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The intestinal extracellular matrix (ECM) represents a complex network of proteins that

not only forms a support structure for resident cells but also interacts closely with them

by modulating their phenotypes and functions. More than 300 molecules have been

identified, each of them with unique biochemical properties and exclusive biological

functions. ECM components not only provide a scaffold for the tissue but also afford

tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable

hydration of the tissue, and participates in a selective barrier to the external environment.

ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation,

and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is

constantly renewed and remodeled by coordinated action among ECM-producing cells,

degrading enzymes, and their specific inhibitors. During this process, several growth

factors are released in the ECM, and they, in turn, modulate the deposition of new ECM.

In this review, we describe the main components and functions of intestinal ECM and

we discuss their role in maintaining the structure and function of the intestinal barrier.

Achieving complete knowledge of the ECM world is an important goal to understand

the mechanisms leading to the onset and the progression of several intestinal diseases

related to alterations in ECM remodeling.

Keywords: bowel, intestinal wall, extracellular matrix, basement membrane, interstitial matrix, MMPs, TIMPs

INTRODUCTION

The morphogenesis and homeostasis of the gastrointestinal tract are intimately linked to
interactions between epithelial cells, arising from embryonic endoderm, and the stromal cells
derived from mesenchyme. These cells contribute to the production and organization of the
extracellular matrix (ECM). The extracellular matrix forms a complex network of proteins that not
only acts as a support structure for resident cells but also interacts with them by modulating their
phenotypes and functions. The resident cell, in turn, secretes numerous molecules that cooperate
with the various components of the ECM, creating a specific local microenvironment.

The luminal surface of the intestinal mucosa (luminal side) is delimited by a monolayer of
epithelial cells (enterocytes, enteroendocrine cells, goblet cells, and Paneth cells), which is an
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essential barrier against the external environment (1, 2). In this
context, the ECM provides protection and mechanical support
to cells conferring the elasticity and resilience to tensile forces to
the organ.

The heterogeneous spatial and biochemical composition of
the ECM modulates and synchronizes many cell functions and
releases molecules such as integrins, cytokines, chemokines, and
growth factors (3–5). The extracellular matrix and epithelial
cells exchange biological and physical information to orchestrate
organ function, showing that the ECM is not a static scaffolding,
but rather a dynamic structure. Special ECM rearrangements
build a specialized compartment in which unique cellular
processes occur, such as the crypts and cradles of the intestinal
stem cell pool. This niche nourishes the intestinal stem cells,
which is pivotal for the self-renewal of the epithelium and tissue
regeneration from injury (2, 6).

In this review, we give an overview of the intestinal
ECM, describing its main components and their
physiological functions.

THE LONG HISTORY OF THE
EXTRACELLULAR MATRIX

In the scientific community, the ECM is considered the most
complex structural organization of tissues in organisms. To
date, the paradigm “no cells, no ECM” persists, but it was
a long way to go to prove it, as the cells were discovered
even thousands of years later than the ECM (7). Around the
1700’s, we believed that tissues and organs were composed of
different forms and arrangements of connective tissue fibers
and arose spontaneously. For many years this “fibers theory”
represented the most accepted explanation of the basis of life,
and it took ∼100 years for this view to change. In the early
1800’s, Lorenz Oken formulated the hypothesis “omne vivum
ex vivo,” which means that “life may originate exclusively from
something already alive” (7). An important discovery milestone
in this field was made by Rudolf Virchow that, in the 1850’s,
shocked the scientific community with his hypothesis “omnis
cellula ex cellula,” asserting that there are no cells without other
cells (7). The revolutionary assertion that “cells are life and make
fibers” took about 50 years until being generally accepted, and
only subsequently was attention shifted to the discovery of the
relationship between cells and intercellular space composition.

At the end of the 19th century, through light microscopy
and then by innovative chemical and physical methods, the
identification of collagen and elastin fibers, as well as the
observation of several macromolecules in the intercellular
compartment, was possible, and the unique definition to denote
the subcellular space became the “extracellular matrix.” In the
following years, the discovery of even more effective analysis
and instruments allowed us to constantly highlight new details
of ECM components (Table 1) (7). The period of 1930–
1973 yielded several important discoveries for the connective
tissue characterization and mainly for collagen and elastin—
two core components of ECM. Particularly, electron microscopy
and X-ray diffraction, leading to other increasingly advanced

techniques, made it possible to identify and quantify amino acid
sequences of proteins forming collagen and elastin fibers. Finally,
in the last 40 years, a breakthrough revealed the active role of
the ECM in cellular regulation, and new research in these fields
demonstrated that the ECM directly influences the functions of
the resident cells. A fine-tuned crosstalk between epithelial cells,
mesenchymal cells, and ECM components is an essential step
for the regulation of several key processes, such as cell adhesion,
proliferation, differentiation, and apoptosis. Furthermore, the
ECM exerts not only structural support for the cells and a
physical barrier against the external microenvironment but
represents a reservoir of growth factors involved in the activation
of molecular pathways that regulate cell behavior. In this context,
the biological functions of ECM are constant (1–10).

THE TWO COMPARTMENTS OF ECM:
BASEMENT MEMBRANE AND
INTERSTITIAL MEMBRANE

The ECM is composed of a complex and fine organized
network of proteins and polysaccharide molecules, known
as glycosaminoglycans (GAGs), and GAGs linked to protein
forming proteoglycans (PGs). With ∼300 different molecules
interacting in the building of this amazing organization, the
ECM represents an essential support structure for cells, tissues,
and organs (4, 11). GAGs and PGs interact with several
growth factors and ECM proteins and are involved in the
regulation of cell proliferation. Their peculiar characteristics,
such as buffering, hydration, and force-resistance confer to these
molecules additional crucial functions. GAGs can interact also
with water, acting as lubricants and supporting cell migration.
They are involved in the organization of collagen deposition
allowing the ECM to resist high compressive forces (4, 10–13).

The dynamic structure of the extracellular matrix includes
two distinct entities, the basement membranes (BM) and the
interstitial matrix (IM) that are intimately interconnected. The
BM is located beneath the epithelial and endothelial cells, the
IM in the lamina propria, submucosa, and in muscular and
serosa layers.

In addition to the components of the basement membrane
and the interstitial matrix, the transmembrane collagens and
proteoglycans expressed by epithelial cells, including type XXIII
collagen and syndecan-1, can also be identified (14, 15). Collagen
XXIII appears to be involved in epithelial cell-to-cell contact and
epithelial cell polarization. Syndecan-1 modulates epithelial cell
adhesion, proliferation, and migration and stabilizes the tight
junctions. The two compartments are schematized in Figure 1.

