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Focal segmental glomerulosclerosis (FSGS) is a histological term that describes a

pathologic renal entity affecting both adults and children, with a wide array of possible

underlying etiologies. Podocyte damage with scarring, the hallmark of this condition,

leads to altered permeability of the glomerular barrier, which may result in massive

proteinuria and relentless renal function deterioration. A definite cause of focal segmental

glomerulosclerosis can be confirmed in a minority of cases, while most forms have been

traditionally labeled as primary or idiopathic. Despite this definition, increasing evidence

indicates that primary forms are a heterogenous group rather than a single disease entity:

several circulating factors that may affect glomerular permeability have been proposed

as potential culprits, and both humoral and cellular immunity have been implicated in the

pathogenesis of the disease. Consistently, immunosuppressive drugs are considered

as the cornerstone of treatment for primary focal segmental glomerulosclerosis, but

response to these agents and long-term outcomes are highly variable. In this review

we provide a summary of historical and recent advances on the pathogenesis of primary

focal segmental glomerulosclerosis, focusing on implications for its differential diagnosis

and treatment.
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Focal segmental glomerulosclerosis is a histological term describing the presence of partial tuft
sclerosis (“segmental”) in some of the glomeruli (“focal”) from a renal biopsy specimen. As such,
FSGS does not identify a specific disease, but rather a lesion with a wide array of possible underlying
etiologies that may lead to protean clinical manifestations. FSGS may affect both children and
adults, and currently represents one of the most frequent pathologic entities associated with
nephrotic syndrome (1). The pathogenic mechanisms leading to FSGS share a common cellular
target, the podocyte, a terminally differentiated cell whose foot processes act as structural parts
of the glomerular filtration barrier. Podocyte damage may result from systemic diseases, drug
exposure, infections or mutations of genes encoding structural podocyte proteins. Nevertheless,
a definite etiology cannot be identified in up to 80% of FSGS cases (2), which historically fall under
the classification of “idiopathic” or “primary.” Despite this unifying definition, increasing evidence
indicates that primary forms may be caused by several distinct pathogenic processes and could
therefore benefit from a targeted treatment. Autoimmunity has been consistently reported as a
pivotal player in the pathogenesis of these forms, and recent studies suggest that both humoral
and cellular immunity may be involved. In this review, we focus on the immune and molecular
aspects of podocyte damage associated with a FSGS pattern of injury and discuss current and novel
therapeutic options for patients presenting with this condition.
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PATHOGENESIS

FSGS is now considered as part of the podocytopathy spectrum
of diseases, a term that includes all entities in which the podocyte
is the primary target of the underlying pathogenic process
(3). Podocytes are terminally differentiated epithelial cells that
possess foot processes with a highly organized actin cytoskeleton.
Interdigitation of podocyte foot processes is fundamental
for the integrity of glomerular architecture and concurs in
maintaining glomerular permselectivity to macromolecules.
The first manifestation of podocyte injury consists in actin
cytoskeleton disorganization, increased podocyte motility and
foot process effacement (4), which may be followed by podocyte
hypertrophy, detachment, and loss. As podocyte regeneration
is limited, this process is often insufficient to compensate large
podocyte losses, and frequently results in scar formation (5,
6). Such changes lead to a severe alteration in the glomerular
structure, loss of filtration barrier selectivity and variable degrees
of proteinuria.

Several factors may concur in causing podocyte damage and
ultimately lead to FSGS, many of which have been extensively
described. Primary FSGS still remains a diagnosis of exclusion
and requires ruling out definite etiologies. Accordingly, the
pathogenesis of primary FSGS remains poorly defined. The
search for a unifying pathogenic mechanism for these forms has
been largely unsuccessful, and it is now evident that primary
FSGS entails many different diseases with a common phenotype.

Maladaptive, Genetic, Infectious and Toxic
Risk Factors
Secondary causes of FSGS (Table 1) include all those conditions
that result in a low nephron number and/or single-nephron
hyperfiltration, which are generally categorized as “maladaptive”
FSGS (7). In these forms, glomeruli are submitted to an increased
mechanical stress that eventually results in hemodynamic
alterations, dysfunctional reparative processes and focal
sclerosis (8).

A constantly increasing number of mutations in genes
encoding for podocyte proteins has been described in both de
novo and hereditary forms of FSGS (3). In addition, susceptibility
genes such as the APOL1 variant are important risk factors for
FSGS in selected populations (9, 10).

Interferon (11) and bisphosphonates (12, 13) have been shown
to induce severe forms of FSGS, which may sometimes respond
to drug cessation and glucocorticoids. Cases of FSGS associated
with severe tubulointerstitial lesions were also reported in
patients taking cocaine, heroin, calcineurin inhibitors, or lithium
(14–16). Podocytopathies with an FSGS pattern can be also
caused by HIV, SARS-CoV-2, Parvovirus B19, cytomegalovirus
and Epstein–Barr virus (17–20).

Circulating Permeability Factors
Several lines of evidence indicate that one or more molecules
that directly or indirectly alter glomerular permeability may be
responsible for FSGS in most primary forms (Figure 1). The
existence of such “permeability factors” has been supported by
rapid FSGS recurrence within hours from renal transplantation

TABLE 1 | Secondary causes of FSGS.

