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The aim of this study was to determine a pattern associated with longitudinal changes

of β-amyloid (Aβ) deposition during cognitively normal(CN) healthy aging. We used
18F-florbetapir (AV-45) PET images of the brains of 207 cognitively normal subjects (CN1),

obtained through the Alzheimer’s Disease Neuroimaging Initiative (ADNI), to identify

the healthy aging pattern and 76 cognitively normal healthy subjects (CN2), obtained

through the Xuanwu Hospital of Capital Medical University, Beijing, China, to verify it. A

voxel-based correlation analysis of standardized uptake value ratio (SUVR) map image

and age was conducted using the DPABI (Data Processing & Analysis of Brain Imaging)

software to identify the pattern. The sum of squares due to errors (SSE), R-square (R2)

and the root-mean-square error (RMSE) were calculated to assess the quality of curve

fitting. Among them, R2 was proposed as the coherence coefficient, which was as an

index to assess the correlation between SUVR value of the pattern and subjects’ age.

The pattern characterized by age-associated longitudinal changes of Aβ deposition was

mainly distributed in the right middle and inferior temporal gyrus, the right temporal

pole: middle temporal gyrus, the right inferior occipital gyrus, the right inferior frontal

gyrus (triangular portion), and the right precentral gyrus. There were a significant positive

correlation between the SUVR value of the pattern and age for each CN group (CN1:

R2 = 0.120, p < 0.001 for quadratic model; CN2: R2 = 0.152, p = 0.002 for quadratic

model). These findings suggest a pattern of changes in Aβ deposition that can be used to

distinguish physiological changes from pathophysiological changes, constituting a new

method for elucidating the neuropathological mechanism of Alzheimer’s disease.
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INTRODUCTION

Brain aging, which is influenced by various pathological and
psychosocial factors (1), comprises two categories: healthy and
pathological aging. According to clinical neurology, healthy aging
is defined as “the cognitively normal (CN) subjects who maintain
their normal cognitive level and ability of daily living as they
grow older, without neurological diseases” (2). Pathological aging,
which is characterized by the accumulation of extracellular Aβ

deposition (3), is considered a major pathological element of
Alzheimer’s disease (AD) (4). However, the presence of Aβ in
the AD brain may also signal a physiological age-associated
phenomenon depending on its extent and distribution pattern
(5–8). Research evidence suggests that Aβ deposition occurs in
the brains of cognitively normal older individuals (9–12). The
prevalence of the amyloid burden among cognitively normal
older individuals has been estimated to be more than 25% than
younger individuals based on the findings of autopsy studies
(9, 13, 14). However, given limited knowledge regarding the
extent and distribution of Aβ deposition during the healthy aging
process, an assessment of changes in Aβ deposition with age is
essential for advancing understanding of healthy aging.

Some studies that have measured amyloid deposition in the
course of normal aging found a significant linear increase in
global Aβ deposition with age (3, 12, 15). One study found
a highly significant correlation between increasing age and a
reduction in Aβ turnover rates (16). Significant linear increases
with age have been observed in the precuneus, temporal cortex,
and the anterior and posterior cingulate (3) as well as in the
frontal, cingulate and parietal areas, with primary sensory/visual
areas being relatively protected from amyloid deposition (17).
The findings of the above studies indicate that there may be
a linear pattern of brain aging associated with changes in Aβ

deposition during healthy aging in cognitively normal adults.
However, all above studies were based on western datasets and
the repeatability of results was not verified among different
ethnic cohorts.

18F-florbetapir (AV-45) is a safe tracer demonstrating high
levels of sensitivity and specificity for Aβ detection (18). Aβ

deposition in the brain can be quantified within a clinical
environment through positron emission computed tomography
(PET) scans conducted with 18F-AV-45 (19). Moreover, this
technique can be used to study Aβ distribution in vivo, enabling
the formation and progression of Aβ aggregates in the brain to
be monitored (20, 21). Thus, there were two main objectives in
this study: (1) to explore a pattern associated with longitudinal
changes of Aβ deposition during healthy aging using 18F-AV-
45 PET images to quantify Aβ deposition in vivo. (2) to verify
the repeatability of the healthy aging pattern among western and
Chinese cohorts.