Basement Membrane
The basementmembrane is a specific 50–100 nm layer interposed
between the epithelium and mesenchyme of lamina propria. The
basement membrane represents a specialized form of ECM that
controls cell organization and differentiation, interacting with
cell surface receptors. The BM consists predominantly of collagen
type IV, laminins, nidogens, and perlecan, also known as the
basement membrane-specific heparan sulfate proteoglycan core
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TABLE 1 | Timeline of our understanding of the extracellular matrix (ECM).

Date Information References

1700 “Fiber theory”: tissues and organs are formed by connective

tissue arose spontaneously

(7)

1809 Life can originate only from another life (7)

1850 “Cellular theory”: cells do not exist without other cells (7)

∼1900 Collagen and elastin fibers identification (7)

1930–1973 Connective tissue characterization (7)

Last 40 years Biological functions of the specific ECM components (1–10)

FIGURE 1 | Extracellular matrix (ECM) compartments. Schematic representation of the main components of the two ECM compartments: basement membrane (BM)

and interstitial matrix (IM). The legend indicates the identity of each ECM components.

protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2).
Collagen and laminins can self-build more complex structures
and represent the key components in BM stability, whereas
nidogens and perlecan establish a complex link with laminins and
collagen IV acting in the preservation of BM structural integrity
(16, 17).

The BM components and their main functions are
summarized in Table 2.

Collagen Type IV
Collagen type IV is themain component of BM and interacts with
integrins, the transmembrane receptors that facilitate cell–ECM
adhesion, acting as mechanical links between collagen matrices
and the cell cytoskeleton (18, 22, 29–31). In the bowel, the main
components of BM are α1, α2, α5, and α6 chains; however, at
the mucosal surface, we can also find α3 and α4 chains (18).
In physiological conditions, collagen IV is synthesized mainly
by mesenchymal and enteroendocrine cells, although during BM
restoration, epithelial cells can temporarily carry out this function
(18). Type VI and type VIII collagens are also associated with
BM. Type VI is expressed throughout the crypt-villus axis and

mainly located in the interface between BM and IM and directly
interacting with the type IV collagen and perlecan (18, 32). Type
VIII collagen is mainly expressed by endothelial cells and seems
to be involved in the homeostasis of these cells and angiogenesis.
It is also partly expressed by smooth muscle cells and modulates
their migration (18, 33).

Laminins and Their Receptors
The most abundant non-collagenous adhesive glycoproteins
present in BM are laminins. These molecules can bind epithelial
cells and are the basis for other BM proteins exerting a key role
in the onset of BM assembly. Laminins are also able to bind
collagens, particularly collagen IV and XVIII (22, 29). On the
basolateral surface of the intestinal epithelial cells, each laminin
isoforms exerts different functions: laminin α1β1γ1 can induce
differentiation, whereas laminin α5β1γ1 and laminin α3β2γ2
induce adhesion and proliferation of the epithelial cells (19–21).
Laminin α5β1γ1 is expressed in the upper crypt and in the base
of the villus, laminin α3β2γ2 in the villus, and laminin α1β1γ1
is exclusively present in the intestinal crypt (20). Laminins are
deposited by both epithelial and mesenchymal cells (19–21).
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TABLE 2 | The main components of the basement membrane and their functions.

Molecules Secreting cells Functions References

Collagen type IV Mesenchymal, enteroendocrine and epithelial cells BM stabilization

Interaction with

transmembrane receptors

(18)

Laminins Epithelial cells, Mesenchymal cells BM assembly

Modulation of

epithelium homeostasis

(19–21)

Nidogens Epithelial cells, Mesenchymal cells BM stabilization

Interaction with

ECM components

(22, 23)

Perlecan Epithelial cells, Mesenchymal cells Cell differentiation, proliferation,

adhesion and migration

(24–28)

Laminins are binding sites for cellular integrins, which show a
differential expression along with human small intestinal/colon
tissue. In intestinal epithelial cells, the main laminin-binding
integrins are α2β1, α3β1, α7β1, and α6β4 (32). In the
basal domain of intestinal cells were found α2β1 (binding
laminin α1β1γ1) and α3β1 (binding laminin α3β3γ2) integrins,
particularly in the crypts and on the villus, respectively. Integrin
α7β1 (binding laminins α1β1γ1 and α2β1γ1) is identified in the
upper part of the crypt and in the lower region of the villus axis.
Integrin α6β4 (binding laminins α1β1γ1, α2β1γ1, and α3β3γ2)
was detected in equally distributed from the bottom of the crypt
to the top of the villus (32). Integrins represent key regulators
of cell-cell and cell-ECM interactions, thus influencing growth,
differentiation, as well as wound healing, and development of
fibrosis. In this context, an explicative example is provided by
integrin avβ6. During the pathological condition, this molecule
is overexpressed and it is able to locally switch latent TGF-β
in activated TGF-β, finally fueling the TGF-β-mediated fibrotic
process (32).

Nidogens
Collagen IV can create an interconnected network with the
laminins forming two sheet like networks. These can interact
with the nidogens, another important BM protein, also known as
entactin (23). Epithelial andmesenchymal cells express nidogens,
which not only acts to stabilize the BM, but also to enhance
interactions with ECM components (i.e., perlecan, laminins, and
fibulin) and to mediate signal transduction through integrins
(Table 2) (1, 22, 23, 34).

Perlecan
Perlecan is present in the BM under physiological conditions,
which is a large low-density heparan sulfate proteoglycan—
a molecule with GAG chains but with an independent
structural domain. Perlecan is crucial for tissue development, cell
proliferation, differentiation, adhesion, and migration (35, 36).
The protein core contains several binding sites for collagen
IV, nidogens, and integrins other than for heparin. Perlecan
can interact with important growth factors, especially with
the vascular endothelial growth factor (VEGF). Perlecan is
synthesized by epithelial cells mainly in the basolateral surface,

enhancing intestinal regeneration through the modulation of
Wnt/β catenin signaling (24–28).

Other Components
Apart from these main constituents, the BM structure includes
other fundamental molecules, such as the proteoglycan agrin,
the glycoprotein fibulin, and the collagen-binding matricellular
protein, also known as SPARC, Osteonectin (ON), or basement–
membrane protein 40 (BM-40)—a molecule with anti-adhesion
properties (23, 29, 34).

