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The coronavirus disease 2019 (COVID-19) pandemic continues to have a tremendous

impact on patients and healthcare systems around the world. In the fight against this

novel disease, there is a pressing need for rapid and effective screening tools to identify

patients infected with COVID-19, and to this end CT imaging has been proposed as one

of the key screening methods which may be used as a complement to RT-PCR testing,

particularly in situations where patients undergo routine CT scans for non-COVID-19

related reasons, patients have worsening respiratory status or developing complications

that require expedited care, or patients are suspected to be COVID-19-positive but

have negative RT-PCR test results. Early studies on CT-based screening have reported

abnormalities in chest CT images which are characteristic of COVID-19 infection, but

these abnormalities may be difficult to distinguish from abnormalities caused by other

lung conditions. Motivated by this, in this study we introduce COVIDNet-CT, a deep

convolutional neural network architecture that is tailored for detection of COVID-19 cases

from chest CT images via a machine-driven design exploration approach. Additionally,

we introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data

collected by the China National Center for Bioinformation comprising 104,009 images

across 1,489 patient cases. Furthermore, in the interest of reliability and transparency,

we leverage an explainability-driven performance validation strategy to investigate the

decision-making behavior of COVIDNet-CT, and in doing so ensure that COVIDNet-CT

makes predictions based on relevant indicators in CT images. Both COVIDNet-CT and

the COVIDx-CT dataset are available to the general public in an open-source and open

access manner as part of the COVID-Net initiative. While COVIDNet-CT is not yet a

production-ready screening solution, we hope that releasing the model and dataset will

encourage researchers, clinicians, and citizen data scientists alike to leverage and build

upon them.
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1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to
have a tremendous impact on patients and healthcare systems
around the world. In the fight against this novel disease, there
is a pressing need for fast and effective screening tools to
identify patients infected with COVID-19 in order to ensure
timely isolation and treatment. Currently, reverse transcription
polymerase chain reaction (RT-PCR) testing is the primary
means of screening for COVID-19, as it can detect SARS-CoV-
2 ribonucleic acid (RNA) in sputum samples collected from the
upper respiratory tract (1). While RT-PCR testing for COVID-19
is highly specific, its sensitivity is variable depending on sampling
method and time since onset of symptoms (2–4), and some
studies have reported relatively low COVID-19 sensitivity (3, 5).
Moreover, RT-PCR testing is a time-consuming process which
is in high demand, leading to possible delays in obtaining
test results.

Chest computed tomography (CT) imaging has been
proposed as an alternative screening tool for COVID-19
infection due to its high sensitivity, and may be particularly
effective when used as a complement to RT-PCR testing (4–6).
CT imaging saw extensive use during the early stages of the
COVID-19 pandemic, particularly in Asia. While cost and
resource constraints limit routine CT screening specifically for
COVID-19 detection (7), CT imaging can be especially useful as
a screening tool in situations where:

• Patients are undergoing routine CT examinations for non-
COVID-19 related reasons. For example, CT examinations
may be conducted for routine cancer screening, monitoring
for elective surgical procedures (8), and neurological
examinations (9). Since such CT examinations are being
conducted as a routine procedure regardless of COVID-19,
there are no additional cost or resource constraints associated
with leveraging such examinations for COVID-19 screening
as well.

• Patients have worsening respiratory status or developing
complications that require expedited care (10). In such
scenarios, immediate treatment of patients may be necessary
and thus CT imaging is conducted on the patient for COVID-
19 infection while waiting for RT-PCR testing to confirm
COVID-19 infection.

• Patients are suspected to be COVID-19-positive but their
RT-PCR tests are negative. For example, patients who have
had close contact with confirmed COVID-19 cases and are
exhibiting symptoms of the disease are highly suspect, but
may have negative RT-PCR results. In these cases, CT imaging
may be used to confirm COVID-19 infection pending positive
RT-PCR results.

In early studies, it was found that certain abnormalities in
chest CT images are indicative of COVID-19 infection, with
ground-glass opacities, patchy shadows, crazy-paving pattern,
and consolidation being some of the most commonly reported
abnormalities, typically with bilateral involvement (4–6, 11–
14). Moreover, some studies have found that abnormalities in

a patient’s chest CT scan due to COVID-19 infection may
be present despite a negative RT-PCR test (4–6). However,
as illustrated in Figure 1, these imaging abnormalities may
not be specific to COVID-19 infection, and the visual
differences between COVID-19-related abnormalities and other
abnormalities can be quite subtle. As a result, the performance of
radiologists in distinguishing COVID-19-related abnormalities
from abnormalities of other etiology may vary considerably (15,
16). For radiologists, visual analysis of CT scans is also a time-
consumingmanual task, particularly when patient volume is high
or in large studies.

