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Background: High-flow oxygen therapy (HFOT) provides oxygen-enriched, humidified,

and heated air at high flow rates via nasal cannula. It could be an alternative to low-flow

oxygen therapy (LFOT) which is commonly used by patients with chronic obstructive

pulmonary disease (COPD) during exercise training.

Research Question: We evaluated the hypothesis that HFOT improves exercise

endurance in COPD patients compared to LFOT.

Methods: Patients with stable COPD, FEV1 40–80% predicted, resting pulse oximetry

(SpO2) ≥92%, performed two constant-load cycling exercise tests to exhaustion at 75%

of maximal work rate on two different days, using LFOT (3 L/min) and HFOT (60 L/min,

FiO2 0.45) in randomized order according to a crossover design. Primary outcome was

exercise endurance time, further outcomes were SpO2, breath rate and dyspnea.

Results: In 79 randomized patients, mean± SD age 58± 9 y, FEV1 63± 9% predicted,

GOLD grades 2-3, resting PaO2 9.4 ± 1.0 kPa, intention-to-treat analysis revealed an

endurance time of 688 ± 463 s with LFOT and 773 ± 471 s with HFOT, mean difference

85 s (95% CI: 7 to 164, P= 0.034), relative increase of 13% (95% CI: 1 to 28). At isotime,

patients had lower respiratory rate and higher SpO2 with HFOT. At end-exercise, SpO2

was higher by 2% (95% CI: 2 to 2), and Borg CR10 dyspnea scores were lower by 0.8

points (95% CI: 0.3 to 1.2) compared to LFOT.

Interpretation: In mildly hypoxemic patients with COPD, HFOT improved endurance

time in association with higher arterial oxygen saturation, reduced respiratory rate and

less dyspnea compared to LFOT. Therefore, HFOT is promising for enhancing exercise

performance in COPD.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03955770.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a progressive
disease characterized by chronic obstruction of airflow related to
airway inflammation, remodeling, and parenchymal destruction
of the lung (1) and is the fourth leading cause of death
worldwide (2). Among patients with COPD, airflow obstruction,

hyperinflation and gas exchange impairment leading to dyspnea
as well as muscle weakness are important factors contributing to
exercise intolerance (3). Pulmonary rehabilitation is an effective
means to improve dyspnea, exercise performance, health status

and quality of life in this population (1, 4, 5). In particular,

endurance training improves the aerobic exercise capacity and
peripheral muscle function (6). Low-flow oxygen therapy (LFOT)
during constant-load exercise improves muscle oxygenation
(7) and exercise endurance time (8) both in COPD patients
with and without exercise-induced hypoxemia (9). However,
LFOT cannot always assure appropriate oxygenation, does not
support ventilation and may lead to uncomfortable drying-out of
airways (10).

High-flow oxygen therapy (HFOT) is a novel modality
of ventilatory support which provides heated and humidified
oxygen-air mixtures at selected FiO2 and high flow rates (up to
60 L/min) via a large bore nasal cannula. Physiological studies
have shown that HFOT improves oxygenation and at the same
time washes out carbon dioxide in the anatomical dead space
(11). HFOT has also been shown to reduce the respiratory
rate (12, 13) and work of breathing and to induce a slight
positive end-expiratory pressure (PEEP, usually around 3 cm
H2O) supporting oxygenation and upper airway patency (14).
Unlike conventional LFOT, HFOT has the advantage to deliver a
stable, selectable FiO2 (0.21 to 1.0), even during mouth breathing
(14). Several randomized trials have suggested potential benefits
of HFOT in critically ill hypoxemic patients in comparison to
non-invasive ventilation or LFOT (15, 16). In COPD patients
with chronic, stable, hypoxemic respiratory failure, a recent
randomized trial revealed a positive effect of long-term home
HFOT vs. conventional LFOT in terms of symptoms, COPD-
exacerbations and hospital admissions (17). In a recent study
in COPD patients, HFOT employed during exercise training
over the course of a 4-weeks rehabilitation program did not
increase endurance time compared to oxygen supplementation
via a Venturi mask (18). Further investigations in patients with
stable COPD, revealed conflicting results with HFOT in terms
of enhancing exercise endurance and definitive conclusions were
hampered by the small sample size and methodological weakness
of certain studies (19, 20).