Interstitial Matrix
The interstitial matrix is located under the BM and acts as one of
the major structural layers of the lamina propria and submucosa
(18). The constituents of the IM cooperate in preserving the
structural and functional integrity of this compartment of the
intestinal wall (Figure 1).

Themain IM components and their functions are summarized
in Table 3.

Collagens
Collagens represent important molecules involved in the
regulation of cell adhesion and tissue homeostasis (22, 45). In
the gut interstitial matrix, collagen types I and III are the most
representative subtypes responsible for providing tensile strength
to tissues (2, 37, 46, 47). These collagens (particularly collagen I)
can interact with several proteins, such as proteolytic enzymes
(Metalloproteinases: MMPs), surface receptors (i.e., integrins),
and other ECM molecules like fibronectin, thrombospondin,
SPARC, and proteoglycans (22). In the ECM of the IM, these
two collagens are synthesized and released by subepithelial
mesenchymal cells (37–39).

Type V collagen is directly involved in collagen fibril assembly
by interacting with type I and III collagens and forms heterotypic
fibrils (fibrils composed of type I, III, and V collagens) (18, 37,
47). Types XII, XVI, and XIX of the fibril-associated collagen
with interrupted triple helices (FACIT) represent the main
types present in the intestine IM. These are not involved in
the building of collagen fibers, but connect collagen fibrils to
other ECM molecules and promote the migration of intestinal
myofibroblasts (18, 37, 48).
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TABLE 3 | Main components of the interstitial matrix.

Molecules Secreting cells Functions References

Collagens I and III Subepithelial myofibroblasts and fibroblasts Regulate cell adhesion, tissue

development, and homeostasis

(37–39)

Fibronectin Fibroblasts, Epithelial cells Regulates cell adhesion,

migration, differentiation, growth,

and survival

(2, 24, 40)

Elastin-tropoelastin Fibroblasts, smooth muscle cells Modulates intestinal tissue

stretching

Confers tissue elasticity

(41)

Decorin Fibroblasts, smooth muscle cells Mediates intestinal matrix

interactions

(42)

Hyaluronan Epithelial, smooth muscle cells and fibroblasts Stabilizes ECM integrity (43, 44)

Fibronectin
Fibronectin is a glycoprotein present as an insoluble form into
the IM (2, 4, 22). It interacts with several ECM molecules such
as collagens (including types II, III), heparin, tenascin-C, and
cell surface receptors of the integrin superfamily. Fibronectin is
involved in several cellular activities taking place in connection
with the ECM, such as cell adhesion, growth, migration,
differentiation, and survival (2, 11, 22, 49, 50). Fibronectin plays
an important role in the homeostasis of the barrier function of the
intestinal mucosa and is constantly exposed to luminal bacteria
and toxins. During a mucosal injury, fibronectin participates
in the restoration of epithelial integrity. Fibroblasts as well as
epithelial cells are themain producers of the intestinal fibronectin
(2, 24, 40).

Elastin
Elastin is secreted as tropoelastin and represents another
important component of the interstitial matrix that confers
elasticity and resilience to intestinal tissue. It is responsible
for the tissue’s ability to recoil following repeated expansion
and contraction stretching; however, its amazing elasticity is
limited by the intimate association with collagen fibrils (51, 52).
Tropoelastin is produced by fibroblasts, smooth muscle cells, and
endothelial cells before it is processed to elastin by cleavage of its
signal peptide (41).

Decorin
Chondroitin sulfate proteoglycan decorin and the
glycosaminoglycan hyaluronan are also present in the IM (18).
These molecules can interact with several ECM proteins (i.e.,
collagens), cytokines (i.e., tumor necrosis factor-alpha, TNF-α),
and growth factors such as transforming growth factor-β (TGF-
β) and platelet-derived growth factor (PDGF) (53–57). Decorin
selectively interacts with different molecules: the isoforms of
TGFβ, PDGF, vascular endothelial growth factor receptor-
2 (VEGFR-2), epidermal growth factor receptor (EGFR),
connective tissue growth factor (CTGF), thrombospondin,
collagens, and fibronectin. Decorin is mainly expressed by
fibroblasts, smooth muscle cells, and macrophages (42).

Hyaluronan
Hyaluronan (HA) is an abundant ECM component produced
by epithelial cells, smooth muscle cells, and fibroblasts (43,
44). It exerts an important role in regulating the hydration of
tissues, as well as affects cell adhesion, migration, and mitosis.
It also acts as an anti-angiogenic and anti-inflammatory factor.
Almost all of these effects are mediated by the hyaluronan
receptor CD44, which is expressed by stromal and immune
cells (58). Hyaluronan also acts in the homeostasis of intestinal
stem cells (ISC) through the interaction with constituents
of the extracellular matrix contributing to stabilizing its
integrity. It is mainly expressed on the plasma membrane
of ISCs and its structure contains binding sites for the
Toll-like receptors activated in the response to commensal
and pathogenic bacteria (59, 60). The hyaluronan level
of polymerization indicates matrix integrity. In contrast,
elevated hyaluronan’ fragments were found to be associated
with inflamed tissue in IBD inducing leukocyte infiltration
into the intestine and innate immune activation (44, 61).
Fragments of hyaluronan can promote wound healing, but also
fibrosis, by inducing fibroblast proliferation and myofibroblast
differentiation (59, 61).

ECM IS A DYNAMIC STRUCTURE:
CELLULAR AND MOLECULAR FUNCTIONS

The ECM does not represent a static structure, but a dynamic
tissue component that constantly undergoes continuous
remodeling (10, 11, 18, 22, 62). The homeostasis of healthy
tissue is guaranteed by a continuous and balanced deposition,
degradation, and modification of the ECM and an imbalance
in this equilibrium can lead to pathological conditions
(63–65). A large number of molecules and growth factors
orchestrate this delicate process by regulating ECM amount,
composition, and structure (10, 11, 18, 62). Intestinal fibrosis,
characterized by an abnormal deposition of ECM, represents the
main chronic complication of inflammatory bowel disease
(IBD), chronic relapsing intestinal disorders including
Crohn’s disease, which can affect both the small and large
intestine, and ulcerative colitis, which only affects the large
intestine (5, 10).
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ECM-Producing Cells
The intestinal mucosa consists of three distinct portions: a
single layer of epithelial cells, a connective tissue that keeps
the epithelium (the lamina propria) in place, and a small layer
of smooth muscle, called muscularis mucosae, which separates
it from the underlying muscle layers. The various components
of the ECM are produced by different types of intestinal
cells. While the components of the basement membrane are
produced by epithelial cells, those of the interstitial matrix
are mainly produced by mesenchymal cells represented by
fibroblasts, myofibroblasts, and smooth muscle cells. Endothelial
cells, pericytes, and stellate cells also contribute to the release of
ECM components. ECM-producing cells act synergistically and
are under the control of numerous biological mediators. The
ECM-producing cells and their main markers are summarized
in Table 4.