Genetic Mutations in genes coding for podocyte proteins

Mutations in syndromal genes (including collagen)

Risk allele variants (APOL1)

Infections Human Immunodeficiency Virus

Cytomegalovirus

SARS-CoV-2

Parvovirus B19

Epstein-Barr Virus

Simian virus 40

Drugs and toxins Heroin and Cocaine

Anabolic Steroids

Interferon

Lithium

Pamidronate

Sirolimus

Calcineurin Inhibitors

Maladaptive—reduced

nephron number

Reflux nephropathy

Surgical renal ablation

Renal dysplasia

Unilateral renal agenesis

Oligomeganephronia

Maladaptive—normal nephron

number

Obesity

Hypertension

Sickle-cell disease

Atheroembolic disease

Primary/secondary glomerular disease

(21), by the efficacy of plasma exchange and selective apheresis
methods in treating this condition (22–24), and by disease
resolution after graft re-transplantation from a patient with FSGS
recurrence to a diabetic recipient (25). Consistently, exposure
to serum from patients with post-transplant recurrence was
shown to increase glomerular permeability both in vitro and
in animal models (26, 27). Another indirect evidence came
from the observation of transient proteinuria in a child from a
mother with FSGS, which suggested transplacental transmission
of a permeability factor that was eventually cleared by the
newborn (28).

The existence of a permeability factor in idiopathic nephrotic
syndromewas first hypothesized in the early 1970’s with reference
to minimal change disease (MCD), another glomerular disorder
that falls under the podocytopathy classification. At that time,
observations such as the absence of immunocomplex deposition,
disease sensitivity to steroids and cyclophosphamide, as well
as spontaneous remission following measles infection (which
suppresses cellular immunity), led to the hypothesis of a pivotal
role for T cells in the disease pathogenesis (29). Subsequent
studies showed that a glomerular permeability factor was secreted
by human T cells from patients with MCD, but this factor could
not be conclusively identified (30–32).

Later on, proteomic analysis of sequentially fractionated
plasma from patients with FSGS recurrence after renal
transplantation led to the identification of cardiotrophin-
like cytokine factor-1 (CLCF-1) as a plausible permeability
factor candidate (33–35). CLCF-1 is a 22 kDa B-cell stimulating
cytokine from the IL-6 family, expressed in secondary lymphoid
organs, bone marrow and lymphocytes. This molecule binds with
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FIGURE 1 | Immune and molecular mechanisms of FSGS pathogenesis. Relevant immune and inflammatory pathways leading to alterations in podocyte foot process

architecture are summarized (dashed lines: hypothetical/incompletely understood pathway); please refer to text for explanation. ASC, antibody-secreting cell; B, B cell;

CCR2, C-C chemokine receptor type 2; CLCF-1, cardiotrophin-like cytokine factor-1; GBM, glomerular basement membrane; JAK/STAT, Janus kinases (JAK) and

signal transducer and activator of transcription proteins (STAT) signaling pathway; MCP-1, monocyte chemoattractant protein-1; Pre-T, T-cell precursor; suPAR,

soluble urokinase plasminogen activator receptor; T, T cell; TNF, tumor necrosis factor; TNFR2, TNF receptor 2.

high affinity to protein A and is present at concentrations 100
times higher in plasma from FSGS patients compared to plasma
from healthy controls. CLCF-1 has been shown to increase
glomerular permeability to albumin in vitro, and to reduce
nephrin expression in cultured podocytes. Notably, these effects
are blocked by CLCF-1-specific antibodies, which supports a
direct pathogenic effect; interestingly, CLCF-1 activity is also
inhibited by galactose and normal serum (36–38). Despite these
promising results, confirmation by other research groups has
not been reported to date. External validation of CLCF-1 as a
permeability factor in independent patient cohorts is definitely
required to clarify the relative impact of this molecule on FSGS
pathogenesis and to plan targeted interventions in the future.

A seemingly major breakthrough in FSGS pathogenesis
ignited the renal community in 2011, when Wei and colleagues
identified the soluble urokinase plasminogen activator receptor
(suPAR) as a possible circulating permeability factor; suPAR is
the cleaved form of a membrane-bound glycoprotein (uPAR)

that interacts with podocyte αvβ3 integrins, membrane proteins
that connect actin filaments with the extracellular matrix. The
authors showed that suPAR was increased in most patients
with FSGS, and that this molecule activated αvβ3 integrins
in cultured podocytes (39), which induced actin filament
reorganization and proteinuria (40, 41). Consistently, serum
samples obtained before transplant recurrence promoted αvβ3
integrin activation, an effect that was reduced by suPAR
removal through plasmapheresis (39), and the extent of podocyte
effacement correlated with suPAR levels (42). Moreover, uPAR-
null mice treated with high doses of recombinant suPAR
developed proteinuria and early FSGS lesions (39). Elevated
suPAR levels in 84.3 and 55.3% of FSGS patients were confirmed
also in the FSGS CT and PodoNet international cohorts,
respectively (43).