The purpose of the current study was therefore to investigate
the effect of HFOT on exercise endurance time in patients with
COPD compared to LFOT. We choose to administer HFOT
with a total flow of 60 l/min, FiO2 0.45, to optimally support
ventilation and oxygenation in a clinically feasible way. LFOT at
a rate of 3 l/min via conventional nasal cannula was selected as
the comparator because this mode of oxygen supplementation
has been widely used in clinical practice and research studies
(21, 22) and because higher flow rates of cold and dry oxygen
may have induced nasal mucosal irritation and discomfort. The

main hypothesis was that, in patients with moderate to severe
COPD, HFOT improves the constant-load cycling endurance
time compared to LFOT.

METHODS

Study Design
This randomized, crossover trial evaluated the effect of HFOT on
cycling endurance time in patients with COPD in comparison to
LFOT. After baseline assessments, patients were randomized to a
constant-load exercise test under LFOT (oxygen flow 3 l/min via
conventional nasal cannula) first, followed by a test under HFOT
(total flow 60 L/min, FiO2 0.45, via Optiflow nasal cannula, see
below) second, on a different day, or vice versa, with a washout
period of at least 1 day. The predetermined settings for LFOT
and HFOT were identical for all participants and left unchanged
during exercise tests. The study was performed from May to
July 2019 at the National Center of Cardiology and Internal
Medicine (NCCIM) in Bishkek, Kyrgyzstan. The protocol was
approved by the Ethics Committee of the NCCIM (2019-15) and
registered at www.ClinicalTrials.gov (NCT03955770). Written
informed consent was obtained from all participants.

Patients
Men and women, 35 to 75 years of age, with COPD
diagnosed according to Global Initiative for Obstructive Lung
Disease (GOLD) guidelines (1), FEV1/FVC <0.7, FEV1 40–
80% predicted, resting pulse oximetry (SpO2) ≥92%, PaCO2 <6
kPa, were included. Exclusion criteria were current long-term
oxygen therapy, current heavy smoking (>20 cigarettes per day)
and comorbidities such as uncontrolled cardiovascular disease,
internal, neurologic, rheumatologic or psychiatric disease that
might have interfered with protocol compliance.

Assessments and Interventions
Baseline evaluations included a medical history, clinical
examination, the modified Medical Research Council dyspnea
score (23), spirometry, arterial blood gas analysis and a 6-min
walk test.

Each patient performed two constant-load cycling exercise
tests to exhaustion using HFOT and LFOT on two different
days, respectively, according to randomization. The load of the
stationary cycle ergometer was set at 75% of the individually
estimated maximum work rate using an approach similar to
that proposed by Luxton et al. based on studies in 22 COPD
patients (18, 24). Thus, we estimated the individual maximal
work rate by a regression model fitted to data from a previous
study in 134 COPD patients (25) using sex, age (coefficient in
men −1.12, in women −0.71) FEV1% predicted (coefficient in
men 0.76, in women 0.19), body mass index (coefficient in men
1.56, in women 0.97), 6-min walk distance (coefficient in men
0.11, in women 0.14) and a constant (in men 34.8, in women
16.0) into account. After a 2-min resting period on the ergometer,
patients started exercise. They were encouraged to maintain a
cycling rate of >60 rounds/min for as long as possible until
exhaustion. The test was stopped if cycling rate dropped to
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FIGURE 1 | Patient flow in the cross-over trial.

