
REVIEW
published: 29 October 2020

doi: 10.3389/fmed.2020.587930

Frontiers in Medicine | www.frontiersin.org 1 October 2020 | Volume 7 | Article 587930

Edited by:

Chih-Hsien Wang,

National Taiwan University

Hospital, Taiwan

Reviewed by:

Gyaninder Pal Singh,

All India Institute of Medical

Sciences, India

Taka-aki Nakada,

Chiba University, Japan

*Correspondence:

Kei Hayashida

khayashida@northwell.edu

Specialty section:

This article was submitted to

Intensive Care Medicine and

Anesthesiology,

a section of the journal

Frontiers in Medicine

Received: 27 July 2020

Accepted: 02 October 2020

Published: 29 October 2020

Citation:

Takegawa R, Hayashida K,

Rolston DM, Li T, Miyara SJ,

Ohnishi M, Shiozaki T and Becker LB

(2020) Near-Infrared Spectroscopy

Assessments of Regional Cerebral

Oxygen Saturation for the Prediction

of Clinical Outcomes in Patients With

Cardiac Arrest: A Review of Clinical

Impact, Evolution, and Future

Directions. Front. Med. 7:587930.

doi: 10.3389/fmed.2020.587930

Near-Infrared Spectroscopy
Assessments of Regional Cerebral
Oxygen Saturation for the Prediction
of Clinical Outcomes in Patients With
Cardiac Arrest: A Review of Clinical
Impact, Evolution, and Future
Directions
Ryosuke Takegawa 1,2,3, Kei Hayashida 1,2*, Daniel M. Rolston 2,4,5, Timmy Li 2,4,

Santiago J. Miyara 1,2,5,6, Mitsuo Ohnishi 3,7, Tadahiko Shiozaki 3 and Lance B. Becker 1,2,4

1 Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY,

United States, 2Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset,

NY, United States, 3Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of

Medicine, Osaka, Japan, 4Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at

Hofstra/Northwell, Manhasset, NY, United States, 5Department of Surgery, Donald and Barbara Zucker School of Medicine

at Hofstra/Northwell, Manhasset, NY, United States, 6 Elmezzi Graduate School of Molecular Medicine, Manhasset, NY,

United States, 7Department of Acute Medicine and Critical Care Medical Center, Osaka National Hospital, National Hospital

Organization, Osaka, Japan

Despite three decades of advancements in cardiopulmonary resuscitation (CPR)

methods and post-resuscitation care, neurological prognosis remains poor among

survivors of out-of-hospital cardiac arrest, and there are no reliable methods for predicting

neurological outcomes in patients with cardiac arrest (CA). Adopting more effective

methods of neurological monitoring may aid in improving neurological outcomes and

optimizing therapeutic interventions for each patient. In the present review, we summarize

the development, evolution, and potential application of near-infrared spectroscopy

(NIRS) in adults with CA, highlighting the clinical relevance of NIRS brain monitoring

as a predictive tool in both pre-hospital and in-hospital settings. Several clinical studies

have reported an association between various NIRS oximetry measurements and CA

outcomes, suggesting that NIRS monitoring can be integrated into standardized CPR

protocols, which may improve outcomes among patients with CA. However, no studies

have established acceptable regional cerebral oxygen saturation cut-off values for

differentiating patient groups based on return of spontaneous circulation status and

neurological outcomes. Furthermore, the point at which resuscitation efforts can be

considered futile remains to be determined. Further large-scale randomized controlled

trials are required to evaluate the impact of NIRS monitoring on survival and neurological

recovery following CA.

Keywords: cardiac arrest, cardiopulmonary resuscitation, near-infrared spectroscopy, cerebral oxygen saturation,
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BACKGROUND

Out-of-hospital cardiac arrest (OHCA) remains a major public
health challenge worldwide. The global report on OHCA has
described that the estimated incidence of OHCA treated via
emergency medical services (EMS) was 47.3, 40.6, 45.9, and
51.1 per 100,000 person-years in North America, Europe, Asia,
and Australia, respectively (i.e., ∼4 million cases each year)
(1). Despite advances in treatment, such as routine application
of targeted temperature management (TTM), neurological
prognosis remains poor among survivors of OHCA (2), and
there are no reliable methods for predicting neurological
outcomes in patients with cardiac arrest (CA) and post-cardiac
arrest syndrome (PCAS). International guidelines recommend
a multimodal approach for determining prognosis. However,
these guidelines are neither universally accepted nor universally
implemented, and prognostication may be delayed up to 72 h
after restoration of normothermia (3–5).