MATERIALS AND METHODS

Materials
Two cohorts of neuroimaging data were collected from two
independent centers: Cohort A (N = 207, right-handed, CN1)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu/) and cohort B (N = 76, right-
handed, CN2) from the Department of Neurology, Xuanwu
Hospital of Capital Medical University. Both clinical (Sex, Age,
Education, Mini-Mental State Examination (MMSE)) and image
(18F-AV-45 PET and MRI image) information were selected for
the two cohorts. Montreal Cognitive Assessment (MoCA) and
Clinical Dementia Rating Sum of Boxes (CDR-SB) were also
selected for Cohort A. Notablly, in total 378 images were included
for Cohort A because part of subjects had more than one scan
(1.83 ± 0.83 scan times per subject), while each subject had only
one scan in Cohort B.

Figure 1 shows the exclusion and inclusion criteria applied to
CN subjects of Cohort A. The following inclusion criteria were
applied: (1) subjects had no history of stroke, hypertension, brain
disease, or mental illness. (2) The PET scan results of individuals
were Aβ-negative (Aβ-), with a cerebral-to-whole cerebellar
florbetapir SUVR value below 1.18 (22). (3) Mini-Mental State
Examination (MMSE) scores for individuals were above or equal
to 28, and their Clinical Dementia Rating Sum of Boxes (CDR-
SB) scores were all 0. Inclusion criteria for subjects in Cohort B
were consistent with those for Cohort A. This study was approved
by the institutional review boards of ADNI and the Research
Ethics Committee of Xuanwu Hospital, Beijing, China.Written,
informed consent had been obtained from each subject.

Image Acquisition Protocol
The process of acquiring data for the CN1 group is described
in detail in the imaging protocol column of the ADNI
database (http://adni.loni.usc.edu/). PET and T1 MRI data
were simultaneously obtained for each participant in the CN2
group. All of the participants were invited to undergo optional
18F-florbetapir (AV-45) PET scans in the three-dimensional
acquisitionmode. A dynamic scan, lasting 35min, was performed
approximately 40min after participants received an intravenous
injection of 7–10 mCi [18F] florbetapir. The PET scan images
were analytically reconstructed using a time-of-flight ordered
subset expectation maximization (TOF OSEM) algorithm with
the following parameters: eight iterations, 32 subsets matrix =

192 × 192, field of view (FOV) = 350 × 350, half-width height
= 3.

Three-dimensional T1-weighted magnetization-prepared
rapid gradient echo scans were performed using an integrated
TOF-capable PET/MR 3.0T imaging device (SIGNA PET/MR,
GE Healthcare, Milwaukee, Wisconsin, USA) available at the
Xuanwu Hospital of Capital Medical University. The following
parameters were applied: SPGR sequence, FOV = 256 × 256
mm2, matrix= 256× 256, slice thickness= 1mm, gap= 0, slice
number = 192, repetition time (TR) = 6.9ms, echo time (TE)
= 2.98ms, inversion time (TI) = 450ms, flip angle = 12◦, voxel
size= 1× 1× 1 mm3.

Image Preprocessing
All 18F-AV-45 PET scan images and corresponding T1 images
were preprocessed using statistical parametric mapping software
(SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
in MATLAB (Version R2014a; MathWorks, Natick, MA,
United States). We first used the realigning method to ensure
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FIGURE 1 | Inclusion and exclusion criteria applied to the ADNI data.

that all frames in the dynamic scans were motion-corrected to
the first frame and processed the output single average functional
image, reducing system, or head motion errors. Next, we
performed a voxel-based partial volume effect (PVE) correction
of the functional image using the Müller-Gärtner method (MG),
with parameters of white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) obtained through T1 image
segmentation. Then, PVE-corrected image was then normalized
with reference to the standard Montreal Neurological Institute
(MNI) brain space using the deformation field from the MRI
image to the MNI space and smoothed to reduce noise and
improve image quality using an isotropic Gaussian smoothing
kernel with a gaussian filter of 8mm full-width at half-maximum
(FWHM). Lastly, the smoothed functional image was intensity
normalized to the mean uptake of whole cerebellum to obtain
SUVR map image.