<40 rounds/min for >10 s and this time was recorded as end-
exercise. Additional pre-defined termination criteria included
chest pain and ECG changes suggesting cardiac ischemia,
uncontrolled arterial hypertension and severe symptomatic
oxygen desaturation (SpO2 ≤80%), among others, according to
published standards (26). If the duration of the initial test was
<3 or >25min, the intervention was repeated on another day
with adjusted work load to achieve a duration of 3–25min.
This was required in five patients starting with LFOT and eight
patients starting with HFOT. During exercise tests, LFOT was
provided by a standard nasal cannula (oxygen cannula standard
connector, Dahlhausen) at predetermined and fixed flow rate
of 3 L/min using an oxygen concentrator (EverFlow, Philips
Respironics, providing FiO2 >0.95). HFOT was applied by a
dedicated large bore nasal cannula (Optiflow+, Fisher&Paykel,
New Zealand) with a predetermined, fixed flow rate of 60
L/min, FiO2 0.45, temperature 31◦C, using a HFOT device
(myAIRVO2, Fisher&Paykel, New Zealand) in combination
with five oxygen concentrators (EverFlow, Philips Respironics)
connected in parallel to deliver the required oxygen admixture of
18–20 L/min. The predetermined standard settings of LFOT and
HFOT were left unchanged during all exercise tests.

A 3-lead ECG, pulse oximetry and respiratory inductance
plethysmography were continuously monitored (Alice 5,
polygraphy device, Philips Respironics), blood pressure was
non-invasively measured by a cuff system. A radial arterial blood

sample was drawn in the final 30 s of exercise to measure arterial
blood gases (RapidPoint500, Siemens). The endurance time
from beginning to end-exercise was recorded. Mean values of
ECG-derived heart rate, pulse oximetry, and breath rate from
inductance plethysmography were obtained during 30 s at rest,
immediately before the start of exercise, during the final 30 s
of exercise, and during 30 s over the course of the test with
longer endurance at an elapsed time corresponding to the final
30 s of the test with the shorter endurance to compare isotime
values between treatments. The heart rate reserve was calculated
as the maximal predicted heart rate (i.e., 220-age) minus the
observed heart rate. Immediately before and after the test,
patients rated perceived dyspnea using the Borg CR10 scale (27)
and indicated the comfort of the treatment on a 100-mm visual
analog scale ranging from 0 (extremely uncomfortable) to 100
(very comfortable).

Outcomes and Sample Size Estimation
The primary outcome was the difference in exercise endurance
time between tests on HFOT vs. LFOT. Secondary outcomes
included heart rate, respiratory rate, pulse oximetry, arterial
blood gases, dyspnea sensation and treatment comfort. In
patients with COPD, a minimal difference in endurance time
assessed by constant-load bicycle ergometry of 75 s (range 46–
105 s) or an effect size of >0.36 have been shown to be clinically
important (28). Therefore, to detect an improvement in cycling
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TABLE 1 | Patient characteristics.

Allocation

sequence LFOT

first

n = 38

Allocation

sequence HFOT

first

n = 41

All

patients

n = 79

Sex, m/f 23/15 22/19 45/34

Age, y 57.9 ± 8.6 58.4 ± 9.1 58.1 ± 8.8

Body mass index, kg/m2 27.8 ± 5.4 27.4 ± 4 27.6 ± 4.7

FEV1,% predicted 63 ± 9.4 63 ± 9.6 63 ± 9.4

COPD GOLD 2/3, n 34/4 36/5 70/9

6-minute walk distance, m 483 ± 78 498 ± 71 491 ± 75

Drop in pulse oximetry ≥2%

during 6-min walk test, n

patients

4 11 15

Smoking status

Current smoker, n (%) 11 (28.9) 5 (12.2) 16 (20.3)

Ex-smoker, n (%) 9 (23.7) 13 (31.7) 22 (27.8)

Smoking, Pack-years 16 (12.7) 18 (17) 34 (43)

Current medication

Inhaled beta-adrenergics,

n (%)

10 (26) 10 (24) 20 (25)

Inhaled anticholinergics,

n (%)

5 (13) 10 (24) 15 (19)

Inhaled steroids, n (%) 9 (24) 9 (22) 18 (23)

