the spread
of pathological processes in the lungs. This knowledge led to
recognition of the key points of fibrotic reaction and hopefully
in the future will result in a development of highly effective
therapeutic approaches which could be used to improve the
duration and quality of life of patients after radiotherapy while
at the same time will not limit the effectiveness of the applied
anti-neoplastic therapy.
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