Initial enthusiasm was however curtailed by reports from
other investigators, who failed to replicate these findings in
independent patient cohorts. Serum suPAR concentrations were
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found to inversely correlate with glomerular filtration rate, and
after adjustment for this confounder suPAR lost its ability to
discriminate between FSGS and other proteinuric nephropathies
(44–49). In addition, subsequent attempts to elicit FSGS changes
in wild-type mice were unsuccessful, suggesting that the uPAR-
null background could be at least in part responsible for the
disease phenotype observed (49–51). Since suPAR can be cleaved
into several shorter molecules, some authors suggested that
a hypoglycosylated fragment not readily detected by standard
assays, rather than full-length suPAR, could be responsible for
FSGS pathogenesis (52). In a recent study, a novel method able
to identify both full-length and suPAR fragments outperformed
the conventional ELISA assay in discriminating FSGS cases from
other proteinuric nephropathies in a single-center cohort (53),
but external validation has not been reported yet.

Notwithstanding the frequent lack of immune deposits in
renal biopsies from FSGS patients, several autoantibodies against
selected antigen specificities (actin, adenosine triphosphate
synthase, aldose reductase, and angiotensin II type 1 receptor)
have been described in anecdotal cases (54, 55). Delville and
colleagues analyzed pre-transplant sera from patients with and
without post-transplant FSGS recurrence using protein array
data. A panel of seven autoantibodies was found to predict
disease recurrence with 92% accuracy in a larger validation
set. In this panel, autoantibodies against CD40, a costimulatory
molecule of the TNF receptor superfamily highly expressed
by antigen-presenting cells, bore the strongest impact on the
prediction of FSGS recurrence (56). CD40 was found to be
expressed by cultured podocytes in vitro and in renal biopsies
from patients with recurrent FSGS, but not in normal kidneys.
Anti-CD40 antibodies isolated from these patients disrupted
podocyte architecture in vitro and induced proteinuria in wild-
type mice, effects that were reversed by a CD40 blocking
antibody. Interestingly, blocking either suPAR or αvβ3 integrin
activation ameliorated podocyte injury in vitro (56), whereas co-
administration of suPAR enhanced proteinuria in vivo (51, 56,
57), thus suggesting that anti-CD40 antibodies and suPAR may
synergize in inducing αvβ3 integrin activation and FSGS lesions.
Studies to assess the pathogenicity of the other autoantibodies
identified by Delville and colleagues and to validate anti-CD40
antibodies as a permeability factor in additional patient cohorts
are eagerly awaited.

Adaptive Immunity
As previously discussed, the involvement of T cells in the
pathogenesis of idiopathic nephrotic syndrome was theorized
more than 40 years ago. Since then, multiple studies have
evaluated T-cell phenotype and function in these patients,
which highlighted differences in the relative abundance of T-cell
subsets, skewed polarization toward a TH2 phenotype, enhanced
mobilization of hematopoietic stem cells, along with increased
TH17 effector and reduced regulatory T cell frequencies (58–64).
Notably, most of these studies were conducted in small cohorts
of patients and by pooling histologically disparate podocytopathy
cases, thus potentially increasing the risk of simultaneously
analyzing the immune phenotype of highly diverse conditions.
Interestingly, adoptive transfer of hematopoietic stem cells

obtained from patients with FSGS to immunodeficient mice
induced foot process effacement and proteinuria; however,
these effects were not observed after infusion of peripheral
blood mononuclear cells from the same donors, suggesting that
immature cells rather than differentiated T cells could be involved
in the pathogenesis of the disease (65).

The efficacy of B cell-depleting anti-CD20 monoclonal
antibodies in maintaining the remission of steroid-sensitive
idiopathic nephrotic syndrome underscored the potential role
of B cells in the pathogenesis of MCD- and FSGS-associated
podocytopathies (66, 67). Even though the CD20 molecule is not
expressed by most antibody-secreting cells (ASC), the depletion
of mature and memory B-cells has been shown to hamper the
generation of new short-lived ASC, thus potentially impacting
on autoantibody production (68). Notably, faster memory B-cell
reconstitution after treatment was shown to predict nephrotic
syndrome relapse (69), and continuous B cell depletion has
been proposed as a strategy to maintain disease remission (70).
Within the classification limits of a study in a pediatric cohort
with unavailable renal pathology assessment, the production of
hypo-sialylated IgM antibodies binding to T-cell surface has
been reported as a possible mechanism of steroid dependence
in idiopathic nephrotic syndrome (71). This work suggests the
existence of a pathogenic link between B and T cells in MCD
and FSGS, which can be favorably affected by anti-CD20 therapy.
Aside from antibody production, B cell-targeted treatment might
also affect the autoreactive T-cell pool, since B cells can efficiently
present antigens and provide costimulatory signals to T cells.
Moreover, proximity due to interaction with antigen-specific B
cells has been proposed as a potential mechanism of autoreactive
T-cell depletion following anti-CD20 therapy (72).