Antihypertensives, n (%) 6 (16) 6 (15) 12 (15)

Beta-blockers, n (%) 0 (0) 2 (5) 2 (3)

Antidiabetiks, n (%) 1 (3) 1 (2) 2 (3)

Acetylsalicylic acid, n (%) 4 (11) 2 (5) 6 (8)

Arterial blood gas analysis (at rest, ambient air)

pH 7.41 ± 0.03 7.40 ± 0.02 7.40 ± 0.02

PaO2, kPa 9.3 ± 0.9 9.5 ± 1.1 9.4 ± 1.0

PaCO2, kPa 5.5 ± 0.5 5.4 ± 0.5 5.5 ± 0.5

HCO−

3 , mmol/L 25.2 ± 2.5 24.6 ± 1.9 24.9 ± 2.2

Lactate, mmol/L 0.97 ± 0.32 1.06 ± 0.36 1.02 ± 0.34

Glucose, mmol/L 6.00 ± 0.93 5.72 ± 0.89 5.84 ± 0.91

Means ± SD, numbers (%). LFOT, Low-flow oxygen therapy; HFOT, high-flow oxygen

therapy.

time of 50 s, effect size of 0.36 (corresponding to a SD of
140 s), 64 patients were needed to power the study with 80%,
alpha 0.05. Accounting for drop-outs, we aimed to recruit
80 participants.

Randomization and Masking
Randomization was performed by a study coordinator as per
computer generated schedule (using the software MinimPY)
(29) minimizing for age (<60 or ≥60 y), sex, FEV1%
predicted (<60 or ≥60) and 6-min walking distance (<500
or ≥500m). Patients were explained that two different forms
of oxygen therapy would be compared, but no further details
were disclosed.

Data Analysis and Statistics
Data are summarized by numbers and proportions or means ±
SD. The primary outcome was analyzed by the intention-to-treat

approach, replacing missing values by multiple imputation
using chained equations (30). Adjusted treatment effects
were computed by incorporating age, sex and FEV1 as
additional predictors. Secondary outcomes were analyzed
according to the per-protocol approach using data from all
patients with complete data. Means and 95% confidence
intervals (CI) of the unadjusted treatment effects on the
primary and secondary outcomes were assessed by mixed
effects linear regression analyses including intervention
(HFOT, LFOT) and allocation sequence (HFOT first, LFOT
first) as covariates. Effect sizes were computed according
to Kazis et al. (31) A probability of P < 0.05 was assumed
as significant.

RESULTS

Of 112 screened individuals, 79 were randomized and included
in the intention-to-treat analysis (Figure 1). Eleven had to be
excluded after performing the first test for various reasons, most
commonly because they withdrew consent (Figure 1). Data from
68 patients (34 in each arm) were available for the per-protocol
analysis. Patient characteristics were similar between the two
arms (Table 1). No relevant adverse events occurred during
the study.

In the intention-to-treat analysis, mixed linear regression
analysis with intervention (HFOT, LFOT) and allocation
sequence as predictors revealed a mean ± SD endurance time
with HFOT of 773 ± 471 s and with LFOT of 688 ± 463 s. Thus,
HFOT improved endurance time by a mean of 85 s (95% CI 7 to
164, P= 0.034) or 13% (1 to 28) corresponding to an effect size of
0.20 (95% CI: 0.02 to 0.38) (Figure 2, Table 2). Adjusted analysis
did not reveal any significant effect of age (coefficient−5, 95% CI
−16 to 6), sex (coefficient 80, 95% CI −115 to 276), or FEV1%
predicted (coefficient 3, 95% CI −7 to 14) on the difference
between tests withHFOT and LFOT. In the per-protocol analysis,
endurance time was increased by HFOT by a mean of 101 s (95%
CI: 27 to 175, P= 0.007) (Table 2) corresponding to an effect size
of 0.26 (95% CI: 0.07 to 0.44).