Physiologically, a prolonged “no-flow” interval during
CA followed by low cerebral perfusion during resuscitative
management (i.e., “low-flow” status) leads to hypoxic ischemia–
reperfusion brain injury—the primary cause of disability after
successful resuscitation (6). Near-infrared spectroscopy (NIRS)
can be used to obtain continuous, non-invasive measurements
of regional cerebral oxygen saturation (rSO2) in real time,
which may aid in monitoring oxygen metabolism in the brain
during this ischemia–reperfusion process. Measurements of
rSO2 are considered to reflect the balance between cerebral
oxygen delivery and consumption in the area of the brain located
beneath the device (7). NIRS has been applied in patients with
circulatory shock (8), acute brain injury (9, 10), those undergoing
perioperative cardiac surgery (11, 12) or carotid endarterectomy
(13–15), and during veno-arterial extracorporeal membrane
oxygenation in the intensive care unit (ICU) (16–18). Several
recent studies have highlighted the feasibility of NIRS for brain
monitoring during cardiopulmonary resuscitation (CPR) and
after the return of spontaneous circulation (ROSC) in patients
with CA (19–24). There are two theoretical uses for NIRS brain
monitoring and it is important to understand both. Application
of NIRS monitoring may aid in predicting patient outcomes,
which may in turn aid clinicians in determining whether to
continue or halt resuscitation efforts based on the patient’s
chance of survival. Alternatively, NIRS measurements may aid
in determining the most appropriate resuscitation therapies.
For example, patients with low initial NIRS values may benefit
from more aggressive resuscitation efforts (e.g., improved CPR,
pharmacological treatment, circulatory support). Unfortunately,
no previous studies have validated the use of NIRS for either
of these purposes. Furthermore, the cut-off rSO2 value for
predicting good vs. poor clinical outcomes in patients with CA

Abbreviations: OHCA, out-of-hospital cardiac arrest; EMS, emergency medical

services; TTM, targeted temperature management; PCAS, post-cardiac arrest

syndrome; rSO2, regional cerebral oxygen saturation; NIRS, near-infrared

spectroscopy; ICU, intensive care unit; CPR, cardiopulmonary resuscitation;

ROSC, return of spontaneous circulation; ED, emergency department; ETCO2,

end-tidal CO2; AUC, area under the curve; ROC, receiver operating characteristic

curve; CPC, Glasgow–Pittsburgh Cerebral Performance Category.

remains to be determined. Publicly available studies have also
varied with regard to the timing of NIRS (during CPR or post-
ROSC), the clinical setting (prehospital, emergency department
[ED], or ICU), and the types of NIRS readings analyzed (initial,
mean, highest, or changes in rSO2 values over the course of CPR
or the ICU stay). Thus, further studies are required to determine
the predictive value of NIRS monitoring and its potential for
guiding treatment strategies in patients with OHCA (25). In
the present review, we discuss the development and evolution
of NIRS technology, as well as the potential usefulness of rSO2

during CA and post-resuscitation care.

A BRIEF REVIEW OF NIRS TECHNOLOGY

In 1977, Jöbsis provided the first evidence that NIRS can be
used to monitor tissue metabolism in vivo (26). Notably, they
intended to develop an optical technique for measuring in
vivo redox changes in the mitochondrial enzyme cytochrome c
oxidase (27). They discovered that near-infrared light penetrates
deeper into tissues due to its higher tissue transparency,
enabling real-time monitoring of changes in the concentrations
of light-absorbing molecules within the tissue. Given that
hemoglobin chromophores are present in higher concentrations
than cytochrome c oxidase, numerous studies have focused on
the use of NIRS to measure levels of oxygenated, deoxygenated
(or redox/“reduced”), and total hemoglobin (28). In 1985, Ferrari
et al. utilized NIRS for continuous, non-invasive monitoring of
the human brain (29). In 1995, Müllner et al. provided the first
preliminary report regarding the use of NIRS in patients with
OHCA, demonstrating that higher median rSO2 values during
continuous CPR in the ED were associated with better 1-week
survival (19). In 2004, Newman et al. demonstrated the feasibility
of continuous, non-invasive cerebral oximetry measurements
obtained using NIRS and suggested a possible role for NIRS in
evaluating the adequacy of CPR methods (20).