In this study we introduce COVIDNet-CT, a deep
convolutional neural network architecture tailored specifically
for detection of COVID-19 cases from chest CT images via a
machine-driven design exploration approach. While COVID-19
detection from chest CT images has been investigated extensively
in previous studies, to the best of the authors’ knowledge
COVIDNet-CT is the first deep neural network architecture
to be built specifically for this task using a machine-driven
design exploration strategy, resulting in a highly efficient yet
highly accurate deep neural network architecture. Additionally,
we describe the creation of COVIDx-CT, a benchmark CT
image dataset derived from CT imaging data collected by
the China National Center for Bioinformation (CNCB) (17)
comprising 104,009 images across 1,489 patient cases. Though
this imaging data is not novel, we have cleaned the data and
provided additional annotations to allow for others to compare
COVID-19 detection methods using a common dataset. Finally,
to investigate the decision-making behavior of COVIDNet-CT,
we perform an explainability-driven performance validation
and analysis of its predictions, allowing us to explore the critical
visual factors associated with COVID-19 infection while also
auditing COVIDNet-CT to ensure that its decisions are based
on relevant CT image features. To the best of the authors’
knowledge, this is the first study to leverage GSInquire (18)
for this task. In an effort to encourage continued research and
development, COVIDNet-CT and the COVIDx-CT dataset are
available to the general public1 in an open-source and open
access manner as part of the COVID-Net (19, 20) initiative, a
global open initiative for accelerating collaborative advancement
of artificial intelligence for assisting in the fight against the
COVID-19 pandemic.

2. MATERIALS AND METHODS

2.1. Ethics
This study was reviewed and approved by the University of
Waterloo Ethics Board (42235). Written informed consent from
the participants or their legal guardian/next of kin was not
required to participate in this study in accordance with national
legislation and institutional requirements.

2.2. COVIDx-CT Dataset
To build the proposed COVIDNet-CT, we constructed a dataset
of 104,009 chest CT slices across 1,489 patient cases, which we

1https://github.com/haydengunraj/COVIDNet-CT
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FIGURE 1 | Example chest CT abnormalities in (A) a patient with COVID-19 pneumonia, and (B) a patient with non-COVID-19 pneumonia. It can be observed that

visual differences in abnormalities between COVID-19 pneumonia and non-COVID-19 penumonia can be quite subtle.

refer to as COVIDx-CT. Notably, this CT imaging data is not
novel, as it is derived from CT imaging data collected by the
CNCB (17). Our contribution consists of cleaning and preparing
the raw data in a format suitable for benchmarking, as well as
providing bounding box annotations for the body regions within
the CT images.

The CNCB data is comprised of chest CT examinations
from different hospital cohorts across China as part of the
China Consortium of Chest CT Image Investigation (CC-CCII).
More specifically, the CT imaging data consists of chest CT
volumes across three different infection types: novel coronavirus
pneumonia due to SARS-CoV-2 viral infection (NCP), common
pneumonia due to non-COVID-19 infections (CP), and normal
controls. Figure 2 shows example CT images for each of the
infection types from the constructed COVIDx-CT dataset. For
NCP and CP CT volumes, slices marked as containing lung
abnormalities were leveraged. Additionally, we excluded CT
volumes where the background had been removed to leave
segmented lung regions, as the contrast present in these images
can lead to model biases. To standardize the field-of-view in the
CT images, an automatic cropping algorithm was developed to
crop the images to the body region. Finally, we split the COVIDx-
CT dataset into training, validation, and test sets, using an ∼60–
20–20% split for training, validation, and test, respectively. These
sets were constructed such that each patient belongs to a single
set. Figure 3 shows the distribution of patient cases and images
in the COVIDx-CT dataset amongst the different infection types
and dataset splits.

2.3. Machine-Driven Design Exploration
Inspired by Wang and Wong (19), a machine-driven design
exploration strategy was leveraged to create the proposed
COVIDNet-CT. More specifically, machine-driven design
exploration involves the automatic exploration of possible
network architecture designs and identifies the optimal
microarchitecture and macroarchitecture patterns with which

to build the deep neural network. As discussed in Wang and
Wong (19), the use of machine-driven design exploration
allows for greater flexibility and granularity in the design
process as compared to manual design, and ensures that the
resulting network satisfies the given operational requirements.
As such, a machine-driven design exploration approach would
enable the creation of a tailored deep convolutional neural
network catered specifically for the purpose of COVID-19
detection from chest CT images in a way that satisfies sensitivity
and positive predictive value (PPV) requirements, while also
minimizing computational and architectural complexity to
enable widespread adoption in clinical environments where
computing resources may be limited.

More specifically, in this study we leverage the concept
of generative synthesis (21, 22) as our machine-driven design
exploration strategy, where the problem of identifying a tailored
deep neural network architecture for the task and data at
hand is formulated as a constrained optimization problem
based on a universal performance function U [e.g., (23)]
and a set of quantitative constraints based on operational
requirements related to the task and data at hand. This
constrained optimization problem is then solved via an iterative
strategy, initialized with the data at hand, an initial network
design prototype, and the set of quantitative constraints. Here,
we specify two key operational requirements as quantitative
constraints during the machine-driven design exploration
process: (i) COVID-19 sensitivity ≥95% on the COVIDx-
CT validation dataset, and (ii) COVID-19 PPV ≥95% on
the COVIDx-CT validation dataset. Sensitivity and PPV are
calculated using Equations (1) and (3), respectively, which
are given in section 3.1. These operational requirements were
specified in order to ensure low false-negative and false-positive
rates, respectively. For the initial network design prototype,
we leveraged residual architecture design principles (24, 25),
as they have been shown to enable reliable deep architectures
which are easier to train to high performance. Furthermore,
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FIGURE 2 | Example chest CT images from the COVIDx-CT dataset, illustrating (A) COVID-19 pneumonia cases, (B) non-COVID-19 pneumonia cases, and (C)

normal control cases.