The CD80 (B7-1) molecule, which is expressed by antigen-
presenting cells and provides costimulatory signals to T
cells, has been also implicated in the pathogenesis of FSGS.
Lipopolysaccharide-mediated induction of CD80 in podocytes
caused actin cytoskeleton reorganization in vitro and nephrotic
range proteinuria in vivo (73). These effects were linked to
β1 integrin inactivation, which normally anchors podocyte
foot processes to the glomerular basement membrane, and
were completely restored by CD80 silencing or pharmacologic
blockade (74). CD80 staining in native and post-transplantation
renal biopsies identified a subset of patients with FSGS in whom
this mechanism seems to be relevant (74), even though these
findings were not corroborated by other groups (75, 76). Notably,
urinary excretion of CD80 assessed in two large patient cohorts
correlated with disease activity and was able to discriminate
between primary and secondary FSGS forms, although the
highest values were observed for MCD cases (77).

It has also been speculated that podocyte immunological
functions could play an important role in damage progression.
Indeed, podocytes react to injury by changing their phenotype
and setting aside their barrier function in favor of an
immunological one; these events determine the alteration of
the glomerular barrier and lead to proteinuria. However, in
some forms of FSGS, adaptive immunity may also stimulate an
autoimmune response that becomes itself an additional source of
injury and sensitizes podocytes to circulating factors (78).
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Tumor Necrosis Factor Pathway
Elevated serum concentrations of tumor necrosis factor (TNF)-
α have been reported in some patients with FSGS (79), and
stimulation of the TNFR2 receptor with TNF-α evoked robust
downstream signaling in cultured podocytes (80). However, a
subsequent study showed that activation of the TNF pathway
in cultured podocytes exposed to serum from FSGS patients
occurred in 21% of cases, irrespective of circulating TNF-α levels
(81). This once again underscored the heterogeneity of FSGS
pathogenesis and identified intrarenal activation of the TNF
pathway as a potential convergence point of multiple pathogenic
mechanisms in this disease. Similarly to what described for
suPAR and anti-CD40 antibodies, TNF pathway stimulation in
podocytes induces αvβ3 integrin activation and actin filaments
reorganization (82). Evidence of early glomerular TNF pathway
activation was also obtained with an unbiased approach, i.e.,
by microarray analysis of glomerular RNA isolated from pre-
to post-transplant biopsies of FSGS patients, suggesting that
one or more permeability factors may induce FSGS through
this mechanism (83). Consistent with these data, pharmacologic
inhibition of TNF-α might be beneficial in some but not all
of patients with FSGS (84, 85). Unpublished observations from
the NEPTUNE network investigators suggest that patients with
activation of the TNF pathway might be at higher risk for
rapid renal function deterioration (86). Urinary levels of two
downstream components of the TNF pathway, MCP-1 (also
known as CCL2) and TIMP-1, were found to be associated
with TNF activation in the same cohort (86). Elevated urinary
MCP-1 concentrations were also confirmed in FSGS patients by
other investigators, and correlated with the degree of proteinuria
(87). Moreover, glomerular expression of MCP-1 and its receptor
CCR2 were increased in patients with FSGS and inmouse models
of the disease (88). CCR2 knockout and antagonism with a small
molecule inhibitor reduced glomerular injury and proteinuria in
vivo (89), thus identifying a possible additional therapeutic target.

PATHOLOGY

The pathognomonic features of FSGS initially affect only a
few glomeruli and are characterized by tuft sclerosis, which is
limited to a portion of the otherwise normal glomerulus. These
lesions are initially predominant in juxtamedullary glomeruli,
but progressively spread to the outer cortex. Hence, if renal
biopsy is performed early in the course of the disease, FSGS
diagnosis may be missed, particularly when the number of
sampled glomeruli is small and the biopsy specimen contains
only superficial cortex tissue.

The Columbia classification proposed to subdivide FSGS
lesions in 5 histologic categories include the tip, cellular, perihilar,
collapsing, and the not otherwise specified (NOS) variants
(90). However, that classification was based exclusively on light
microscopy findings. Different types of lesion may coexist in the
same biopsy sample and histologic features can also change over
time, with all subtypes usually evolving to a NOS phenotype
as renal function deteriorates toward end-stage renal disease
(ESRD) (91). The process of segmental sclerosis and capillary

collapse progresses to a gradual obliteration of glomeruli, which
may undergo complete “reabsorption,” leaving behind non-
functioning aglomerular tubules (92). These changes are strongly
associated with a progressive form of interstitial fibrosis, tubular
atrophy and vascular damage. Some authors also proposed that
the collapsing variant may be a completely distinct disease
from other FSGS forms, due to its highly unfavorable outcome,
peculiar pathology findings and typical association with HIV
infection (93).

Immunofluorescence studies are typically negative, but
deposits of IgM and C3 may be observed in mesangial and
sclerotic areas (9). Strassheim and colleagues hypothesized that
natural IgM could bind to neoantigens exposed in the glomerulus
due to non-immune injury, activating the complement system
and promoting further damage. Consistent with this hypothesis,
B cell depletion reduced IgM deposition and attenuated renal
injury in a mouse model of FSGS (94). In addition, in a subset
of patients with primary FSGS, colocalization of IgM with C3
suggested complement activation following recognition of a
cognate antigen (94). However, the clinical significance of these
deposits remains controversial (95–97).