Secondary outcomes at rest and end-exercise are presented
in Table 2. In tests with HFOT and LFOT, there were similar
exercise-induced increases in breath rate and in heart rate. A
metabolic acidosis associated with a reduction in PaCO2 was
observed. Compared to resting arterial blood gas analysis during
ambient air breathing, there was a significantly greater increase
in PaO2 and SaO2 at end-exercise with HFOT than with LFOT
with mean differences of 7.1 kPa (95% CI 5.8 to 8.5, P < 0.001
and 1% (1 to 2, P < 0.001).

Changes in physiologic variables over the course of exercise
tests from rest to isotime and end-exercise are displayed in
Figure 3. HFOT reduced the respiratory rate at isotime by 2.2
breaths/minute (95% CI: 0.7 to 3.7, P = 0.006) and improved
SpO2 by 2% (2 to 2, P < 0.001).

Patients perceived less dyspnea at end-exercise under HFOT
(−0.8 points Borg CR10 scale, 95% CI:−1.2 to−0.3, P = 0.044).
Comfort with treatments was rated similarly with bothmodalities
(mean difference 0.1%, 95% CI:−6.4 to 6.2).
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FIGURE 2 | Primary outcome: difference with 95% confidence intervals in cycling endurance time between tests on high-flow oxygen therapy (HFOT) and low-flow

oxygen therapy (LFOT) for the intention-to-treat and per-protocol analyses.

DISCUSSION

The current randomized cross-over trial is the first to evaluate

the effect of HFOT on exercise performance in comparison to

LFOT in mildly hypoxemic patients with moderate to severe
COPD. The main findings are an improvement in endurance

time by 13% associated with a higher arterial oxygen saturation, a

lower respiratory rate at corresponding isotime and less dyspnea

at end-exercise.
The use of LFOT by nasal cannula has been shown to improve

both endurance time and peak work rate in patients with non-
hypoxemic COPD when used repeatedly during exercise training
programs over many weeks (9, 32). However, the discomfort
associated with LFOT by mucosal drying and a variable or
reduced FiO2 due to mouth breathing during exercise hamper
its acceptance and efficacy. HFOT with humidified, heated air
was expected to address these shortcomings but its effect on
endurance time has not been conclusively studied yet. Thus,
in a randomized trial investigating effects of nasal high-flow
breathing of ambient air or oxygen-enriched air, Cirio et al.
(19) demonstrated that HFOT (60 l/min) improved exercise
performance in 12 patients with stable severe COPD (mean FEV1

35% predicted, mean PaO2 9.7 kPa) and ventilatory limitation
compared to breathing with a Ventury mask with individually

variable FiO2 set to maintain oxygen saturation >88%. Since
oxygen was administered in 8 of 12 patients due to exercise-
induced hypoxemia both during the nasal high-flow and low-
flow control tests, the specific effects of HFOT could not be
assessed. Another randomized trial in 19 patients with severe to
very severe COPD (mean FEV1 29% predicted, mean PaO2 9.2
kPa) recovering from an exacerbation, revealed no significant
improvement in endurance time with nasal high-flow, but
comparison to low-flow was hampered since variable amounts of
supplemental oxygen were administered to maintain SpO2 ≥90%
both during high-flow and control tests (20). Compared to the
cited studies, the degree of airflow obstruction in participants of
the current trial was less severe (Table 1), but the mean resting
PaO2 was similarly reduced compared to the predicted mean
PaO2 for normals (33, 34).

The current study is the first investigating the effects of HFOT
compared to LFOT in a methodologically sound randomized
trial. The increase in cycling endurance time by a mean of
85 s achieved by a single application of HFOT vs. LFOT is
considerable as it exceeds the minimal clinically important
difference in endurance time suggested for COPD patients
(28). Since constant-load exercise training improves aerobic
exercise capacity and muscular function in COPD patients (6),
longer exercise training under HFOT may favorably affect the
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TABLE 2 | Main outcomes.