FIGURE 3 | Distribution of the COVIDx-CT dataset amongst training, validation, and test sets by (A) patient count and (B) image count.
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FIGURE 4 | The proposed COVIDNet-CT architecture design via machine-driven design exploration. Notable characteristics include high architectural diversity,

selective long-range connectivity, and lightweight design patterns (e.g., PRPE and PRPE-S patterns).

the output of the initial network design prototype is a softmax
layer corresponding to the following prediction categories: (i)
no infection (normal), (ii) non-COVID-19 pneumonia, and (iii)
COVID-19 viral pneumonia.

2.4. Network Architecture
The proposed COVIDNet-CT architecture is shown in Figure 4,
and is publicly available at https://github.com/haydengunraj/
COVIDNet-CT. As can be seen, the network produced via
a machine-driven design exploration strategy exhibits high
architectural diversity as evidenced by the heterogeneous
composition of conventional spatial convolution layers,
pointwise convolutional layers, and depthwise convolution
layers in a way that strikes a balance between accuracy and
architectural and computational complexity. Further evidence
of the high architectural diversity of COVIDNet-CT is the large
microarchitecture design variances within each layer of the
network (as seen by the tensor configurations of the individual
layers shown in Figure 4). Furthermore, the machine-driven
design exploration strategy made heavy use of unstrided and
strided projection-replication-projection-expansion design
patterns, which we denote as PRPE and PRPE-S for unstrided
and strided patterns, respectively. These patterns consist of:

1. A projection to lower channel dimensionality via pointwise
convolutions.

2. A replication of the projections to increase channel
dimensionality efficiently.

3. An efficient spatial feature representation via depthwise
convolutions (unstrided and strided for PRPE and PRPE-S,
respectively).

4. An expansion of channel dimensionality conducted by
pointwise convolutions.

The use of lightweight design patterns, such as PRPE and
PRPE-S enables COVIDNet-CT to achieve high computational
efficiency while maintaining high representational capacity.
While these design patterns may be difficult and time-consuming
to design manually, machine-driven design allows for these
fine-grained design patterns to be rapidly and automatically
discovered. Finally, selective long-range connectivity can be
observed, which enables greater representational capabilities
in a more efficient manner than densely-connected deep
neural networks.

2.5. Implementation Details
The proposed COVIDNet-CT was pre-trained on the
ImageNet (26) dataset and then trained on the COVIDx-
CT dataset via stochastic gradient descent with momentum (27).
The hyperparameters used for training are as follows: learning
rate = 5e-3, momentum = 0.9, number of epochs = 17, batch
size = 8. Data augmentation was applied with the following
augmentation types: cropping box jitter, rotation, horizontal and
vertical shear, horizontal flip, and intensity shift and scaling.
In initial experiments, it was found via explainability-driven
performance validation (see section 2.6 for more details on the
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FIGURE 5 | Example COVID-19 case before and after removal of irrelevant visual indicators as part of data augmentation. In (A), a number of irrelevant visual

indicators are present, such as the patient table of the CT scanner as well as imaging artifacts. After removing these irrelevant indicators, the image in (B) is obtained.

methodology) that erroneous indicators in the CT images (e.g.,
patient tables of the CT scanners, imaging artifacts, etc.) were
being leveraged by the network to make predictions. To help
prevent this behavior, we introduce an additional augmentation
which removes any visual indicators which lie outside of the
patient’s body, as illustrated in Figure 5. Finally, we adopt a batch
re-balancing strategy similar to that employed in Wang and
Wong (19) to ensure a balanced distribution of each infection
type at the batch level. The proposed COVIDNet-CT was
implemented, trained, and evaluated using the TensorFlow deep
learning library (28) and a single NVIDIA Tesla V100 GPU.

2.6. Explainability-Driven Performance
Validation of COVIDNet-CT
While scalar performance metrics are a valuable quantitative
method for evaluating deep neural networks, they are incapable
of explaining a network’s decision-making behavior. In clinical
applications, the ability to understand how a deep neural
network makes decisions is critical, as these decisions may
ultimately affect the health of patients. Motivated by this, we
audit COVIDNet-CT via an explainability-driven performance
analysis strategy in order to better understand which CT imaging
features are critical to its detection decisions. Moreover, by
leveraging explainability, we can ensure that COVIDNet-CT
is making decisions based on relevant information in CT
images rather than erroneously basing its decisions on irrelevant
factors (as we have seen in initial experiments as described
in section 2.5). In this study, we leverage GSInquire (18) as
the explainability method of choice for explainability-driven
performance validation to visualize critical factors in CT images.
GSInquire leverages the generative synthesis strategy (21, 22)
that was employed for machine-driven design exploration, and
was previously shown quantitatively to provide explanations
that better reflect the decision-making process of deep neural

networks when compared to other state-of-the-art explainability
methods (18).

In particular, generative synthesis leverages the interplay
between a generator-inquisitor pair {G, I} which work in tandem
to obtain improved insights about deep neural networks and
generate efficient networks (22). GSInquire in turn leverages the
inquisitor I from this process to identify and visualize the critical
factors that a network uses to make predictions (18). Unlike
approaches that generate heatmaps pertaining to importance
variations within an image, GSInquire can identify specific
critical factors within an image that have the greatest impact on
the decision-making process.

3. RESULTS

3.1. Quantitative Results
We quantitatively evaluate the performance of the proposed
COVIDNet-CT on the COVIDx-CT dataset. For this dataset, we
computed the test accuracy as well as sensitivity, specificity, PPV,
and negative predictive value (NPV) for each infection type at
the image level. These metrics are computed using Equations
(1)–(4), respectively. For a particular infection type, TP refers
to the number of true-positive predictions, FP refers to the
number of false-positive predictions, TN refers to the number
of true-negative predictions, and FN refers to the number of
false-negative predictions:

sensitivity =
TP

TP + FN
(1)

specificity =
TN

TN + FP
(2)

PPV =
TP

TP+ FP
(3)
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TABLE 1 | Comparison of parameters, FLOPs, and accuracy (image-level) for

tested network architectures on the COVIDx-CT dataset.