Epithelial Cells
At least five cell types can be found in the intestinal
mucosal epithelium: enterocytes, goblet cells, Paneth cells,
enteroendocrine cells, and stem cells. They are found both in the
intestinal glands and on the surface of the villi. The enterocytes
are specialized in the absorption of water, electrolytes, and
nutrients; the goblet cells secrete different types of mucins; the
Paneth cells help to maintain mucosal immunity by secreting
antimicrobial substances; the enteroendocrine cells produce
various paracrine and endocrine hormones; the stem cells
guarantee the physiological renewal of all of the above types
of epithelial cells or when they are damaged. In chronic
inflammatory bowel diseases, epithelial cells can undergo a
well-known process of epithelial-to-mesenchymal phenotypic
transformation, becoming one of the main sources of activated
myofibroblasts, and thereby being directly involved in the
processes of tissue repair and fibrogenesis (5, 66, 67).

Fibroblasts
Fibroblasts are a heterogeneous population of cells located in
the interstitium of all normal tissues and organs where they
are central in maintaining structural integrity, healing, and
regeneration, by regulating matrix homeostasis. Fibroblasts are
directly involved in the pathogenesis of intestinal fibrosis (69).

Myofibroblasts
Myofibroblasts are highly contractile cells that exhibit a
“hybrid” phenotype between fibroblasts and smooth muscle
cells (SMCs) and, when activated, synthesize high levels of
ECM, particularly collagen, glycosaminoglycans, tenascin-C, and
fibronectin (5, 71, 78). Besides roles in tissue growth and
differentiation, myofibroblasts are central to wound healing and
fibrosis (5, 67). Two types of myofibroblasts are present in the
intestinal mucosa in physiological conditions, the intestinal sub-
epithelial myofibroblasts (SEMFs) and the interstitial cells of
Cajal (ICC) (72, 79). Sub-epithelial myofibroblasts are located
at the base of the intestinal crypts in the lamina propria,
form a three-dimensional network, and are in connection
with each other, but also maintain connections with epithelial
cells. Myofibroblastic cells contain smooth muscle cytoskeletal

markers (in particular α-smooth muscle actin: α-SMA) together
with three filaments (vimentin, desmin, or myosin), with variable
expression depending on tissue, species and environmental
factors (72, 79). Activated myofibroblasts play the main role in
the development of intestinal fibrosis (5, 67). Interstitial cells of
Cajal are located in the submucosa and muscularis propria in
association with the smoothmuscle layer (80, 81). Interstitial cells
of Cajal are pacemaker cells, which regulate intestinal smooth
muscle motility.

Smooth Muscle Cells
Smooth muscle cells (SMCs) are one of the three interrelated
cell phenotypes into which intestinal mesenchymal cells can
differentiate (the other two being fibroblasts and myofibroblasts)
(73). In chronic inflammation, SMCs can trans-differentiate into
myofibroblasts, suggesting that a dynamic equilibrium thus exists
between the myofibroblast and SMC phenotype (5, 67, 73).

Endothelial Cells
Endothelial cells (ECs) are the major constituent of the
microvasculature that line blood and lymphatic vessels.
Normally, ECs provide an anti-adhesive and selectively
permeable exchange barrier. Endothelial cells, by continual
adjustments in structure and functions, coordinate vascular
supply, immune cell migration, and regulation of the tissue
environment. Inflammation induces changes in the endothelium
of the intestinal vasculature in response to the cytokines,
chemokines, and growth factors released by immune and
non-immune cells, leading to decreased endothelial barrier
function, adhesion molecule expression, leukocyte extravasation,
and increased coagulation and angiogenesis (82). Intestinal
inflammation, especially in chronic inflammatory bowel
diseases, can induce endothelial cells to undergo endothelial-to-
mesenchymal phenotypic transformation, becoming a further
source of activated myofibroblasts, and thereby being directly
involved in the processes of tissue repair and fibrogenesis
(67, 75).

Pericytes
Pericytes are derived from undifferentiated mesenchymal cells
and surround capillary and small blood vessel endothelial
cells (76, 83). They reside at the interface between the
endothelium and interstitium. Pericytes display an intermediate
phenotype between vascular SMCs and fibroblasts. Pericytes
control endothelial cell differentiation, endothelial signaling,
angiogenesis, and ECM deposition (5, 67, 76). They represent
a useful reserve of myofibroblasts during tissue repair and
inflammation-associated fibrosis.

Stellate Cells
Stellate cells are mesenchymal cell precursors that contribute
to retinoic acid metabolism, which impacts fibrosis and when
activated, may differentiate intomyofibroblasts (84, 85); however,
limited information is available for intestinal stellate cells,
although, in chronic inflammatory bowel diseases, we know
that they differentiate into myofibroblasts faster than those from
normal mucosa and proliferate faster, and produce collagen
earlier and at higher levels (5, 67).
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TABLE 4 | Intestinal ECM-producing cell types.

Cell type Main positive markers References

Epithelial cells E-cadherin, cytokeratins, CD326 (5, 66–68)

Fibroblasts Vimentin, CD90, N-cadherin (high), prolyl 4-hydroxylase (69, 70)

Myofibroblasts

- Subepithelial myofibroblasts

- Interstitial cells of Cajal

Vimentin, α-SMA, cadherin-11, epimorphin

Vimentin, c-Kit receptor, anoctamin-

(5, 71, 72)

Smooth muscle cells α-SMA, desmin, smoothelin, HDAC-8 (73, 74)

Endothelial cells CD31, vWF, VE-cadherin, N-cadherin (low), vimentin (low) (67, 75)

Pericytes NG-2, α-SMA, desmin (low), MCSP, RGS5, PDGFRB,

CD11b, CD80, CD86, CD13, CD90, ANG I, and II, ET-1

(5, 67, 76)

Stellate cells Vitamin A, GFAP, desmin (5, 67, 77)

Enzymes Degrading ECM Proteins and
Their Inhibitors
One of the main enzymes that can degrade ECM components
is metzincins.