Given the physics of light in the near-infrared spectral
region (600–900 nm) within the brain, tissue absorption is
mainly determined based on levels of oxygenated and reduced
hemoglobin, with smaller contributions from water, lipids, and
cytochrome c oxidase. Cerebral saturation is measured using a
light source fixed to the head, which transmits infrared and red
spectrum light through the skin, skull, connective tissues, and
brain. Quantification is then performed using a light detector.
The separation between the source and detector is an important
parameter of the NIRS system, as it determines the depth of
penetration (i.e., ∼2–2.5 cm with current systems) (30, 31).
Values are thus measured from a “banana-shaped” volume of
tissue (32, 33). Furthermore, the intence of near-infrared light is
also important because the larger source-detector distance, the
deeper the photon reaches inside the brain layer, but the intensity
of the detected light decreases more strongly (34, 35).

rSO2 values can be affected by various factors, such as
extracranial contamination, skin pigmentation (36, 37), and
physiological conditions. Changes in physiological conditions
may in turn lead to changes in cerebral blood flow or
oxygen content. Among the factors known to influence
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these parameters are cardiac output, acid–base status, major
hemorrhage, obstructions of arterial inflow/venous outflow,
hemoglobin concentration, hemoglobin saturation, pulmonary
function, inspired oxygen concentration, and drug use (e.g.,
phenylephrine) (38–41).

Currently, there are several commercially available NIRS
devices (12, 16, 34, 36, 42–45). These devices differ with regard
to the wavelengths and frequencies used, the timing of light
transmission, the distance between the light source and detector,
and the primary principle of measurement [e.g., Beer-Lambert
law (46), spatial-resolved spectroscopy law (47), or time-resolved
absorption spectroscopy law (46)]. Thus, the algorithms used
to derive hemoglobin saturation from the inputs received also
differ for each device. It has been reported that values for rSO2

typically range from 55 to 80%, and rSO2 <50% or a 20%
reduction from the individual baseline is generally considered
indicative of the need for intervention (48). However, it is noted
that the threshold of the normal range is not clearly defined
due to the characteristics of the equipment, and the range of
normal values actually varies among the equipment (37). As
most clinical NIRS devices assume a venous/arterial distribution
in cerebral cortical tissue of ∼70/30 or 75/25%, based in part
on the results of positron emission tomography studies (39),
rSO2 values are primarily influenced by cerebral venous oxygen
saturation (49). However, previous studies have reported that
the venous/arterial distribution of the cerebral cortex varies
among individuals (37, 50, 51), suggesting that rSO2 values
are also variable (50). Previous studies have reported that the
absolute values, or different degrees of variability in rSO2 due
to several factors, vary between NIRS devices under various
conditions (36, 37, 45, 52). Given that rSO2 values also vary based
on physiological conditions, some authors have suggested that
relative changes in rSO2 from baseline are more appropriate for
guiding resuscitative efforts than absolute values (53, 54).

SEARCH STRATEGY

To review articles regarding NIRS brain monitoring in patients
with CA, we searched PubMed, Web of Science, and Google
Scholar for relevant studies. There was no language restriction.
We developed a search strategy using the combination
of keywords and Medical Subject Heading (MeSH) terms,
which were “(Near-infrared spectroscopy [MeSH] OR (regional
cerebral oxygen saturation) OR (brain oximetry)) AND ((Heart
arrest [MeSH]) OR (cardiac surgery) OR prehospital)” for
PubMed andWeb of Science, and [“Near-infrared spectroscopy,”
“cardiac arrest,” “regional saturation”] for Google Scholar. The
main findings of the included studies are summarized in Table 1.