Architecture Parameters (M) FLOPs (G) Accuracy (%)

ResNet-50 (25) 23.55 42.72 98.7

NASNet-A-Mobile (29) 4.29 5.94 98.6

EfficientNet-B0 (30) 4.05 4.07 98.3

COVIDNet-CT 1.40 4.18 99.1

Best results highlighted in bold.

NPV =
TN

TN + FN
(4)

The test accuracy, architectural complexity (in terms of number
of parameters), and computational complexity [in terms of
number of floating-point operations (FLOPs)] of COVIDNet-
CT are shown in Table 1. As shown, COVIDNet-CT achieves
a relatively high test accuracy of 99.1% while having relatively
low architectural and computational complexity. This highlights
one of the benefits of leveraging machine-driven design
exploration for identifying the optimal macroarchitecture and
microarchitecture designs for building a deep neural network
architecture tailored for the task and data at hand. In the case of
COVIDNet-CT, the result is a highly accurate yet highly efficient
deep neural network architecture that is suitable for scenarios
where computational resources are a limiting factor. In clinical
scenarios, such architectures may also be suitable for use in
embedded devices.

We next examine the sensitivity, specificity, PPV, and NPV for
COVID-19 images, as well as how these statistics could impact
the efficacy of COVIDNet-CT in a clinical environment. In
Table 2, we observe that COVIDNet-CT achieves a high COVID-
19 sensitivity of 97.3%, which ensures that a low proportion
of COVID-19 cases are incorrectly classified as non-COVID-
19 pneumonia or normal cases. Moreover, given that RT-PCR
testing is highly specific, we want to ensure that COVIDNet-
CT has high sensitivity in order to effectively complement RT-
PCR testing. Next, in Table 3, we observe that COVIDNet-
CT also achieves a high COVID-19 PPV of 99.7%, thereby
ensuring a low proportion of false-positive predictions which
could cause an unnecessary burden on the healthcare system in
the form of isolation, testing, and treatment. Finally, we consider
COVIDNet-CT’s specificity and NPV scores for COVID-19
images as shown in Tables 4, 5, respectively. We observe high
values for both of these metrics (99.9% COVID-19 specificity,
99.3% COVID-19 NPV), meaning that negative predictions for
COVID-19 are true negatives in the vast majority of cases. This is
a useful characteristic in clinical scenarios since it allows for rapid
identification of patients who do not have COVID-19.

Examining Figure 6, we observe that COVIDNet-CT is
extremely effective at distinguishing normal control cases from
both COVID-19 and non-COVID-19 pneumonia cases. In
particular, all normal images are correctly identified, 58 non-
COVID-19 pneumonia images are misclassified as normal, and
1 COVID-19 image is misclassified as normal. Additionally,
COVIDNet-CT is capable of distinguishing non-COVID-19

TABLE 2 | Sensitivity for each infection type at the image level on the COVIDx-CT

dataset.

Architecture Normal Non-COVID-19 pneumonia COVID-19

Sensitivity (%)

ResNet-50 (25) 99.9 98.7 96.2

NASNet-A-Mobile (29) 99.9 97.9 96.8

EfficientNet-B0 (30) 99.8 97.8 95.8

COVIDNet-CT 100.0 99.0 97.3

Best results highlighted in bold.

TABLE 3 | Positive predictive value (PPV) for each infection type at the image level

on the COVIDx-CT dataset.

Architecture Normal Non-COVID-19 pneumonia COVID-19

PPV (%)

ResNet-50 (25) 99.3 97.8 99.1

NASNet-A-Mobile (29) 99.6 98.2 97.1

EfficientNet-B0 (30) 98.7 97.6 98.6

COVIDNet-CT 99.4 98.4 99.7

Best results highlighted in bold.

TABLE 4 | Specificity for each infection type at the image level on the COVIDx-CT

dataset.

Architecture Normal Non-COVID-19 pneumonia COVID-19

Specificity (%)

ResNet-50 (25) 99.5 98.8 99.8

NASNet-A-Mobile (29) 99.6 99.0 99.3

EfficientNet-B0 (30) 98.9 98.7 99.6

COVIDNet-CT 99.5 99.2 99.9

Best results highlighted in bold.

TABLE 5 | Negative predictive value (NPV) for each infection type at the image

level on the COVIDx-CT dataset.

Architecture Normal Non-COVID-19 pneumonia COVID-19

NPV (%)

ResNet-50 (25) 99.9 99.3 99.0

NASNet-A-Mobile (29) 99.9 98.9 99.2

EfficientNet-B0 (30) 99.8 98.8 98.9

COVIDNet-CT 100.0 99.5 99.3

Best results highlighted in bold.

pneumonia cases from COVID-19 cases for the vast majority
of these cases. Interestingly, while some COVID-19 cases are
incorrectly classified as non-COVID-19 pneumonia cases (113
images), far fewer non-COVID-19 cases are misclassified as
COVID-19 cases (13 images).