Metzincins represent a superfamily of zinc-dependent
endopeptidases present in the ECM and are classified in:
astacins, pappalysins, MMPs, serralysins, and adamalysins,
including a-desintegrin and metalloproteinase (ADAMs) and
a-desintegrin and metalloproteinase with thrombospondin
motif (ADAMTS) (86–89) (Figure 2). From 1962, 23 MMPs,
21 ADAMs, and 19 secreted ADAMTS are identified in
humans (87, 89). The main function of these proteases
is the degradation of ECM proteins, but they also exert
an important role in crucial physio-pathological processes
such as enzymatic activities, protease inhibition, protein
synthesis inhibition, cell proliferation, migration and apoptosis,
inflammation, wound healing, fibrosis, angiogenesis, and
carcinogenesis (86–110).

Meprins are members of astacins, existing in two isoforms (α
and β), that play a key role in connective tissue homeostasis,
especially in cell migration, differentiation, and proliferation
(111, 112). These enzymes can cleave the N- and C-terminal pre-
domains of procollagens I and III, an essential step for the correct
assembly of collagen fibril (113, 114). Meprins are involved in
collagen IV, nidogens, and fibronectin other than SPARC and
fibulin cleavage (115–117). In the bowel, meprins are also crucial
in the preservation of intestinal barrier functions. Particularly,
meprin β is located on the apical side of the epithelial cells
and prevents bacteria attachment and invasion; however, during
pathological processes such as inflammation, the expression of
fibrosis and cancer meprins increased (111, 118).

ADAMs are membrane-anchored metalloproteinases that
exert proteolytic activity inhibiting the metalloproteinase
domain. Likewise, they play a key role in cell–cell interactions by
connecting heparan sulfate proteoglycans with integrin proteins
(11, 119–122).

Beside ADAMs, other components of the adamalysins family
are the ADAMTS. In these molecules, near to a disintegrin
domain, there is a thrombospondin type 1-like repeats sequence
that confers to ADAMTS the ability to bind ECM proteins
(11, 123).

MMPs are produced in a precursor form (PRO-MMPs)
and remain in a status of low activity. They are confined in
specific areas, while their expression increases during processes
of remodeling, repair, or in the presence of chronic inflammatory
or neoplastic diseases in many organs, including the intestine
(8, 11, 92–96). The presence of MMPs is generally low in normal
or uninflamed tissues. The expression, secretion, activation, and
activity of MMPs are tightly controlled (90). The activity of
MMPs is regulated on several levels, including transcription,
translation, secretion, activation by cleavage of the pro-domain,
and inhibition by the endogenous TIMPs (61). MMPs play a
crucial role in the physiological turnover of the ECM bowel.

Matrix Metalloproteinases
A significant contribution to intestinal ECM remodeling is
ascribable to MMPs, which can be classified mainly by two
different criteria: based on their domain organization or their
substrate preferences (86–89, 124–126).

According to their domain arrangement, MMPs are classified
as matrilysins, archetypal MMPs, furin-activatable MMPs, and
gelatinases (Figure 2) (86–89, 124–126).

According to their substrate specificity, MMPs are classified
as collagenases (MMP-1, −8, −13, and −18, this latter is not
expressed in mammals, but only in Xenopus), gelatinases (MMP-
2 and 9), stromelysins (MMP-3, −10, and −11), metrilysins
(MMP-7 and −26), membrane-type MMPs (MT-MMPs) (MT1-
MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP, and
MT6-MMP) and other MMPs (MMP-12, −19, −20, −21, −23,
−27, and −28) (86–89, 113–115). Specific substrates have been
identified for the majority of the MMPs (Table 5).

Several ECM components undergo limited proteolysis
generating bioactive fragments called matricryptins, which
regulate many physiological and pathological processes
through their binding to cell surface receptors. The major
physiopathological processes regulated by matricryptins
include enzymatic activities, protease inhibition, protein
synthesis inhibition, cell proliferation, migration and apoptosis,
inflammation, wound healing, fibrosis, angiogenesis, and
carcinogenesis (91).

In addition to a crucial role in the ECM components
degradation,MMPs have a vast range of extracellular, pericellular,
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FIGURE 2 | Metzincins superfamily members and classification of MMPs based on their domain arrangement. MMP, metalloproteinase; MT-MMP, membrane-type

MMP; ADAM, a desintegrin and metalloproteinase; ADAMTS, a-desintegrin and metalloproteinase with thrombospondin motif.

and intracellular substrates (90). At the mucosal surface level,
antibacterial molecules, such as the membrane-bound mucin-1
(MUC1) and defensins, can be modified by MMPs, leading to
the alteration of host–bacterial interaction. Within the epithelial
layer, MMPs can degrade intercellular junction molecules (e.g.,
cadherins, occludins, and claudins) and intracellular structural
proteins (e.g., actins), leading to the alteration of the cell
shapes and the barrier function. The degradation of ECM
components (e.g., collagens) may release several chemotactic and
angiogenic (e.g., endostatin) fragments. MMPs proteolytically
activate or degrade a variety of non-matrix substrates, including
chemokines, cytokines, adhesion molecules, growth factors, and
survival molecules; therefore, MMPs are increasingly recognized
as critical players in the intestinal inflammatory response, tissue
repair, fibrogenesis, and carcinogenesis (90, 92–110).

The activity of the ECM degrading enzymes is balanced
by specific inhibitors represented by the tissue inhibitors of
metalloproteinases (TIMPs).

In the bowel, MMPs and TIMPs are mostly investigated in the
mucosa but are also present in the submucosa and muscolaris
propria. The healthy epithelium expresses a wide range of MMPs
and TIMPs, but in the injured epithelium, MMP-7 and MMP-
10 are more pronounced (90). TIMP-3 is mainly associated with
a healthy intestine and is reduced in the inflamed intestine.
Stromal cells such as fibroblasts also express many MMPs and
TIMPs, but fibroblasts containing MMP-1, −3, −8, and −9 have

been associated with inflamed intestine (90). Immune cells also
contribute to MMP and TIMP expression in the mucosal and
submucosal layers (90).

Metalloproteinases Inhibitors
Metalloproteinases activity is fine regulated by activation of
synthetic and endogenous (non-specific and specific) inhibitors
(86–89, 124–126).