USE OF NIRS FOR EARLIER DETECTION
OF RE-ARREST IN PREHOSPITAL
SETTINGS

While ROSC is often successful in pre-hospital settings,
many patients subsequently develop circulatory instability and
experience re-arrest (i.e., a loss of pulse after sustained ROSC)

(74). Since re-arrest before reaching the hospital is among
the potential barriers to survival in patients with OHCA (74),
early recognition of re-arrest is crucial for ensuring prompt re-
activation of resuscitation protocols, including CPR and early
defibrillation. Many EMS systems routinely use pulse oximetry
measurements; however, pulse oximetry depends on the presence
of a peripheral pulse, and the technique is unreliable when
used during CA because pulsatile blood flow is inadequate in
peripheral tissue beds under such conditions (75, 76). Using a
finger pulse oximeter is problematic during CA because any
resultant values likely reflect the pulsation of venous blood. Thus,
although the presence of a plethysmograph waveform on pulse
oximetry is potentially valuable in detecting ROSC, the main
purpose of pulse oximetry is to ensure appropriate oxygenation
after ROSC, and its use is limited during CPR (76).

In contrast to pulse oximetry, NIRS can measure tissue
oxygenation in the absence of pulsatile flow, without the need
to interrupt chest compressions (55, 57, 62). Since NIRS values
are affected by ambient light (52, 77), some devices cannot
be used outside. Nonetheless, rSO2 monitoring may aid in the
early detection of ROSC and re-arrest in patients with CA (55–
57, 62). Meex et al. observed that rSO2 values immediately
increased after ROSC and that new episodes of ventricular
fibrillation were immediately detected as sudden decreases in
rSO2. These findings suggest that decline in rSO2 values can
reflect life-threatening situations such as pulseless arrhythmia
or severe cerebral hypoperfusion, both of which indicate an
urgent need for CPR (55). Additional studies have reported that
ROSC is associated with increases in NIRS values, while re-arrest
is associated with decreases in NIRS values (56, 57). Notably,
these studies showed the decrease in rSO2 at the re-arrest
episode, which is difficult to find re-arrest without pulse check.
It may be useful to be aware of re-arrest immediately without
pulse check. Another study reported that NIRS monitoring can
aid in assessing perfusion and guiding interventions during
transport (78). Some authors have suggested that low NIRS
readings highlight the need for additional lifesaving interventions
such as fluid resuscitation and/or vasopressors (40, 41, 79).
Therefore, NIRS monitoring may enable early recognition of re-
arrest, especially in PEA, and poor cerebral circulation during
EMS resuscitation protocol. Since vital signs and the results
of physical assessments can be influenced by environmental
factors (e.g., pre-hospital settings, ambulance transport), further
clinical studies are required to determine the value of NIRS in
various settings.

FEASIBILITY OF NIRS FOR THE
ASSESSMENT OF CPR QUALITY

Well-performed CPR has been associated with higher rates of
ROSC (80, 81), better cerebral perfusion (82), and improved
cerebral oxygenation (83). Several large-scale studies have
demonstrated that high-quality CPR improves survival and
neurological outcomes among patients with CA (84–86).
However, monitoring the adequacy of circulation and cerebral
oxygenation during CPR remains challenging. To date, studies
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TABLE 1 | Summary of main findings in the included studies.

Author Year Type of cerebral

oximeter

Type of CA Clinical setting Conclusion Reference

EARLIER DETECTION OF RE-ARREST

Frisch 2012 InSpectra OHCA Prehospital A decline in rSO2 level may correlate with re-arrest. (24)

Meex 2013 FORE-SIGHT OHCA Re-arrest was accompanied with sudden drop in rSO2 (55)

Schewe 2014 EQANOX 7600 OHCA Prehospital-VT rSO2 decreased prior to re-arrest. (56)

Nomura 2016 HAND ai TOS OHCA Prehospital-PEA Re-arrest PEA was accompanied with sudden drop in rSO2 (57)

ASSESSMENT OF CPR QUALITY

Paarmann 2010 INVOX 5100 IHCA In-hospital rSO2 may be a non-invasive alternative for the assessment of

the adequacy of oxygen transport (i.e. CPR efforts).