Based on these results, it is shown that COVIDNet-CT could
be used as an effective standalone screening tool for COVID-
19 infection, and could also be used effectively in conjunction
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FIGURE 6 | Confusion matrix for COVIDNet-CT on the COVIDx-CT test

dataset.

with RT-PCR testing. However, we note that COVIDNet-CT
is trained on images from a single data collection (17), and
although this collection is comprised of scans from several
institutions, the ability of COVIDNet-CT to generalize to images
from other countries, institutions, or CT imaging systems has not
been evaluated. As such, COVIDNet-CT could be improved via
additional training on a more diverse dataset.

3.2. Architecture Comparison
We now compare the performance of the proposed COVIDNet-
CT with existing deep neural network architectures for the
task of COVID-19 detection from chest CT images. More
specifically, we compare it with three state-of-the-art deep neural
network architectures: ResNet-50 (25), NASNet-A-Mobile (29),
and EfficientNet-B0 (30). In particular, NASNet-A-Mobile and
EfficientNet-B0 are deep neural network architectures designed
via neural architecture search (NAS) strategies for achieving high
architectural and computational efficiency while also achieving
high performance.

It can be observed from Table 1 that COVIDNet-CT achieves
the highest test accuracy and lowest architectural complexity
amongst the tested deep neural network architectures. For
example, COVIDNet-CT achieves a test accuracy 0.4% higher
than that achieved with the ResNet-50 architecture while
having 94.1% fewer parameters and 90.2% fewer FLOPs. Even
when compared to the state-of-the-art NASNet-A-Mobile
architecture, which was designed using a NAS strategy to achieve
a strong balance between accuracy, architectural efficiency,
and computational efficiency, the proposed COVIDNet-
CT was able to achieve 0.5% higher test accuracy while
having 67.4% fewer parameters and 29.6% fewer FLOPs.
Lastly, EfficientNet-B0 achieves slightly lower computational
complexity than COVIDNet-CT (2.6% reduction in FLOPs),
however COVIDNet-CT outperforms EfficientNet-B0 in terms
of architectural complexity (65.4% reduction in parameters) and
accuracy (0.8% higher test accuracy).

As shown inTables 2, 5, respectively, COVIDNet-CT achieves
higher sensitivity and NPV than the other tested deep neural
network architectures across all infection types. Moreover, as
shown in Tables 3, 4, respectively, COVIDNet-CT achieves
higher specificity and PPV than ResNet-50 and EfficientNet-
B0 across all infection types, and also outperforms NASNet-
A-Mobile for the non-COVID-19 pneumonia and COVID-
19 classes (NASNet-A-Mobile attains higher specificity and
PPV for normal control cases). These results highlight the
benefits of leveraging machine-driven design exploration to
create deep neural network architectures tailored to the task,
data, and operational requirements. More specifically, the use of
machine-driven design resulted in a network architecture capable
of outperforming state-of-the-art architectures across most of
the evaluated performance metrics, while also being designed
rapidly and automatically. This is particularly relevant in clinical
scenarios, as the ability to rapidly build and evaluate new deep
neural network architectures is critical in order to adapt to
changing data dynamics and operational requirements.

3.3. Qualitative Results
In this study, we leveraged GSInquire (18) to perform
explainability-driven performance validation of COVIDNet-CT
in order to better understand its decision-making behavior, and
to ensure that its decisions are based on diagnostically-relevant
imaging features rather than irrelevant visual indicators. Figure 7
shows the critical factors identified by GSInquire in three chest
CT images of patients with COVID-19 pneumonia. Examining
these visual interpretations, we observe that COVIDNet-CT
primarily leverages abnormalities within the lungs in the
chest CT images to identify COVID-19 cases, as well as
to differentiate these cases from non-COVID-19 pneumonia
cases. As previously mentioned, our initial experiments yielded
deep neural networks that were found via explainability-driven
performance validation to be basing their detection decisions
on irrelevant indicators, such as patient tables and imaging
artifacts. These findings highlight the importance of leveraging
explainability methods when building and evaluating deep neural
networks for clinical applications. Furthermore, the ability to
interpret how COVIDNet-CT detects COVID-19 cases may help
clinicians trust its predictions, and may also help clinicians
discover novel visual indicators of COVID-19 infection which
could be leveraged in manual screening via CT imaging.

4. DISCUSSION

In this study, we introduced COVIDNet-CT, a deep
convolutional neural network architecture tailored for detection
of COVID-19 cases from chest CT images via machine-driven
design exploration. Additionally, we introduced COVIDx-
CT, a benchmark CT image dataset consisting of 104,009
chest CT images across 1,489 patients. We quantitatively
evaluated COVIDNet-CT using the COVIDx-CT test dataset
in terms of accuracy, sensitivity, specificity, PPV, and NPV.
Furthermore, we analyzed the predictions of COVIDNet-CT via
explainability-driven performance validation to ensure that its
predictions are based on relevant image features and to better
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FIGURE 7 | Example chest CT images of COVID-19 cases and their associated critical factors (highlighted in red) as identified by GSInquire (18).

understand the CT image features associated with COVID-19
infection, which may aid clinicians in CT-based screening.
In our analyses, we observed that COVIDNet-CT is highly
performant when tested on the COVIDx-CT test dataset, and
that abnormalities in the lungs are leveraged by COVIDNet-CT
in its decision-making process.

A number of studies have proposed deep learning systems
based on chest CT imaging to distinguish COVID-19 cases
from non-COVID-19 cases (which may include both
normal and abnormal cases) (16, 17, 31–41). Many of the
proposed systems further identify non-COVID-19 cases
as normal (17, 31, 39, 40), non-COVID-19 pneumonia
[e.g., bacterial pneumonia, viral pneumonia, community-
acquired pneumonia (CAP), etc.] (17, 31–34, 40, 41), or
non-pneumonia (33).