Voxel-Wise PET Analysis
To explore the effect of age on Aβ deposition in the brains of
cognitively normal subjects, a voxel-wise correlation analysis of
SUVR map iamges was conducted for CN1, with age applied as
the seed series and GM, sex, and years of education considered
as the covariates. The DPABI software in MATLAB R2014a was
used for the analysis. Accordingly, we obtained a statistical map
(false discovery rate (FDR) corrected with q < 0.01) reflecting
the change trend and degree of Aβ deposition in the aging brain.
Thereby voxels relating to aging were obtaining with the absolute
value of the correlation coefficient ≥ 0.3. As a final step, we
mapped the voxels on to the MNI standard space to obtain
statistical brain regions as ROIs. To verify that ROIs actually
reflect the effect of aging on Aβ deposition in cognitively normal
individuals, we examined the correlations between the SUVR
values of the healthy aging pattern and age for individuals in the
CN1 group and compared the results with the SUVR value for the
whole brain. SUVR values were plotted against subjects’ ages and

fitted using three separate models, namely a linear model:

y = at + b, (1)

a quadratic model:

y = at2 + bt + c, (2)

and an exponential model:

y = aebt + c, (3)

where t denotes age and a, b, and c are the parameters to be
estimated from the data plotted for the SUVR values and ages
of subjects in the CN1 group. The sum of squares due to errors
(SSE), R-square (R2), and the root-mean-square error (RMSE)
values were calculated to assess the quality of fit. Among them, R2

was proposed as the coherence coefficient, which was as an index
to assess the correlation between SUVR value of the pattern and
subjects’ age. Subsequently, the model with the best quality of fit
was assigned to the plotted SUVR and age obtained for the CN1
group to evaluate the change trend of Aβ deposition with aging.
Forward validation was performed on the CN2 group.

Statistical Analysis
The quantitative results obtained with MATLAB were subjected
to a statistical analysis using the SPSS software, version 18.0 (SPSS
Inc., IBM Corporation, Chicago, USA). A two-sample t-test was
performed to examine differences in continuous variables, and
a Chi-square test was conducted to assess categorical variables.
p < 0.05 was considered statistically significant. The Gramm
toolbox in MATLAB was used for plotting and visualizing all of
the statistical data presented in this paper (23).
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TABLE 1 | Demographic and clinical characteristics of participants.

CN1 CN2 P-value

N 378 76 –

Age (years) 74.8 ± 5.6 65.2 ± 5.2 <0.001

Sex (F/M) 192/186 48/28 0.049

Education (years) 16.6 ± 2.5 12.8 ± 3.4 <0.001

MMSE 29.4 ± 0.8 29.2 ± 0.7 0.119

MoCA 26.2 ± 2.3 – –

CDR-SB 0.0 ± 0.0 – –

MMSE, mini-mental state examination; MoCA, montreal cognitive assessment; CDR-SB, clinical dementia rating sum of boxes.

RESULTS

Demographic Characteristics of the
Participants
Cohort A contained 378 time ponts of 207 CN subjects (1.83 ±

0.83 time points per subject). Cohort B included 76 time poits of
76 CN subjects (one time point per subject). Table 1 shows the
demographic and clinical details of the two cohorts. As shown
in Table 1, significant differences between cohort A and cohort B
are observed in age (p < 0.001), sex (p = 0.0488) and education
(p < 0.001). A slight difference is observed in sex(p = 0.049)
and no significant difference in MMSE (p = 0.119). Considering
the impact of brain atrophy and differences relating to the sex
and education levels of the participants, we reported the results
obtained after regressing the covariates of GM, sex, and the
number of years of education.

Voxel-Wise PET Analysis
Healthy Aging Pattern

The health aging pattern was identified in CN1 group. The results
of the correlation analysis revealed that there was a healthy aging
pattern characterized by age-associated longitudinal changes of
Aβ deposition was mainly distributed in the right middle and
inferior temporal gyrus, the right temporal pole: middle temporal
gyrus, the right inferior occipital gyrus, the right inferior
frontal gyrus (triangular portion), and the right precentral
gyrus (Figure 2). No areas of the brain evidenced significantly
decreased Aβ deposition (see Table 2 for details).

Pattern Validation

The health aging pattern was further validated in CN2 group.
Following the regression of the covariates of GM, sex, and years
of education, SUVR value of the pattern showed a significant
positive correlation with age (Figure 3), whereas SUVR value
of global brain showed a weaker positive correlation with age
(Figure 3) in the CN1 group. Table 3 shows the curve fit results
for the SUVR of the pattern and age of the three models. Specific
results were as follows: SSE = 18.549, R2 = 0.118, and RMSE
= 0.222 for the linear model; SSE = 18.505, R2 = 0.120, and
RMSE = 0.222 for the quadratic model; and SSE = 18.592, R2 =

0.116, and RMSE= 0.222 for the exponential model. The curve fit
results for the SUVR of global brain and age for the three models
were as follows: SSE= 12.459, R2 = 0.018, and RMSE= 0.182 for

the linear model; SSE = 12.452, R2 = 0.019, and RMSE = 0.182
for the quadratic model; and SSE= 12.461, R2 = 0.018 and RMSE
= 0.182 for the exponential model.