(58)

Kämäräinen 2012 INVOS 5100c IHCA In-hospital High quality CPR and improving CPR technique was not

significantly reflected in rSO2 as quantified.

(59)

Meex 2013 FORE-

SIGHT/EQUANOX

advance

IHCA/OHCA In-hospital Decrease in rSO2 during interruption of CPR Increase in rSO2

due to improved resuscitation efforts

(55)

Schewe 2014 Equanox 7600 OHCA Prehospital

(mechanical CPR)

rSO2 during mechanical CPR was higher compared to

manual compression

(56)

Parnia 2014 Equanox 7600 IHCA In-hospital

(mechanical CPR)

Mechanical CPR was significantly associated with higher

rSO2 compared with manual chest compression.

(60)

Ogawa 2015 TOS-OR OHCA ER (mechanical

CPR)

LDB-CPR significantly increased rSO2 value compared with

manual CPR.

(61)

PREDICTION OF ROSC

Asim 2014 INVOS 5100c OHCA ER ROSC was established in the patients with rise in rSO2. (62)

Sanfilippo 2015 N/A IHCA/OHCA Both initial and average rSO2 values were significantly higher

in the ROSC group than in the non-ROSC group.

(63)

Cournoyer 2016 N/A IHCA/OHCA Mean NIRS value were higher in patients experiencing ROSC

than in their respective counterparts.

(53)

Schnaubelt 2018 N/A IHCA/OHCA Both mean rSO2 and 1rSO2 were higher in the ROSC group

than in the non-ROSC group.

(64)

Takegawa 2019 TOS-OR OHCA ER The combination of baseline rSO2 with the amount of

maximum rise in rSO2 over time is better predictor of ROSC.

(65)

PREDICTION OF FAVORABLE NEUROLOGICAL OUTCOMES

Meex 2013 FORE-SIGHT OHCA ICU-During TTM rSO2 value was significantly lower in non-survivors compared

with survivors at 3 h after induction of TTM.

(66)

Storm 2014 INVOS 5100c IHCA/OHCA ICU-During TTM rSO2 within the first 40 h after ROSC is significantly lower in

patients with poor neurological outcome.

(67)

Genbrugge 2016 FORE-SIGHT OHCA ICU-During TTM The mean rSO2 in the rewarming phase was significantly

higher among patients with CPC scores of 1–2.

(68)

Cournoyer 2016 N/A IHCA/OHCA Mean NIRS value or combined initial and mean NIRS values

were higher in patients with good neurologic outcomes.

(53)

Bougle 2016 INVOS OHCA ICU-During TTM rSO2 within 48 h after ICU admission does not allow

discriminating patients with good or bad outcome.

(69)

Schnaubelt 2018 N/A IHCA/OHCA ROC analysis could not confirm a significant discriminatory

power for mean rSO2 values.

(64)

Saritas 2018 INVOS CA ICU-During TTM There was no significant correlation between rSO2 values and

neurologic outcomes.

(70)

Nakatani 2018 INVOS 5100c OHCA ER/ICU-During

TTM

TTM at 32–34◦C effectively decreased all-cause mortality in

comatose OHCA patients with rSO2 41–60% on arrival.

(71)

Jakkula 2019 INVOS 5100c OHCA ICU No association between rSO2 and NSE at 24, 48, 72 h after

OHCA or good neurological outcomes at 6 months.

(72)

Sakurai 2020 INVOS 5100c OHCA ICU- During TTM There was no significant difference in rSO2 values between

prognosis groups at any time point.

(73)

CA, Cardiac arrest; OHCA, Out-of-hospital cardiac arrest; IHCA, in-hospital cardiac arrest; rSO2, regional cerebral oxygen saturation; ROSC, return of spontaneous circulation; CPR,

cardiopulmonary resuscitation; CPC, cerebral performance category; ER, emergency room; ICU, intensive care unit; LDB, load distributing band; NSE, neuron specific enolase; ROC,

receiver operating characteristic; TTM, targeted temperature management; N/A, not available.
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investigating the use of NIRS devices to assess the quality of CPR
have yielded conflicting results (55, 58, 59).