Synthetic inhibitors including hydroxamate-based inhibitors,
non-hydroxamate-based inhibitors, catalytic domain inhibitors,
allosteric and exosite inhibitors, and antibody-based inhibitors
(124, 125).

Among the endogenous non-specific inhibitors there are
α-macroglobulin, tissue factor pathway inhibitor (TFPI),
membrane-bound β-amyloid precursor protein, C-terminal
proteinases enhancer protein, reversion-inducing cysteine-rich
protein with Kasal domain motifs (RECK), and GPI-anchored
glycoprotein; however, the main regulators of MMPs other than
the adamalysins activity, are the TIMPs (124, 125).

The tissue inhibitors of metalloproteinases family are
composed of four members (TIMP-1, −2, −3, and −4) and an
important parameter in the control of their function is their
localization. While TIMP-1, −2, and −4 are present in soluble
form, TIMP-3 is sequestered in the ECM through the interaction
with HS and GAGs (11, 126–133). Although TIMPs globally
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TABLE 5 | Classification of MMPs ECM degrading enzymes and their main substrates.

Class names Molecular names Preferential substrates References

Collagenases MMP-1

MMP-8

MMP-13

MMP-18

Collagens (I, II, III, VII, VIII, X, XI), gelatin, fibronectin, vitronectin,

laminins, entactin, tenascin, aggrecan.

Collagens (I, II, III), aggrecan.

Collagens (I, II, III, IV, VI, IX, X, XIV), gelatin, fibronectin, aggrecan,

SPARC, perlecan.

Collagen I.

(11, 86–89, 113–115)

Gelatinases MMP-2

MMP-9

Collagens (I, II, III, IV, V, VII, X, XI) gelatin, elastin, fibronectin, vitronectin,

laminins, entactin, tenascin, SPARC, aggrecan, decorin.

Collagens (IV, V, X, XIV), gelatin, elastin, vitronectin, laminins, entactin,

tenascin, SPARC, aggrecan, decorin.

(11, 86–89, 113–115)

Stromelysins MMP-3

MMP-10

MMP-11

Collagens (III, IV, IX, XI), gelatin, elastin, fibronectin, vitronectin, laminins,

entactin, tenascin, SPARC, aggrecan, decorin, perlecan.

Collagens (III, IV, V), gelatin, elastin, fibronectin, aggrecan.

Collagen IV, gelatin, fibronectin, laminins.

(11, 86–89, 113–115)

Matrilysins MMP-7

MMP-26

Collagens (I, IV), gelatin, elastin, fibronectin, vitronectin, laminins,

entactin, tenascin, SPARC, aggrecan, decorin.

Collagen IV, gelatin, fibronectin, vitronectin.

(11, 86–89, 113–115)

Membrane type (MT) MMP-14 (MT1-MMP)

MMP-15

(MT2-MMP)

MMP-16

(MT3-MMP)

MMP-24

(MT4-MMP)

Collagens (I, II, III), gelatin, fibronectin, tenascin, vitronectin, laminins,

entactin, aggrecan, perlecan.

Fibronectin, tenascin, entactin, laminins.

Collagen III, gelatin, fibronectin, vitronectin, laminin.

Fibronectin, gelatin, chondroitin sulfate proteoglycan, dermatan

sulfate proteoglycan.

(11, 86–89, 113–115)

(11, 86–89, 113–115)

inhibit all the MMPs, each TIMP showed a preferential substrate
(124–133) (Table 6).

Growth Factors Controlling ECM
Deposition and Remodeling
The extracellular matrix can act as a reservoir for growth factors
released or activated upon MMPs mediated proteolysis, once
released, these molecules affect cell recruitment and function,
inducing ECM deposition and restoring its integrity. These
growth factors are directly responsible for the maintenance of the
tissue and repair of the intestinal epithelium (Figure 3).

The main growth factors controlling ECM deposition are
represented by TGF-β1, activins, CTGF, Fibroblast growth
factor (FGF), PDGF, epidermal growth factor (EGF), insulin-
like growth factor (IGF)-I and II, VEGF, bone morphogenetic
proteins (BMPs), and hepatocyte growth factor (HGF).

Transforming growth factor-β is the crucial growth
factor involved in the biological regulation of ECM protein
synthesis. The main producers of TGF-β are represented
by epithelial cells, immune cells, and fibroblasts, which
are highly expressed in the lamina propria of a healthy
bowel (134, 135). TGF-β exists in three different isoforms
(TGF-β 1, 2, and 3) secreted in a latent state (LTGF-β) and
often bound to a second protein, the latent TGF-β binding
protein (LTBP). This complex facilitates the secretion and
direction of ECM components, mainly fibronectins and
fibrillins (134–143).

TGF-β interacts with the small mother against
decapentaplegic (Smad) family proteins that induce its nuclear
translocation, regulating its signaling, and the formation of

transcriptionally active complexes (29, 144–149). During
physiological intestinal ECM turnover, TGF-β plays a key
role in the regulation of the expression of the collagen and
the laminins proteins (22). Additionally, TGF-β1 through
the interaction with Smad3 can induce procollagen I and
III depositions by intestinal fibroblasts (143, 147). Besides
Smads downstream pathways, TGF-β1 can also modulate, in a
Smad/independent manner, other signal transduction pathways,
such as ERK/cJUN/p38MAP kinases and the phosphoinositide-3
kinase (PI3-K) and its downstream target Akt, also known as
protein kinase B (PKB), as well as members of the JAK and
STAT protein family (143–147). It is not yet fully understood
which of these transduction pathways mainly modulate the
anti-inflammatory effect and which the pro-fibrotic effect
of TGF- β (143–147); however, TGF-β exerts several crucial
functions in the bowel. TGF-β plays an important role in
the crosstalk between the host immune cells and the gut
microbiota, both in the small intestine (regulating the complex
microbiota including Lactobacillus sp., Streptococcus sp.
Clostridium sp., and Escherichia coli) and in the colon (rich
in Clostridium sp. and Bacteroides species). After an epithelial
injury or an inflammation, intestinal epithelial cells increase
the production of the TGF-β. In turn, the microbiota release
molecules (butyrate, acetate, and propionate) to enhance
the production of TGF-β by epithelial cells, regulating the
immune response (150–154). Although TGF-β shows an
anti-inflammatory effect during acute intestinal inflammation,
in a chronic phase of the disease, it induces a pro-fibrotic effect.
In this context, TGF-β is a key regulator of intestinal fibrosis
(5, 63, 67).
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TABLE 6 | MMPs inhibitors and their preferential substrates.