Following the regression of the covariates of GM, sex, and
educational years, the SUVR value of the pattern showed a
significant positive correlation with age (Figure 4), whereas
SUVR value of global brain showed no significant correlation
with age (Figure 4) in the CN2 group. Table 4 shows the curve
fit results for SUVR of the pattern and age for the three models.
Specific results were as follows: SSE = 0.534, R2 = 0.127 and
RMSE= 0.085 for the linear model; SSE= 0.526, R2 = 0.152 and
RMSE= 0.085 for the quadratic model; SSE= 0.535, R2 = 0.136,
and RMSE= 0.085 for the exponential model. The results for the
curve fit of the SUVR of global brain and age were as follows: SSE
= 0.502, R2 = 0.010, and RMSE = 0.082 for the linear model;
SSE = 0.501, R2 = 0.011, and RMSE = 0.083 for the quadratic
model; and SSE = 0.502, R2 = 0.010, and RMSE = 0.082 for the
exponential model.

DISCUSSION

During the healthy aging of cognitively normal adults, SUVR
value of a healthy aging pattern increased significantly. The
pattern was mainly distributed in the right middle and inferior
temporal gyrus, the right temporal pole: middle temporal gyrus,
the right inferior occipital gyrus, the right inferior frontal gyrus
(triangular portion), and the right precentral gyrus. A weak
positive correlation was found between SUVR of global brain and
age for the CN1 group, with no significant correlation existing
for the CN2 group. These results indicate that during the healthy
aging process of cognitively normal people, the increase in Aβ

deposition is concentrated in specific brain regions rather than
being distributed throughout the brain. In addition, the pattern
shows a characteristic of asymmetric amyloid accumulation.
Alteration in hemispheric asymmetry has been referenced in
studies of healthy aging (24, 25). The Right hemi-aging model
proposes that the right hemisphere presents greater aging than
the left hemisphere (26, 27), so our results were consistent with
previous studies.

The best fit curves for the SUVR value of the healthy aging
pattern and age within each CN group reflected a change trend
of increasing Aβ deposition on the pattern with increasing age
and a subsequent decrease in the growth rate of Aβ deposition.
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FIGURE 2 | Pattern associated with longitudinal changes of Aβ deposition in cognitively normal adults (CN1) during the healthy aging. The red areas are those with

significant increases in Aβ deposition associated with advancing age. No voxels were found that indicated significant decreases in Aβ deposition associated with

advancing age.

TABLE 2 | Pattern associated with longitudinal changes of Aβ deposition in cognitively normal adults (CN1) during healthy aging.

Region Laterality Cluster extent Peak Voxel

T X Y Z

Middle temporal gyrus Right 870 0.37 58 4 −24

Inferior temporal gyrus Right

Temporal pole: middle temporal gyrus Right

Middle temporal gyrus Right 229 0.33 68 −42 6

Inferior temporal gyrus Right

Inferior occipital gyrus Right 159 0.34 48 −82 −10

Inferior frontal gyrus (triangular portion) Right 117 0.34 56 20 14

Precentral gyrus Right 133 0.34 54 10 30

This indicated significant changes in Aβ deposition in aging
adults with normal cognition. However, when accumulated
deposits of Aβ exceeded a certain threshold, leading to cognitive
impairment, aging had weaker effect on Aβ deposition. This
finding suggests that the baseline level of Aβ may differ for
patients with AD. Moreover, as indicated by the findings of
other studies, with the advancement of pathological conditions,
Aβ deposition may reach a saturation point and will no longer
exhibit a linear relationship with age (17, 28). This finding
is supported by that of another study, which revealed that
Aβ increases significantly in individuals with normal cognitive

functions but that the rate of increase of Aβ slows down following
the onset of cognitive impairment (16).