Low-flow oxygen therapy, LFOT High-flow oxygen therapy, HFOT

Rest End- exercise Difference

end-exercise

minus rest

Rest End-exercise Difference

end-exercise

minus rest

Difference HFOT

minus LFOT at

end- exercise

Endurance time,

intention-to-treat analysis, s

NA 688 ± 463 NA 773 ± 471 85 (7 to 164)*

Endurance time, per-protocol

analysis, s

NA 612 ± 452 NA 713 ± 452 101 (27 to 175)*

Breath rate, 1/min 16.9 ± 6.4 33.4 ± 6.4 16.5 (14.9 to 18.1)* 15.8 ± 6.4 32 ± 6.4 16.3 (14.7 to 17.8)* −1.4 (−2.9 to 0.2)

Heart rate, 1/min 79 ± 16 137 ± 16 59 (55 to 63)* 78 ± 16 135 ± 16 57 (54 to 61)* −2 (−6 to 2)

Heart rate reserve, 1/min 84 ± 16 25 ± 16 −59 (−63 to −55)* 85 ± 16 27 ± 16 −57 (−61 to −54)* 2 (−2 to 6)

SpO2, % 97 ± 0 96 ± 0 −1 (−1 to 0)* 98 ± 0 98 ± 0 −1 (−1 to 0)* 2 (2 to 2)*

Arterial pH
†

NA 7.33 ± 0.00 −0.07 (−0.08 to −0.06)* NA 7.34 ± 0.1 −0.06 (−0.07 to −0.05)* 0.01 (−0.01 to 0.02)

PaCO2, kPa
†

NA 4.9 ± 0.8 −0.5 (−0.6 to −0.4)* NA 4.8 ± 0.8 −0.7 (−0.8 to −0.5)* −0.1 (−0.3 to 0.03)

PaO2, kPa
†

NA 14.4 ± 3.2 5.0 (4.0 to 5.9)* NA 21.6 ± 3.2 12.1 (11.1 to 13.1)* 7.1 (5.8 to 8.5)*

Arterial HCO−

3 , mmol/l
†

NA 19.3 ± 2.4 −5.6 (−6.2 to −5.0)* NA 19.2 ± 2.4 −5.7 (−6.3 to −5.1)* −0.1 (−0.9 to 0.7)

SaO2, %
†

NA 97 ± 2 4 (3 to 4)* NA 99 ± 2 5 (5 to 5)* 1 (1 to 2)*

Lactate, mmol/l
†

NA 6.7 ± 2.1 5.7 (5.0 to 6.3)* NA 6.4 ± 2.2 5.4 (4. 8 to 6.1)* −0.2 (−1.1 to 0.7)

Borg dyspnea 0.3 ± 1.6 4.0 ± 1.6 3.7 (3.2 to 4.1)* 0.2 ± 1.6 3.3 ± 1.6 3 (2.6 to 3.5)* −0.8 (−1.2 to −0.3)*

Borg leg fatigue 0.4 ± 1.6 5.3 ± 1.6 4.9 (4.5 to 5.4)* 0.4 ± 1.6 5.4 ± 1.6 5 (4.5 to 5.4)* 0 (−0.4 to 0.5)

Treatment comfort, mm VAS NA 58 ± 17 NA 58 ± 20 0 (−6 to 6)

Means ± SD, mean differences (95% confidence intervals). For the primary outcome, endurance time, results are presented for intention-to-treat (n = 79) and per-protocol analyses

(n = 68). For all other outcomes, results obtained with the corresponding treatment are presented for the per protocol analysis.

SpO2, pulse oximetry. NA, not applicable.
†
Resting arterial blood gas analyses were obtained once per patient while breathing ambient air, results are listed in Table 1. All other outcomes were obtained while patients were

breathing the corresponding treatment. Treatment comfort was rated on a visual analog scale (VAS, 100mm in length). *Difference P < 0.05.

individually targeted outcomes during a training program and
thereby improve exercise tolerance and quality of life. In the
current study, the improvement in performance was related to
a higher arterial oxygen saturation under HFOT both at isotime
and at end-exercise compared to LFOT. Correspondingly,
in healthy individuals and in patients with COPD (35) or
precapillary pulmonary hypertension (36), breathing hyperoxic
air improved pulmonary gas exchange, reduced ventilatory work
and resulted in enhanced exercise endurance (37). Even though
the PaO2 and SaO2 at end-exercise were higher with HFOT
vs. LFOT in COPD patients in the current study, this did not
promote a rise in PaCO2 under HFOT (Table 2).