On electron microscopy (EM), foot process effacement,
podocyte detachment, and segmental sclerosis with podocyte loss
are the most common findings. Foot process effacement is often
diffuse (>80%) and severe in tip, cellular and collapsing variants,
while this feature can be more variable in NOS and less severe in
the perihilar variant (2, 98). As discussed later, the degree of foot
process effacement has important implications for the differential
diagnosis of FSGS causes and for the correct identification of
primary forms.

CLINICAL PRESENTATION AND OUTCOME

Proteinuria is the most common feature at presentation in FSGS,
and may range from sub-nephrotic levels to full-blown nephrotic
syndrome with hypoalbuminemia, hypercholesterolemia, and
diffuse edema.

Newborns with congenital nephrotic syndrome are usually
premature with low birth weight, and severe nephrotic syndrome
is diagnosed soon after birth. FSGS is due to genetic mutations
in most of these cases, and ESRD typically develops in infancy.
These patients have a comparable mortality, growth, and time to
transplantation as infants with other primary renal diseases (99).

Children and adolescents frequently present with signs and
symptoms of nephrotic syndrome such as periorbital and
dependent edema. Owing to the high frequency of steroid-
sensitive MCD in this age group, renal biopsy is usually
not performed in patients presenting with isolated nephrotic
syndrome. Histologic evaluations are usually reserved for those
patients with atypical characteristics (syndromic features, rapid
renal function deterioration, positive autoimmune panel) and for
steroid-resistant cases.

Adults may be asymptomatic, but even sub-nephrotic
proteinuria may eventually increase to the nephrotic range over
time. Microscopic hematuria is found initially in about half of
cases, while gross hematuria is rare. Hypertension is frequent in
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adults, and impaired renal function may be already present at
the time of referral in up to 25% of patients with FSGS. Unless
medically contraindicated, renal biopsy should be performed
in all adult patients to confirm the diagnosis and to guide
future management.

The natural course of primary FSGS unresponsive to
treatment is frequently relentless, with 50% of patients
progressing to ESRD within 3–8 years from diagnosis (100).
In a few cases, FSGS is characterized by a rapidly progressive
course marked by massive proteinuria and severe hypertension.
Many patients may develop complications due to the nephrotic
syndrome, including infection, thrombotic complications,
and cardiovascular disease. However, patients who achieve
and maintain asymptomatic non-nephrotic proteinuria have
a significant improvement in the overall natural history of
FSGS, both in term of renal disease progression and extra-renal
complications (100, 101).

The best predictor of a favorable outcome is complete
remission, which has been defined as proteinuria <0.2–0.3
g/day (or a urinary protein to creatinine ratio <200–300 mg/g)
associated with stable glomerular filtration rate (102, 103).
Unfortunately, spontaneous complete remission is exceptional,
but can be achieved with treatment in a similar proportion of
pediatric and adult patients (104). A number of studies pointed
out that children (105, 106) and adults (107–109) who achieve
complete remission maintain normal renal function over the
time, while most of non-responders progress to ESRD. The same
investigators outlined that also a partial remission, defined as a
proteinuria <2.0–3.5 g/day (variable definition among studies)
with stable renal function can improve outcomes in comparison
with non-responders. Nevertheless, the length of exposure to
proteinuria may be more important than single time-point
proteinuria values: time-varying proteinuria has been proposed
as a reliable metric to capture the risk of a 50% reduction in
glomerular filtration rate or progression to ESRD (110).

Additional clinical factors may provide useful information
regarding the prognosis of patients with FSGS. Impaired renal
function at presentation indicates a poor prognosis, unless the
increase of serum creatinine is the consequence of acute kidney
injury, due to diuretic-induced hypovolemia and/or severe
hypoalbuminemia. Arterial hypertension can also contribute to
the development of renal failure in FSGS: as autoregulation
of glomerular pressure in FSGS is impaired, the increase in
systemic blood pressure leads to a rise in glomerular pressure,
which results in glomerular capillary wall stretch, endothelial
damage, and increased filtration of proteins (111) along with
microvascular lesions leading to renal ischemia and interstitial
fibrosis (112).

Histological findings may also help in assessing renal
outcomes. The prognosis is usually severe in patients with diffuse
interstitial fibrosis and tubular atrophy (113, 114). In addition,
mesangial proliferation at renal biopsy was associated with a
4.6 relative risk of serum creatinine doubling in some series
(107). Diffuse and multiple segmental sclerotic areas at the initial
biopsy and, even more importantly, an increase in the number of
globally sclerotic glomeruli in follow-up biopsies, correlate with
chronic kidney disease development.

The Columbia classification may also provide useful
prognostic information. The tip lesion variant has been
associated with low pathologic scores and rate of progression to
ESRD, also due to a high response rate to treatment. Compared
to NOS, the collapsing variant usually displays more severe
nephrotic syndrome and lower renal function at diagnosis.
Overall, 7% of tip, 47% of collapsing and 20% of NOS variant
patients progressed to ESRD at 3 years from diagnosis (113).
Other studies confirmed that patients with tip lesions display a
favorable outcome, while patients with collapsing FSGS have a
worse prognosis (115–117).