Most of the proposed deep learning systems for CT-based
COVID-19 detection make use of pre-existing network
architectures which were originally designed for other
image analysis tasks. For example, Ardakani et al. (34)
compared the performance of 10 existing convolutional
neural network (CNN) architectures in distinguishing COVID-
19 pneumonia from non-COVID-19 pneumonia, and Jin et
al. (38) empirically selected an existing CNN architecture for
use in a segmentation-classification system. Additionally, many
studies add custom components to pre-existing architectures
in order to better tailor them to COVID-19 detection. For
example, Xu et al. (31) leveraged a ResNet-18 (24) backbone
and added a location-attention classification network to
predict COVID-19 probabilities in image patches, which
were then used to deduce overall COVID-19 probability.
Li et al. (33) and Bai et al. (32) adapted existing 2D CNN
architectures to operate on full 3D CT volumes by leveraging
pooling operations.

Entirely novel deep neural network architectures have been
explored in some studies for COVID-19 case detection. Shah et
al. (35) proposed a 10-layer 2D CNN called CTnet-10, but found
that it was outperformed by pre-existing architectures. Zheng et
al. (37) proposed a 3D CNN called DeCovNet which operates on
full 3D CT volumes.

Before COVID-19 detection can occur, many proposed
systems require lung and/or lung lesion segmentation (16, 17, 31–
33, 36, 37, 39, 40), which necessitates either a segmentation
component in the proposed systems or manual segmentation
by radiologists. For example, the system proposed by Zhang
et al. (17) performs automatic lung lesion segmentation and
uses the resulting lung lesion maps as input to a diagnostic
network, and the system proposed by Mei et al. (16) requires
pre-segmented lung images.

Explainability methods have been leveraged in some studies
to investigate the relationship between imaging features and
network predictions. Bai et al. (32) and Jin et al. (39)
visualized importance variations in chest CT images using
Gradient-weighted Class Activation Mapping (Grad-CAM) (42).
Similarly, Mei et al. (16) created heatmaps of COVID-19
infection probabilities within receptive fields by upsampling their
network’s predictions to match chest CT image dimensions.
Zhang et al. (17) examined the correlation between key clinical
parameters and segmented lung lesion features in chest CT
images. Song et al. (40) leveraged a coupled attention module to
learn the diagnostic importance of CT image regions.

As discussed above, COVID-19 detection from chest CT
images has been investigated extensively in previous studies.
However, to the best of the authors’ knowledge, the proposed
COVIDNet-CT deep neural network architecture is the
first to be built using a machine-driven design exploration
strategy specifically for COVID-19 detection from chest
CT images. Moreover, this is the first study to perform
an explainability-driven performance validation using an
explainability method geared toward identifying specific critical
factors in chest CT images. This is in contrast to the more general
heatmap-based or bounding-box-based explainability methods
leveraged in previous studies, as these methods illustrate
importance variations within images without identifying specific
critical factors.

While the proposed COVIDNet-CT is not yet suitable
for clinical use, we publicly released COVIDNet-CT and
instructions for constructing the COVIDx-CT dataset as
part of the COVID-Net open intiative in order to encourage
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broad usage and improvement by the research community. In
particular, for COVIDNet-CT to be considered for clinical use,
clinical studies examining its generalization capabilities and
stability would be required, as well as an exploration of how
exactly it distinguishes COVID-19 pneumonia cases from other
pneumonia cases. These steps are crucial since performance,
reliability, and transparency are of paramount importance
in clinical applications. In the future, the performance and
generalizability of COVIDNet-CT may be improved by
expanding and diversifying the COVIDx-CT dataset, and
COVIDNet-CT may also be extended to additional clinical
tasks, such as mortality risk stratification, lung function analysis,
COVID-19 case triaging, and treatment planning. However, the
ability to build solutions for these tasks is contingent on the
availability of high-quality datasets. Finally, additional analysis
of the explainability results may be performed in the future to
identify key patterns in the CT images whichmay aid clinicians in
manual screening.

DATA AVAILABILITY STATEMENT

The data analyzed for this study can be found in the
CNCB repository: http://ncov-ai.big.ac.cn/download?lang=en.
Instructions for generating the COVIDx-CT dataset can be

found in the COVIDNet-CT repository: https://github.com/
haydengunraj/COVIDNet-CT.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the University of Waterloo Ethics Board. Written
informed consent from the participants’ legal guardian/next of
kin was not required to participate in this study in accordance
with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

HG and AW conceived the study and analyzed the results. HG,
LW, and AW conducted the experiments. All authors reviewed
the manuscript.

ACKNOWLEDGMENTS

We would like to thank the Canada Research Chairs program,
the Natural Sciences and Engineering Research Council of
Canada (NSERC), the Canadian Institute for Advanced Research
(CIFAR), DarwinAI Corp., NVIDIA Corp., and Hewlett Packard
Enterprise Co.

REFERENCES

1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-

CoV-2 in different types of clinical specimens. JAMA. (2020) 323:1843–4.

doi: 10.1001/jama.2020.3786

2. Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J, et al. Evaluating the accuracy of

different respiratory specimens in the laboratory diagnosis and monitoring

the viral shedding of 2019-nCoV infections. medRxiv [Preprint]. (2020).

doi: 10.1101/2020.02.11.20021493

3. Li Y, Yao L, Li J, Chen L, Song Y, Cai Z, et al. Stability issues of RT-PCR testing

of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19.