To assess the quality of CPR, Kämäräinen et al. measured rSO2

using an INVOS 5100c device and simultaneously monitored
indicators of CPR quality. Compression depth, the rate and
release of compressions, and ventilation rate were monitored
during CPR with automated real-time audiovisual feedback (59).
Data related to the quality of CPR and rSO2 were measured at 30-
s intervals until ROSC (59). The authors observed that cerebral
oxygenation remained low throughout high-quality CPR (59), in
contrast to the previous findings that cerebral rSO2 decreases
due to circulatory arrest during cardiac surgery but increases
during CPR (87) or cardiopulmonary bypass (88). However, the
rSO2 data recorded in this study were unreliable in many cases,
as 59% of the 30-s intervals exhibited artifacts that precluded
quantification of rSO2 (59). In contrast, Meex et al. observed
parallel increases in systolic arterial pressure and rSO2 during
CPR (55), suggesting a positive effect of CPR on these two
parameters. In addition, switching CPR providers resulted in
a measurable increase in cerebral oxygen saturation. An rSO2

decreased to values between 30 and 35% after cessation of CPR.
The authors further stated that rSO2 monitoring allows for both
the continuous estimation of cerebral oxygenation without ROSC
and the assessment of CPR efficacy (55). Previous research has
indicated that mechanical chest compression, which is thought to
provide adequate compression over long periods of time without
fatigue or interruption, significantly increases rSO2 values in
patients with OHCA, in contrast to manual chest compression
(61). Although their sample sizes were small, other studies have
also noted that mechanical CPR is associated with significantly
higher rSO2 values than manual CPR (56, 60).

The abovementioned findings indicate that dynamic rSO2

monitoring may be more useful than static assessments of
rSO2 during CPR, as such monitoring can provide quantitative
information regarding cardiac output and cerebral perfusion
during chest compressions. Application of NIRS for the
assessment of CPR quality and oxygen delivery to the brain may
thus help to improve clinical outcomes following CA. Further
studies are required to determine how NIRS monitoring can be
integrated into standardized CPR protocols.

PREDICTION OF ROSC AND FAVORABLE
NEUROLOGICAL OUTCOMES

International guidelines recommend end-tidal CO2 (ETCO2)
monitoring for the assessment of CPR quality, noting that a
sudden increase in ETCO2 is likely to represent an early indicator
of ROSC (89). The potential value of ETCO2 for optimizing
resuscitation efforts is discussed elsewhere (89). However,
ETCO2 readings are influenced by mechanical ventilation
settings, the tidal volume of ventilation,many drugs administered
during resuscitation, and by different lung pathologies. In
addition, ETCO2 monitoring does not provide data related
to cerebral circulation. Thus, ETCO2 monitoring is distinctly
different from NIRS monitoring. In a recent prospective study
by Engle et al., ETCO2 assessments and cerebral oximetry

were performed simultaneously during CPR in the ED (90).
The authors observed that both ETCO2 and rSO2 were good
predictors of ROSC. However, logistic regression analysis of the
simultaneously collected data revealed that rSO2 was superior to
ETCO2 in predicting ROSC (90).

A 2015 systematic review and meta-analysis reported that
both initial and average rSO2 values were significantly higher in
the ROSC group than in the non-ROSC group (63). An extensive
2016 meta-analysis including 20 studies demonstrated that
mean NIRS values were higher in patients experiencing ROSC,
surviving to discharge, and surviving with good neurologic
outcomes than in their respective counterparts (53). The authors
further reported that combined initial and mean NIRS values
were higher in patients who survived to discharge and in those
who experienced good neurological outcomes than in their
counterparts (53). In themost recent systematic review andmeta-
analysis of 26 studies, Schnaubelt et al. demonstrated that both
mean rSO2 and 1rSO2 (i.e., the difference between the initial
value and the value at ROSC, or the difference between the initial
value and the value at the end of CPR) were higher in the ROSC
group than in the non-ROSC group (64). ROSCwas not observed
when mean rSO2 remained <26%. An rSO2 threshold of 36%
predicted ROSC with a sensitivity of 67% and specificity of 69%,
while a 1rSO2 of 7% predicted ROSC with a sensitivity of 100%
and a specificity of 86% [area under the curve (AUC)= 0.733 and
0.893, respectively] (64).