Considering our results together with the findings reported in
the literature, we posit that the healthy aging pattern associated
with longitudinal changes of Aβ deposition and characteristic
regions associated with AD partially overlap, mainly including
the middle and inferior temporal gyrus (29, 30) (Figure 5). The
temporal lobe and occipital cortex are associated with auditory
and visual functions (31). The rapid deposition of Aβ in the
middle and inferior occipital gyrus and in the middle and
inferior temporal gyrus may be one of the reasons why the
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FIGURE 3 | The findings of a correlation analysis of age and the SUVR values of the pattern (A,C,E) and the whole brain (B,D,F) of individuals in the CN1 group using

linear, quadratic, and exponential model fitting, respectively.

auditory and visual fields are influenced by age-associated and
neurochemical factors (32) and may reflect a decline in the
multisensory integration capacity of older individuals (33). It
may account for the importance of age as an influencing factor
affecting the diagnosis of AD or early AD.

Moreover, our results on age-associated changes of Aβ

deposition could be explained from the perspective of molecular
cytology. During the aging process, over-activated microglia may
release neurotoxic molecules and pro-inflammatory cytokines,
leading to neuronal death and inflammation and an accelerated
process of Aβ deposition and accumulation (34, 35). Age-
associated increases in microglial activation may contribute to
the age-associated increase on Aβ deposition. Past research
showed that significant age-associated increases in the total
numbers of activated IL-1α+ microglia occurred in mesial
temporal lobe (36). And the density of amyloid plaques in the
temporal lobe is not related to memory level (37). Our findings

on the healthy aging pattern were consistent with previous
studies, suggesting that the increase in Aβ deposition promoted
by normal aging in the temporal lobe were not caused from
cognitive decline.

It should be noted that this study had some limitations. First,
the datasets used for the study were limited. Although the pattern
were identified and validated using data sourced from the ADNI
and Xuanwu Hospital, multicenter research and autopsy results
are required to confirm their universality. Second, age differences
could be observed between the ADNI and Xuanwu Hospital in
this study, and the average age of subjects from Xuanwu hospital
was 9.4 years younger than ADNI. Although the correlation
between SUVR of pattern and age were found in both cohorts,
whether this correlation exsited in older Chinese CN population
need be verified in the future. Third, this study was evidently a
cross-sectional study, although follow-up data was available for
its subjects. A longitudinal study should also be conducted in the
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TABLE 3 | The curve-fitting characteristics of SUVR value and age for the CN1 group.

SUVR of the pattern SUVR of global brain

Linear model Quadratic model Exponential model Linear model Quadratic model Exponential model

SSE 18.549 18.505 18.592 12.459 12.452 12.461

R2 0.118 0.120 0.116 0.018 0.019 0.018

RMSE 0.222 0.222 0.222 0.182 0.182 0.182

p-value <0.001 <0.001 < 0.001 0.009 0.031 0.021

SSE, sum of squares due to errors; R2 R-square; RMSE, the root-mean-square error.

FIGURE 4 | The findings of a correlation analysis of age and the SUVR values of the pattern (A,C,E) and the whole brain (B,D,F) of individuals in the CN2 group using

linear, quadratic, and exponential model fitting respectively.

future. In addition, the similarities and differences between AD-
associated and healthy aging patterns merit further study. Finally,
although we chose the entire cerebellum as the reference region
for calculating the SUVR values, the selection of the reference

region has long been a methodologically challenging issue within
studies entailing PET imaging analysis. Future comparative
studies of different reference regions are urgently required to
develop a comprehensive understanding of this compound.
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TABLE 4 | The curve-fitting characteristics of SUVR value and age for the CN2 group.

SUVR of the pattern SUVR of global brain

Linear model Quadratic model Exponential model Linear model Quadratic model Exponential model

SSE 0.534 0.526 0.535 0.502 0.501 0.502

R2 0.127 0.152 0.136 0.010 0.011 0.010

RMSE 0.085 0.085 0.085 0.082 0.083 0.082

p-value 0.001 0.002 0.001 0.408 0.677 0.471

SSE, sum of squares due to errors; R2 R-square; RMSE, the root-mean-square error.

FIGURE 5 | The overlap between our proposed pattern and AD parttern in previous studies.

CONCLUSION

In summary, we performed a voxel-wise correlation analysis

to identify a pattern associated with changes in β-amyloid
deposition in cognitively normal adults during healthy aging. An
assessment of the pattern advances understanding of processual

changes entailed in brain aging. The changes in Aβ deposition
associated with healthy aging that are reflected in age-associated
longitudinal changes of Aβ deposition on specific brain regions
are indicative of opportunities for diagnosis and strategies
for decelerating aging. More generally, this study may reveal
a pattern of changes in Aβ deposition that can be used to
distinguish physiological changes from pathophysiological ones.
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