The higher PaO2 at end-exercise during HFOT was associated
with less dyspnea sensation compared to LFOT which may
have contributed to the prolongation of endurance with HFOT.
In turn, the leg fatigue sensation, the levels of lactate and
heart rate reserve at end-exercise were comparable between
the two therapies suggesting that respiratory limitations rather
than circulatory or peripheral muscle limitations were the main
determinants of endurance although this could not be directly
assessed in the current protocol. Post-hoc exploratory regression
analysis performed to identify potential predictors of a favorable
response to HFOT did not reveal statistically significant effects of
age, sex, severity of airflow obstruction or body mass index.

Although a tendency for a greater reduction of PaCO2 under
HFOT than under LFOT was observed, this difference was
not statistically significant (Table 2) and we therefore have no

evidence of a reduction in dead space ventilation by HFOT as
observed in certain previous studies (11). Perhaps our study was
underpowered to detect small differences in PaCO2. Moreover,
patients could not take advantage of the PEEP-effect of HFOT,
which requires breathing with the mouth closed (38, 39), which
was not feasible during the exercise.

Contrary to the study of Prieur et al. (20) in which about
half of the COPD patients recovering from an exacerbation
tolerated HFOT poorly (flow rate of 60 L/min and temperature
of 31◦C), patients in the current study perceived the treatment
fairly comfortable.

The current trial included only mildly hypoxemic, non-
hypercapnic patients with moderate to severe COPD. Therefore,
extrapolations to patients with milder or very severe COPD
should be done with caution even though FEV1 was not a
predictor of the treatment effect in regression analysis. Blinding
of patients and investigators for the interventions was not feasible
as the flow rate of 60 L/min and the flow rate of 3 L/min
could be easily noticed. However, patients had no experience
of any of the two treatments and the study hypothesis was not
disclosed. We chose a HFOT setting of 60 L/min, temperature
of 31◦C and FiO2 of 0.45 to investigate the combined effects of
high flow rate and mild hyperoxia. Choosing different settings
of HFOT may have resulted in other effects. We administered
LFOT via conventional nasal cannula at a rate of 3 l/min as the
control intervention because this is the standard way of oxygen
supplementation in clinical practice (9, 18, 21). Although higher
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FIGURE 3 | Changes in physiologic variables over the course of exercise in per-protocol analyses. Means and SD bars are shown for values at rest, at isotime (i.e.,

end-exercise time in tests with shorter endurance and corresponding time in tests with longer endurance), and at end-exercise. Open circles represent tests with

high-flow, closed circles with low-flow oxygen therapy. (A–C) Depict pulse oximetry (SpO2), breath rate and heart rate. *P < 0.05 vs. rest within same treatment, ¶P <

0.05 high-flow vs. low-flow oxygen therapy at corresponding stage of exercise.
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oxygen flow rates of, for example, 5–15 l/min by conventional
nasal cannula, might have increased the FiO2, an exact matching
to the FiO2 administered during HFOT would not have been
feasible and might have caused nasal mucosal irritation and
discomfort. Whether the improvement in endurance time by
HFOT was due to a higher FiO2 or a higher rate of nasal flow
can therefore not be differentiated by our data.

In conclusion, our study showed an improvement in cycling
endurance time by HFOT in patients with stable, mildly
hypoxemic, moderate to severe COPD. HFOT was associated
with a lower breath rate at isotime, a higher arterial oxygen
saturation and less dyspnea and it was well-tolerated. These
results are applicable for many COPD patients seen in daily
practice and indicate that patients may benefit from HFOT
during exercise training.
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