Inhibitory enzymes Preferential substrate References

TIMPs PRO-MMPs MMPs MT-MMPs ADAMs ADAMTS

TIMP-1 PRO-MMP-9 MMP-1

MMP-2

MMP-3

MMP-9

MMP-19

MT1-MMP

MT3-MMP

MT5-MMP

ADAM-10 – (11, 126–133)

TIMP-2 PRO-MMP-2 MMP-2 – – – (11, 126–133)

TIMP-3 PRO-MMP-9

PRO-MMP-2

MMP-1

MMP-2

MMP-3

MMP-9

MMP-13

– ADAM-12

ADAM-17

ADAMTS-1

ADAMTS-4

ADAMTS-5

(126–133)

TIMP-4 PRO-MMP-2 MMP-2 MT1-MMP – (124–133)

FIGURE 3 | Intestinal crypt microenvironment. Schematic representation of an intestinal crypt with the cells and the molecules involved in its homeostasis. At the base

of the invagination, there is the ISC niche, essential for supplying the staminal cell pool involved in the physiological self-renewal of the epithelium. Growth factors (GFs)

are entrapped in the extracellular matrix (ECM), which is constantly remodeled by the coordinated activity of ECM-producing cells, metalloproteinases (MMPs), and

tissue inhibitors of metalloproteinases (TIMPs). Along the crypt, there is a gradient for some GFs (i.e., BMPs) regulating the differentiation and proliferation of the

intestinal stem cells (ISCs). BMPs, Bone Morphogenetic Proteins; TGF-β, Transforming Growth Factor-β; PDGF, Platelet-Derived Growth Factor; VEGF, Vascular

Endothelial Growth Factor. The legend indicates the crypt components.

Other members of TGF-β superfamily are the BMPs and
activins. BMPs play an important role during homeostasis by
controlling cellular differentiation, proliferation, and apoptosis
(155–157). In the intestine, the ECM regulates the position,

the timing, and the intensity of the BMPs activity (158). The
BMPs are sequestered in ECM, mainly interacting with fibrillin
and collagen IV (159). BMPs promote epithelial differentiation
in the crypts and inhibit the expansion of the stem cells
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pool (160, 161). A peculiar gradient of BMPs is reported in
the intestine, degrading from the villus toward the base of
the crypt (161). Endogenous BMP antagonists exist, such as
Gremlin1, Gremlin2, and Chordin, secreted by the intestinal
subepithelial myofibroblasts and smooth muscle cells (162).
Furthermore, BMP2 and 7 are inhibited by angiopoietin-like-
protein 2 expressed by subepithelial myofibroblasts to maintain
ISC homeostasis (163, 164). Activins represent an important
player in the regulation of the intestinal epithelial cell functions.
Activin A and its receptors modulate epithelial cells migration
and proliferation exerting a positive role during the intestinal
inflammation and wound healing processes (164). Activins
activate Smad transcription factors and theMAP kinase signaling
pathways (165).

The connective tissue growth factor is a downstreammediator
of TGF-β. It is co-expressed with TGF-β and stimulates cell
proliferation and ECM synthesis. Its expression is controlled by
TGF-β in a Smad-dependent manner. In IBD, the activation of
the TGF-β pathway induces an increased expression of CTGF
that leads to abnormal local deposition of ECM components and
intestinal fibrosis. In addition to TGF-β, other modulators of
CTGF expression include VEGF, TNF-α, and ROS (166, 167).

Fibroblast growth factor (FGF) is intimately associated with
ECM, especially with HSPG present in the BM (29). The
interaction with its receptor (FGFR), expressed on fibroblasts and
epithelial cells of the intestinal crypt, can regulate the synthesis
of specific ECM components such as collagens, laminins, and
fibronectin (22, 168–170).

Another molecule associated with ECM proteins is
represented by PDGF. This factor is mainly expressed by
the epithelial cells, but also endothelial cells, fibroblasts, and
smooth muscle cells it is a positive regulator of stromal cell
proliferation (171). Plated-derived growth factor-AA and its
receptor (PDGFR), are crucial for the proper structure of the
intestinal mucosa. Knockout mice for PDGF-AA or PGFR-
A showed a reduction in the enterocyte turnover, and the
subepithelial mesenchymal cluster aggregation, as well as a
decrease in villus formation (172). The activity of PDGF and its
diffusion in the tissue interstitium is regulated by the binding
with ECM proteins, decorin, HS, and SPARC, that sequester
PDGF in extracellular space in an inactive form and inhibit its
action (36, 140, 173).

Similarly, the VEGF is secreted by the enterocytes,
endothelium, and muscularis layer and remains spatially
confined through HS interaction. Once ECM is remodeled,
VEGF is released and controls cell proliferation, migration, and
differentiation, and angiogenesis (174, 175).

Insulin-like growth factor-I and II and their respective
receptors are expressed in the intestine and interact principally
with fibroblasts, epithelial, and endothelial cells and regulate
collagen deposition. IGF-1 enhances myofibroblast migration
and increases intestinal SMC and myofibroblasts (36, 168–178).
Epidermal growth factor is the prototype member of a family
comprising different peptides with a similar primary structure
that binds to a family of EGF receptors. It regulates transcription,
translation, cell architecture, and cell proliferation. EGF can
be isolated from the intestine and its receptors are located

on monocytes and myofibroblasts. EGF stimulates fibroblast
proliferation and ECM production and regulates human colonic
fibroblast and myofibroblast migration (179–181).

Hepatocyte growth factor (HGF) and BMP-7 are natural
inhibitors of the TGF-β/Smad pathway (182, 183). HGF exerts
several biological activities on myofibroblasts, including the
inhibition of growth and ECM deposition and the increase of
MMP expression (184, 185). BMP-7 downregulates α-SMA and
phosphorylated Smad2/3 (183).