However, given that baseline values vary among patients (54),
comparisons of static values obtained using different devices
may be methodologically problematic (91, 92). Importantly, all
studies in these meta-analyses focused on averages obtained from
static values, rather than on changes in NIRS readings within
the same patient. Thus, it is difficult to determine the absolute
cut-off value for discontinuing CPR based on the currently
available data, as some patients experienced ROSC even with
rSO2 values lower than the suggested cut-off values. Furthermore,
some authors have suggested that dynamic assessments of
rSO2 obtained throughout resuscitation are more appropriate
than static assessments for evaluating outcomes in patients
with CA (22). In a single-center retrospective study, Takegawa
et al. evaluated the association between the probability of
ROSC and the degree of rSO2 increase during CPR among 90
patients with OHCA, 35 (38.9%) of whom achieved ROSC (65).
Receiver operating characteristic curve (ROC) analysis revealed
that the amount of maximum rise in rSO2 value (i.e., the
difference between maximum and baseline values) over a 16-min
measurement period yielded an AUC of 0.75 for differentiating
between the ROSC and non-ROSC groups. In addition, the best
AUC value was achieved by the combination of the amount of
maximum rise and baseline rSO2, rather than by the amount of
maximum rise alone (AUC = 0.91) (65). The authors suggested
that discontinuation of CPR may be indicated in patients with
low initial values who do not exhibit an appropriate increase in
rSO2, resulting in a low mean value. Taken together, the available
data suggest that average rSO2 and 1rSO2 values during CPR
may aid in determining the likelihood of achieving ROSC in
patients with CA. Given that it is difficult to measure mean rSO2

during on-going CPR in real-world settings, it is reasonable to
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focus on the combination of baseline rSO2 and 1rSO2 during
CPR. Further large-scale, prospective, multicenter studies are
required to assess the ability of 1rSO2 to predict ROSC.

Previous studies have reported good neurologic outcomes
following CA in patients with both high initial rSO2 values
and high mean rSO2 values (53). In the most recent meta-
analysis, the calculated averaged mean rSO2 values were higher
in patients with favorable neurological outcomes (Glasgow–
Pittsburgh Cerebral Performance Category [CPC]: 1 or 2) than
in those with poor neurological outcomes (rSO2: 47 vs. 38%,
P = 0.018) (64). CPC scores of 1 or 2 were not observed in
patients with mean rSO2 values≤30± 17%. Mean rSO2 values in
patients with favorable neurological outcomes were significantly
above 30%. However, ROC analysis for neurological outcomes
could not confirm a significant discriminatory power for mean
rSO2 values (AUC = 0.770, P = 0.098), likely due to the small
sample size (64). The authors concluded that mean rSO2 and
1rSO2 values have good predictive value for ROSC but not for
favorable neurological outcomes (64). Moreover, in a post hoc
analysis of a randomized clinical trial, Jakkula et al. observed no
association between cerebral rSO2 (median rSO2 during the first
36 h) and concentrations of neuron-specific enolase (a marker
of neurological injury) at 24, 48, and 72 h after OHCA or good
neurological outcomes at 6 months (72). Despite the promising
trends suggested by the available evidence, clear cut-off values
of rSO2 for predicting favorable outcomes after CA are yet to
be established.

USE OF NIRS DURING TTM

Given that induction of hypothermia affects cerebral oxygen
metabolism and changes the balance between oxygen supply
and demand (93), several studies have examined the role of
NIRS monitoring during TTM (66–71, 73). Although some
small-scale studies have applied NIRS monitoring during and
after TTM in patients with PCAS, meta-analyses or systematic
reviews on NIRS monitoring during TTM have been extremely
limited. Meex et al. evaluated serial changes in rSO2 during
TTM in 28 patients with OHCA who underwent hypothermia
at 33◦C for 24 h after ROSC (66). Values for rSO2 decreased