After renal transplantation, primary FSGS has a high rate
of recurrence in the allograft, which significantly reduces long-
term graft survival (118). There is considerable variability among
case series, but recent data from pediatric and adult cohorts
indicate that the overall recurrence rate is similar across age
groups, affecting approximately one third of patients (23, 119).
These reports may however underestimate the true incidence of
primary FSGS recurrence, because most studies defined primary
forms irrespective of the presence of nephrotic syndrome or
the degree of foot process effacement on EM, likely including
secondary FSGS forms in the analysis. Disease remission with
treatment can be achieved only in half of cases, which makes
recurrent FSGS a largely unmet medical need.

DIAGNOSIS

A correct differential diagnosis between primary and secondary
FSGS forms is paramount to guide management. Even though
light microscopy alone cannot differentiate primary from
secondary FSGS, primary forms share some typical features,
including the presence of a full-blown nephrotic syndrome
(proteinuria >3.5 g/day, albuminemia <3.0 g/dL) and EM
ultrastructural findings consistent with diffuse (>80%) foot
process effacement (Table 2). However, since primary FSGS is
still a diagnosis of exclusion, maladaptive, infectious, toxic, and
genetic forms should be always ruled out.

Hemodynamic maladaptation to a congenital or acquired
reduction of nephron mass is responsible for most cases
of secondary FSGS. Maladaptive FSGS can be frequently
suspected from medical history and renal imaging. Clinically,
these forms are characterized by non-nephrotic or nephrotic-
range proteinuria in the absence of hypo-albuminemia,
hypercholesterolemia, and edema. Maladaptive FSGS frequently
shows perihilar hyalinosis involving >50% of hypertrophic
glomeruli with segmental lesions. Ultrastructure analysis usually
reveals segmental foot process effacement (<80%) instead of the
diffuse pattern observed in primary forms, indicating podocyte
mechanic injury rather than a circulating pathogenic mediator
(98). Infections should be identified by an appropriate work-up
and treated accordingly, as remission with disease-specific
treatment can be frequently achieved. In drug-induced FSGS,
prompt identification and removal of the offending agent
are paramount.

The frequency of genetic mutations is high in pediatric
patients and tends to reduce with higher age at onset. Genetic
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TABLE 2 | Characteristics of primary and secondary FSGS forms.

Primary Genetic Maladaptive

Clinical presentation Acute, full-blown nephrotic syndrome in

most cases (proteinuria >3.5 g/day,

albumin <3.0 g/dL); may develop

gradually in some cases

Variable from sub-nephrotic proteinuria to

nephrotic syndrome

Gradual development of

sub-nephrotic proteinuria (<3.5

g/day), sometimes progressing to

nephrotic-range; nephrotic syndrome

is extremely uncommon (albumin

>3.0 g/dL)

Light microscopy Can be associated with any variant,

glomerulomegaly uncommon

Can be associated with any variant Often peri-hilar variant,

glomerulomegaly is common

Electron microscopy Diffuse (>80%) foot process effacement Either diffuse or segmental foot process

effacement

Segmental (<80%, often <50%) foot

process effacement

Treatment and outcome Steroids are effective in ∼60% of cases,

other IS may be used as steroid-sparing

agents or for steroid-resistant cases. Lack

of response to treatment predicts

progression to ESRD

Immunosuppression is typically ineffective,

most cases progress to ESRD within a few

years from diagnosis

Immunosuppression contraindicated,

often good response to

RAS-inhibitors; slow progression

toward ESRD

ESRD, end-stage renal disease; IS, immunosuppressive agents; RAS, renin-angiotensin system.

testing is usually advised in all patients with congenital nephrotic
syndrome and in those presenting with syndromic features
and/or a positive family history. Moreover, it was recently
proposed that any mismatch between clinical features and
ultrastructural findings (i.e., nephrotic syndrome with segmental
foot process effacement, or non-nephrotic proteinuria with
diffuse foot process effacement) should also trigger genetic
testing (7). Nevertheless, the most compelling indication for
genetic analyses remains the resistance to an adequately long
and correctly dosed steroid course, since a positive result can
be obtained in a significant fraction of both pediatric and adult
patients in this case (120–122). Further immunosuppressive
treatment should be avoided in patients with genetic mutations,
as the risk-benefit ratio is unfavorable. In such cases, supportive
therapy should be optimized to lessen the impact of additional
risk factors (e.g., hypertension) and to manage accompanying
symptoms. Despite such measures, most of these patients
progress to ESRD over a relatively brief period, but FSGS
recurrence after transplantation is virtually non-existent (7),
except in cases associated with NPHS1 mutations (123).

TREATMENT OF PRIMARY FSGS

Asymptomatic patients with non-nephrotic proteinuria and
stable renal function usually do not progress to ESRD and
are not exposed to the potential complications of nephrotic
syndrome. Based on these considerations, no specific treatment
besides conservative management (including salt restriction and
inhibition of the renin-angiotensin system) is strictly necessary.
However, proteinuria, serum creatinine and blood pressure
should be monitored over time. Edema, arterial hypertension,
dyslipidemia, and hypercoagulability are frequent complications
in patients with nephrotic syndrome, whose treatment is critical
to improve life-expectancy and quality of life.