J Med Virol. (2020) 92:903–8. doi: 10.1002/jmv.25786

4. Ai T, Yang Z, HouH, Zhan C, Chen C, LvW, et al. Correlation of chest CT and

RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report

of 1014 cases. Radiology. (2020) 296:E32–40. doi: 10.1148/radiol.2020200642

5. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest

CT for COVID-19: comparison to RT-PCR. Radiology. (2020) 296:E115–7.

doi: 10.1148/radiol.2020200432

6. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical

coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative

RT-PCR testing. Radiology. (2020) 296:E41–5. doi: 10.1148/radiol.2020200343

7. Radiology AC. ACR Recommendations for the Use of Chest Radiography and

Computed Tomography (CT) for Suspected COVID-19 Infection. (2020).

8. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology

of early-phase 2019 novel coronavirus (COVID-19) pneumonia in

two patients with lung cancer. J Thorac Oncol. (2020) 15:700–4.

doi: 10.20944/preprints202002.0220.v2

9. Shatri J, Tafilaj L, Turkaj A, Dedushi K, Shatri M, Bexheti S, et al. The role of

chest computed tomography in asymptomatic patients of positive coronavirus

disease 2019: a case and literature review. J Clin Imaging Sci. (2020) 10:35.

doi: 10.25259/JCIS_58_2020

10. Singh N, Fratesi J. Chest CT imaging of an early Canadian case of COVID-19

in a 28-year-old man. CMAJ. (2020) 192:E455. doi: 10.1503/cmaj.200431

11. Guan Wj, Ni Zy, Hu Y, Liang Wh, Ou Cq, He Jx, et al. Clinical characteristics

of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20.

doi: 10.1056/NEJMoa2002032

12. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of

138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in

Wuhan, China. JAMA. (2020) 323:1061–9. doi: 10.1001/jama.2020.1585

13. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging

features of 2019 novel coronavirus (2019-nCoV).Radiology. (2020) 295:202–7.

doi: 10.1148/radiol.2020200230

14. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes

at chest CT during recovery from coronavirus disease 2019 (COVID-19).

Radiology. (2020) 295:715–21. doi: 10.1148/radiol.2020200370

15. Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, et al.

Performance of radiologists in differentiating COVID-19 from non-

COVID-19 viral pneumonia at chest CT. Radiology. (2020) 296:E46–54.

doi: 10.1148/radiol.2020200823

16. Mei X, Lee HC, Diao Ky, Huang M, Lin B, Liu C, et al. Artificial intelligence–

enabled rapid diagnosis of patients with COVID-19. Nat Med. (2020)

26:1224–8. doi: 10.1038/s41591-020-0931-3

17. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, et al. Clinically applicable AI

system for accurate diagnosis, quantitative measurements, and prognosis of

COVID-19 pneumonia using computed tomography.Cell. (2020) 18:1423–33.

doi: 10.1016/j.cell.2020.04.045

18. Lin ZQ, Shafiee MJ, Bochkarev S, Jules MS, Wang XY, Wong A. Do

explanations reflect decisions? A machine-centric strategy to quantify the

performance of explainability algorithms. arXiv. (2019) 1910.07387.

19. Wang L, Wong A. COVID-Net: a tailored deep convolutional neural network

design for detection of COVID-19 cases from chest X-ray images. Sci Rep.

(2020) 10:19549. doi: 10.1038/s41598-020-76550-z

20. Wong A, Lin ZQ, Wang L, Chung AG, Shen B, Abbasi A, et al. COVIDNet-

S: towards computer-aided severity assessment via training and validation of

deep neural networks for geographic extent and opacity extent scoring of chest

X-rays for SARS-CoV-2 lung disease severity. arXiv. (2020) 2005.12855.

21. Wong A, Shafiee MJ, Chwyl B, Li F. FermiNets: Learning generative machines

to generate efficient neural networks via generative synthesis. arXiv. (2018)

1809.05989.

22. Wong A, Javad Shafiee M, Chwyl B, Li F. GenSynth: a generative synthesis

approach to learning generative machines for generate efficient neural

networks. Electron Lett. (2019) 55:986–9. doi: 10.1049/el.2019.1719

Frontiers in Medicine | www.frontiersin.org 10 December 2020 | Volume 7 | Article 608525

http://ncov-ai.big.ac.cn/download?lang=en
https://github.com/haydengunraj/COVIDNet-CT
https://github.com/haydengunraj/COVIDNet-CT
https://doi.org/10.1001/jama.2020.3786
https://doi.org/10.1101/2020.02.11.20021493
https://doi.org/10.1002/jmv.25786
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020200432
https://doi.org/10.1148/radiol.2020200343
https://doi.org/10.20944/preprints202002.0220.v2
https://doi.org/10.25259/JCIS_58_2020
https://doi.org/10.1503/cmaj.200431
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200370
https://doi.org/10.1148/radiol.2020200823
https://doi.org/10.1038/s41591-020-0931-3
https://doi.org/10.1016/j.cell.2020.04.045
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1049/el.2019.1719
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Gunraj et al. COVIDNet-CT

23. Wong A. NetScore: towards universal metrics for large-scale performance

analysis of deep neural networks for practical usage. CoRR. (2018)

abs/1806.05512. Available online at: http://arxiv.org/abs/1806.05512

24. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Las Vegas, NV (2016). p. 770–8. doi: 10.1109/CVPR.2016.90

25. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks.