significantly within 3 h after the onset of TTM, indicating that
the balance between oxygen supply and demand may have been
adversely affected. After 3 h, rSO2 gradually increased again
even during hypothermia, increasing further during the 12-h
rewarming period. Although there was no significant difference
in rSO2 between the survival and non-survival groups, the
decrease in rSO2 observed during the early stages of hypothermia
was significantly greater in the non-survival group than in the
survival group (66). Other studies have also reported a general
trend that rSO2 values decrease after the onset of hypothermia,
increasing during and after rewarming (68, 70). These results
were contrary to the expectation that rSO2 values should increase
due to reductions in brain metabolism/oxygen consumption
and the effects of hypothermic conditions on the affinity of
hemoglobin for oxygen (66). Therefore, the contrary results were
likely due to increases in cerebrovascular resistance and decreases
in cerebral blood flow.

There are several possible explanations for decreases in
rSO2 during the early phase of TTM. Some investigators have
suggested that cerebral blood flow and rSO2 are influenced
by cardiac output, use of α-adrenergic vasoconstrictor agents
(40, 41, 94), use of anesthetic agents, or other confounding
factors. Some studies have also reported that rSO2 values during
TTM are associated with neurological prognosis (67, 68, 71).
Storm et al. evaluated the association between rSO2 values
and neurological outcomes at hospital discharge and 6 months
later in 60 patients with in-hospital cardiac arrest and OHCA.
Continuous measurements of cerebral rSO2 were obtained for
40 h (i.e., from the onset of hypothermia to rewarming). Median
rSO2 values at all time points (i.e., at the start of measurement;
upon reaching 33◦C; and at 4, 12, 24, and 40 h) were persistently
higher in patients with CPC scores of 1–2 than in patients
with CPC scores of 3–5 (median rSO2: 68 vs. 58%, P < 0.01)
(67). However, rSO2 levels largely overlapped between outcome
groups, suggesting that the potential of rSO2 to aid in predicting
outcomes is limited (67). Genbrugge et al. reported that the
mean rSO2 value during rewarming following hypothermia was
significantly higher among patients with CPC scores of 1–2 than
among those with CPC scores of 3–5 (70 ± 1 vs. 68 ± 1%,
P = 0.046) (68). However, they also mentioned that significant

FIGURE 1 | The clinical relevance of NIRS brain monitoring as a predictive tool in both pre-hospital and in-hospital settings.
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differences in rSO2 in their study were unlikely to be clinically
meaningful given that such data are not available at the bedside.
Moreover, given the small sample size of the study, their data
cannot be used to determine cutoff rSO2 values for predicting
outcomes (68). In contrast, other studies have reported no
significant differences in rSO2 values between prognosis groups,
even when changes in rSO2 values over time were investigated
(69, 70, 73).

Given the available evidence, further studies are required
to validate the efficacy of rSO2 values during the early
stages of TTM in predicting outcomes in patients with
PCAS. Stratifying patients according to severity based on rSO2

values (71) may aid in distinguishing which patients would
benefit from hypothermia. Further large-scale, prospective,
multicenter studies are required to elucidate the potential
of rSO2 during TTM for predicting neurological outcomes
following CA.

CONCLUSION

In the present review, we summarized the development,
evolution, and potential application of near-infrared
spectroscopy (NIRS) in adults with CA, highlighting the
clinical relevance of NIRS brain monitoring as a predictive
tool in both pre-hospital and in-hospital settings (Figure 1).
To date, no studies have established acceptable rSO2 cut-off
values for differentiating patient groups based on ROSC status

and neurological outcome. Furthermore, the extent of decrease
in rSO2 from baseline that constitutes an abnormal finding in
patients with CA remains to be determined. Additional studies
are required to determine the point at which resuscitation efforts
can be considered futile. Nonetheless, the available evidence
indicates that rSO2 may aid not only in predicting outcomes
among patients with CA, but also in optimizing CPR strategies
and guiding neuroprotective interventions. Further large-scale
randomized controlled trials are required to evaluate the impact
of NIRS monitoring on survival and neurologic recovery.
Moreover, additional studies should evaluate NIRS-guided
resuscitative strategies, using improvements in NIRS values
to optimize resuscitation efforts, post-resuscitation care, and
patient outcomes.
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