The baseline specific treatment for patients with primary
FSGS and nephrotic syndrome rests on glucocorticoids.
These agents have well-known genomic and non-genomic

TABLE 3 | Clinical definitions in FSGS.

Steroid-sensitive

Nephrotic syndrome

Remission of nephrotic syndrome after

therapy with glucocorticoids

Frequently-relapsing

Nephrotic syndrome

Two or more relapses of nephrotic-range

proteinuria within 6 months after initial

response to glucocorticoids

Steroid-dependent

nephrotic syndrome

Two or more relapses during or within 2

weeks from completion of glucocorticoid

therapy

Steroid-resistant nephrotic syndrome Remission not achieved after adequately

dosed glucocorticoid therapy for 4–6

weeks (children) or 16 weeks (adults)

immunomodulatory properties, which result in a general
suppression of cellular and humoral immunity. In addition,
glucocorticoids may also directly promote podocyte survival and
actin cytoskeleton stabilization, increasing resistance to injury
(124, 125). Response to glucocorticoids is crucial to define the
prognosis and to guide further management; based on treatment
response, patients are classified as steroid-sensitive or steroid
resistant (Table 3).

In children, glucocorticoid therapy is started without
histologic confirmation and is usually maintained for 2–3
months, with most patients achieving remission within the end
of the first month of treatment (126). Of note, the majority
of these children have podocytopathies associated with MCD
rather that FSGS lesions, which are more likely to respond to
steroids. Adult patients may experience a significant delay in
the response to glucocorticoids compared to pediatric patients,
thus justifying the need of prolonged therapy (prednisone 1
mg/Kg/day or 2mg/Kg every other day for up to 16 weeks) before
being defined as steroid-resistant (SR) (103, 107, 127–129). This
label is often mistakenly attributed to patients who are given
insufficient doses of glucocorticoids for far too short periods of
time. In adult patients who achieve remission (47–66% of cases),
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glucocorticoids are slowly tapered over the following 6 months
(103, 130).

Up to 70–80% of pediatric and adult patients who achieve
remission, however, may experience one or more relapses,
that are usually treated with the same steroid schedule. These
patients may unfortunately become steroid-dependent (SD) or
experience frequent relapses (FR) (Table 3), leading to increased
exposure to glucocorticoids and their adverse effects. Measures
to reduce the risk of steroid toxicity include dose reduction
in the elderly and in obese subjects, use of steroid-sparing
immunosuppressive agents, and administration of a single dose
of a short-acting glucocorticoid in the morning between 7 and
9 a.m., in order to mimic the circadian rhythm of cortisol.
Patients should be counseled to maintain regular physical activity
to prevent myopathy and obesity, and to follow a low-calorie
and low-salt diet to prevent hypertension, edema, obesity and
cardiovascular disease (131, 132). P. Jiroveci prophylaxis and
use of biphosphonates in women over 50 years should be
also considered.

Calcineurin inhibitors (CNI) is an additional option for
both SR and SD/FR patients, as well as for patients with
contraindications to prolonged steroid courses. CNI activity
relies on the inhibition of IL-2 signaling essential for T-cell
activation; moreover, these agents directly stabilize podocyte
synaptopodin, which regulates the actin filament cytoskeleton,
and protect against podocyte injury (133, 134). Two small
randomized trials (135, 136) and several observational studies
(137–140) demonstrated that cyclosporine can significantly
reduce proteinuria in SR patients, and similar or even better
results have been reported with tacrolimus (141–144). Moreover,
cyclosporine efficacy was also demonstrated in SD/FR patients as
a steroid-sparing agent (145), even though the relapse rate upon
discontinuation can be excessively high. In addition, although
the anti-proteinuric effects of CNI are well-demonstrated, there
is no established evidence that these agents can prevent FSGS
progression in the long-term. Rather, long-term CNI use has
been avoided due to fear of development or aggravation of
tubular atrophy, interstitial fibrosis, and glomerular sclerosis.
This risk may largely depend on the doses used and, although
some individuals are particularly prone to CNI toxicity (perhaps
because of altered pharmacodynamics), progressive renal damage
is less likely to occur in patients with normal kidney function
using low CNI doses (<2.5–3.0 mg/Kg/day for cyclosporine and
<0.05 mg/Kg/day for tacrolimus).

Cyclophosphamide, an alkylating agent that affects multiple
components of the immune system, has showed efficacy when
given as treatment of first episodes or in FR patients (146–149),
but proved ineffective, at standard doses, in patients with SR
nephrotic syndrome (150). Concerns for gonadal and systemic
toxicity have discouraged the use of alkylating agents in FSGS,
and only a single course is usually recommended (103).

Mycophenolate inhibits de novo purine synthesis,
preferentially affecting T- and B-cell expansion, but also has
non-immune effects that result in prevention of mesangial
cell proliferation, inhibition of podocyte apoptosis and
preservation of nephrin and podocin expression (151).
Mycophenolate showed comparable effectiveness to levamisole

in maintaining remission in SD/FR children (152), but was
inferior to cyclosporine in another randomized trial (153).
Observational studies reported a low rate of remission with
mycophenolate in SR patients (154–156). A randomized
controlled trial showed that mycophenolate associated with
high-dose dexamethasone achieved remission in only one
third of patients (157), even though a significant fraction of
patients enrolled in the study did not have nephrotic syndrome
and were likely affected by secondary FSGS forms. Another
trial found that this immunosuppressive agent was inferior to
tacrolimus in SR nephrotic syndrome (158). Nevertheless, the
use of mycophenolate as maintenance treatment after remission
induction with cyclosporine in SR patients might prevent
relapses and reduce the risk of nephrotoxicity (159).