In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision–

ECCV 2016. Cham: Springer International Publishing (2016). p. 630–45.

doi: 10.1007/978-3-319-46493-0_38

26. Deng J, Dong W, Socher R, Li L, Kai Li, Li Fei-Fei. ImageNet: a

large-scale hierarchical image database. In: 2009 IEEE Conference on

Computer Vision and Pattern Recognition. Miami, FL (2009). p. 248–55.

doi: 10.1109/CVPR.2009.5206848

27. Qian N. On the momentum term in gradient descent learning algorithms.

Neural Netw. (1999) 12:145–51. doi: 10.1016/S0893-6080(98)00116-6

28. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. (2015). Software

available online at: tensorflow.org

29. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures

for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition. Long Beach, CA (2018). p. 8697–710.

doi: 10.1109/CVPR.2018.00907

30. Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural

networks. In: 2019 International Conference on Machine Learning (ICML).

Beijing (2019).

31. Xu X, Jiang X, Ma C, Du P, Li X, Lv S, et al. A deep learning system to screen

novel coronavirus disease 2019 pneumonia. Engineering. (2020) 6:1122–9.

doi: 10.1016/j.eng.2020.04.010

32. Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, et al. AI

augmentation of radiologist performance in distinguishing COVID-19 from

pneumonia of other etiology on chest CT. Radiology. (2020) 296:201491.

doi: 10.1148/radiol.2020201491

33. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Using artificial intelligence to

detect COVID-19 and community-acquired pneumonia based on pulmonary

CT: evaluation of the diagnostic accuracy. Radiology. (2020) 296:E65–71.

doi: 10.1148/radiol.2020200905

34. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi

A. Application of deep learning technique to manage COVID-

19 in routine clinical practice using CT images: results of 10

convolutional neural networks. Comput Biol Med. (2020) 121:103795.

doi: 10.1016/j.compbiomed.2020.103795

35. Shah V, Keniya R, Shridharani A, Punjabi M, Shah J, Mehendale N.

Diagnosis of COVID-19 using CT scan images and deep learning

techniques. medRxiv [Preprint]. (2020). doi: 10.1101/2020.07.11.201

51332

36. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, et al.

Deep learning-based model for detecting 2019 novel coronavirus

pneumonia on high-resolution computed tomography: a prospective

study. medRxiv [Preprint]. (2020). doi: 10.1101/2020.02.25.200

21568

37. Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, et al. Deep learning-based

detection for COVID-19 from chest CT using weak label.medRxiv [Preprint].

(2020). doi: 10.1101/2020.03.12.20027185

38. Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, et al. AI-assisted CT imaging

analysis for COVID-19 screening: building and deploying a medical AI

system in four weeks.medRxiv [Preprint]. (2020). doi: 10.1101/2020.03.19.200

39354

39. Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, et al. Development and

evaluation of an AI system for COVID-19 diagnosis. medRxiv [Preprint].

(2020). doi: 10.1101/2020.03.20.20039834

40. Song Y, Zheng S, Li L, Zhang X, Zhang X, Huang Z, et al. Deep learning

enables accurate diagnosis of novel coronavirus (COVID-19) with CT images.

medRxiv [Preprint]. (2020). doi: 10.1101/2020.02.23.20026930

41. Wang S, Kang B, Ma J, Zeng X, XiaoM, Guo J, et al. A deep learning algorithm

using CT images to screen for corona virus disease (COVID-19). medRxiv

[Preprint]. (2020). doi: 10.1101/2020.02.14.20023028

42. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-

CAM: visual explanations from deep networks via gradient-based localization.

In: 2017 IEEE International Conference on Computer Vision (ICCV). (2017). p.

618–26. doi: 10.1109/ICCV.2017.74

Conflict of Interest: LW and AW are affiliated with DarwinAI Corp. DarwinAI

Corp., NVIDIA Corp., and Hewlett Packard Enterprise Co. have provided

computing support for this work. In particular, DarwinAI Corp. provided access

to their deep learning development platform, and NVIDIA Corp. and Hewlett

Packard Enterprise Co. provided access to GPU computing resources.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Gunraj,Wang andWong. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 11 December 2020 | Volume 7 | Article 608525

http://arxiv.org/abs/1806.05512
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/S0893-6080(98)00116-6
tensorflow.org
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1016/j.eng.2020.04.010
https://doi.org/10.1148/radiol.2020201491
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1016/j.compbiomed.2020.103795
https://doi.org/10.1101/2020.07.11.20151332
https://doi.org/10.1101/2020.02.25.20021568
https://doi.org/10.1101/2020.03.12.20027185
https://doi.org/10.1101/2020.03.19.20039354
https://doi.org/10.1101/2020.03.20.20039834
https://doi.org/10.1101/2020.02.23.20026930
https://doi.org/10.1101/2020.02.14.20023028
https://doi.org/10.1109/ICCV.2017.74
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases From Chest CT Images
	1. Introduction
	2. Materials and Methods
	2.1. Ethics
	2.2. COVIDx-CT Dataset
	2.3. Machine-Driven Design Exploration
	2.4. Network Architecture
	2.5. Implementation Details
	2.6. Explainability-Driven Performance Validation of COVIDNet-CT

	3. Results
	3.1. Quantitative Results
	3.2. Architecture Comparison
	3.3. Qualitative Results

	4. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