Adrenocorticotrophic hormone (ACTH) is a melanocortin
peptide that activates melanocortin receptors and controls
steroidogenesis, thus inducing immunomodulating and anti-
inflammatory effects. Moreover, ACTHhas been shown to reduce
foot process effacement and podocyte apoptosis, to prevent the
downregulation of podocyte-specific proteins and to increase
catalase activity, thereby reducing oxidative stress in podocytes
(160, 161). Anecdotal reports outlined the possibility of obtaining
complete or partial remission with the use of ACTH, either in its
synthetic or natural gel form (162–164).

The chimeric monoclonal antibody rituximab and its fully
human counterpart ofatumumab selectively deplete B cells
through targeting of the CD20 molecule, thus influencing
humoral immunity as well as B- and T-cell crosstalk. Moreover,
rituximab may also have direct effects on podocytes through
SMPDL-3b stabilization, which was shown to prevent the
disruption of actin cytoskeleton and podocyte apoptosis (165,
166), although the specificity of this binding has been questioned
(167). Rituximab proved to be effective in preventing relapses
in both adult and pediatric SD/FR patients (66, 67). On the
other hand, poor results from observational studies have been
reported with the use of rituximab in SR nephrotic syndrome
(168–170), and the only randomized clinical trial available so
far failed to detect any additional benefit from rituximab over
CNI (171). Ofatumumab efficacy was reported in anecdotal
cases of SR nephrotic syndrome (172, 173), but a recent
randomized controlled trial in pediatric patients resistant to
multiple therapeutic lines was terminated early for futility (174).

Abatacept, a CTLA4-Ig fusion protein with high affinity for
CD80, inhibits T-cell costimulation and prevents podocyte β1
integrin inactivation induced by CD80 expression. Abatacept
induced partial or complete remission of proteinuria in 4
patients with FSGS recurrence after kidney transplantation and
in one patient with FSGS in the native kidney (74). While
these data were confirmed by some investigators (175), others
were unable to find any beneficial effect with this drug (176,
177). A randomized controlled trial was designed to clarify the
effect of abatacept in treatment-resistant nephrotic syndrome
(NCT02592798), but was reportedly terminated early due to poor
enrolment (85).

Several attempts at non-selective removal or specific blockade
of putative circulating factors have been performed, especially
in case of post-transplant FSGS recurrence, which represents a
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particularly challenging and largely unmet medical need. The
use of plasma exchange, immunoadsorption and LDL-apheresis
methods in patients who did not respond to available therapies
have been reported with variable outcomes (178), but methods to
selectively remove circulating permeability factor candidates have
not been reported yet. A phase 2 randomized clinical trial is under
way to assess the effect of the anti-CD40 monoclonal antibody
Bleselumab, which blocks the interaction between CD40 and its
ligand, in preventing FSGS recurrence (NCT02921789). Based
on evidence from in vitro experiments of galactose efficacy in
antagonizing the effects of CLCF-1, and after preliminary results
from anecdotal cases (179), a small randomized controlled trial
assessed the effects of oral galactose supplementation in patients
withmulti-resistant FSGS. Serum galactose concentration did not
significantly differ between pre- and post-treatment assessments,
as galactose is rapidly metabolized after absorption. A 50%
proteinuria reduction with stable renal function was observed
in 2 of 7 patients treated, a proportion that was virtually
identical to the control arm (180). The same investigators also
evaluated TNFα antagonism with adalimumab, reporting an
overall response in 4 of 17 patients treated (pooled from the
phase 1 pharmacokinetic study and the randomized controlled
trial) (84, 180). As activation of the TNF pathway may be a
prerogative of only a subgroup of FSGS cases, a trial to assess
whether adalimumab can normalize the urinary concentration
of TNF pathway activation biomarkers (MCP-1 and TIMP-1) in
these patients has been planned (NCT04009668). Moreover, an

open label, dose-escalation study to test the efficacy of an oral
inhibitor of the MCP-1 receptor CCR2 in adult patients with
primary FSGS is currently ongoing (NCT03703908).

CONCLUSIONS

The history of primary FSGS has been characterized by the rise
and fall of biomarkers and potential therapeutic targets like very
few other disorders in nephrology. Since the term FSGS merely
indicates a pathologic entity shared by a wide array of diseases,
it is imperative that data from novel therapeutic strategies
are obtained from adequately powered trials that appropriately
differentiate between primary and secondary FSGS forms (181).
In addition, as primary FSGS itself is likely a broad group of
disorders with distinctive pathologic mechanisms, efforts should
be aimed to the search of novel biomarkers and to the validation
of those already proposed in small patient cohorts. In the long
run, this may help to define a personalized treatment strategy
for each of these patients that could finally surpass the outdated
concept of “one-therapy-fits-all.”
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