Extrinsic Regulation of ECM: Metabolic
and Mechanical Control
ECM organization and functions are under the control of
metabolism and metabolic regulators (186–188). The main
cellular metabolic sensor, AMP-activated protein kinase (AMPK)
joins the cell energetic status with the cell-to-ECM adhesion and
the ECM deposition (186). In fact, AMPK has been reported to
inhibiting the expression of the integrin-binding proteins, tensin
1 and tensin 3 in several systems. Moreover, AMPK is able to
phosphorylate proteins of cell-to-cell adhesion, such as claudin 1,
claudin 4, and cingulin, enhancing the epithelial barrier and cell
polarity (186–188). Activation of AMPK induces the suppression
of the TGF-β1 signaling and prevents abnormal ECM remodeling
with excessive collagen synthesis deposition and tissue fibrosis
(189). Another important metabolic mediator involved in
ECM function is the yes-associated protein 1/transcriptional
coactivator with PDZ-binding motif (YAP/TAZ) pathway (190,
191). YAP/TAZ signaling integrates the energetic status to
adhesion on ECM and activation of YAP facilitates the cell
contact to a stiff ECM. Interestingly, YAP is also reported to
be involved in tissue regeneration and ISC activation. Upon
injuring conditions, ECM releases factors binding the integrin β1
and activating focal adhesion kinase (FAK)/Src pathway. Finally,
YAP/TAZ is triggered and leads to stem cell activation and
tissue repair (190–192). Furthermore, key regulators of lipids,
and carbohydrates metabolisms, such as PPAR-γ, mTOR, and
the adipokine leptin, are able to highly modulate ECM functions
(134, 149, 193, 194). Indeed, these molecules influence ECM
behavior acting on ECM-producing cells. Particularly, PPAR-γ
leads to a decrease of ECM proteins deposition exerting an anti-
fibrotic effect, while mTOR and leptin activate myofibroblasts
resulting in abnormal deposition of ECM, and the onset of the
fibrotic process (134, 149, 193, 194).

The intestinal mucosa is constantly subject to mechanical
stimuli that can activate molecular signals on the epithelial cells
and leads to alterations of the epithelium biology. Mainly two
forms of mechanical forces act on the intestinal wall: contractile
activities (i.e., peristalsis) and shear stress (due to the presence
of food, gas, and fluids) (192, 195, 196). These forces heavily
impact bowel morphogenesis. An interesting study conducted on
rat’s small intestine revealed that ECM fibers are organized as
two interwoven arrays running diagonally around the crypt wall:
one set clockwise and the other one set counterclockwise and
oriented at a range of angle± 30–50◦ (192, 195–197). This spatial
arrangement provides mucosa with the right flexibility to fit
stretch forces (192, 195–197). The ECM conveys this mechanical
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information to cells through an integrin network, activates focal
adhesion kinase (FAK) and the extracellular signal-regulated
kinase (ERK) signaling, finally leading to cell proliferation. Shear
stress and mechanical stretch were also reported to induce cyclo-
oxygenase-2 and other pro-inflammatory mediators [interleukin
(IL)-6, IL-8, and monocyte chemoattractant protein 1] (198).

Furthermore, a high impact on ECMdeposition is provided by
changes in the tensile forces and elasticity of the intestinal wall.
Indeed, a reduction of these parameters leads to alterations of
ECM physical properties, such as ECM stiffness. Tissue stiffness
is established by ECM composition and contraction, as well as
by ECM-producing cells (fibroblast, myofibroblasts, and smooth
muscle cells) contractility, under the control of the master
regulator TGF-β (63).

EXTRACELLULAR MATRIX AND
INTESTINAL STEM CELL NICHE

The ECM can undergo peculiar compartmentalization, creating
specialized tridimensional invagination in both the small and
large intestines, known as the crypt, the hub for stem cell
pool, allowing fast turnover (4–5 days) of the epithelium (185,
199–201). At the base of the crypt reside the intestinal stem
cells (ISCs), a heterogeneous group of cells nourished by a
surrounding cell niche. This niche, known as the intestinal stem
cells niche, acts in physiological epithelial tissue regeneration,
self-renewal, and differentiation other than in the repair of
intestinal mucosal epithelium after injury (199–201). Several
studies highlighted that ISCs are regulated by many signaling
pathways, mainly by Wnt, bone morphogenic proteins (BMPs),
and Notch signaling, involved both in physiologic and pathologic
conditions (202–205). Particularly, in ISCs, Wnt is involved in
the regulation of intestinal epithelial renewal in physiological
conditions, BMPs acts in the intestinal development and
the epithelial homeostasis, and Notch ensures that the crypt
compartment remains in an undifferentiated and proliferative
state during gut development (206–210). The ISC niche can
be described as a combination of physical and cellular niches
(2). The physical niche includes the complex network of ECM
proteins (i.e., fibronectins and collagens) that provides a crucial
scaffold to maintain the correct architecture of the intestine
(1, 211, 212) (Figure 3). The cellular niche is the stromal
microenvironment composed of all resident cells dipped in the
ECM. These cells included myofibroblasts, fibroblasts, smooth
muscle cells, endothelial cells, and pericytes that cooperated to
secrete several growth factors and matrix components that are
crucial for maintaining the homeostasis of ISCs by regulating
their proliferation and differentiation (73, 200, 213).

CONCLUSIONS

The intestinal ECM is a complex structure consisting of a
mixture of proteins, the glycosaminoglycan hyaluronan and
proteoglycans that interact to make a scaffold for the resident
cells. The core matrisome of the ECM consists of more
than 300 proteins, each of them with unique biochemical

properties conferring exclusive biological functions (5, 10). These
proteins give rise to distinct ECM compartments: the basement
membrane (BM) and the interstitial matrix (IM). The structural
proteins (collagens) in ECM provides a scaffold for the tissue
and mainly endures the tensile strength, limiting the stretching
of the organ. Glycoproteins (laminins, elastins, fibronectin, and
nidogens) are involved in the ECM assembly and cell-to-ECM
interaction by binding cell receptors as integrins. The PGs
(perlecan and decorin) and the GAG (hyaluronan) retain water
in the tissue, conferring hydration, and entrap growth factors
that influence cell behavior. The ECM contributes to establishing
a selective barrier to the external environment (5, 10). The
extracellular matrix is a dynamic structure frequently remodeled
by the orchestrated activity of degrading enzymes and their
inhibitors (10, 11, 90, 92). During this remodeling, ECM releases
growth factors affecting and regulating resident cell function and
finally ECM deposition. This cell-to-ECM crosstalk is pivotal for
the physiological homeostasis of the intestine, but the plethora
of mechanisms controlling this reciprocal communication are
not yet fully known. In this context, the extracellular vesicles
(EVs), which are complex phospholipidic structures (20 up
to 1,000 nm) released by prokaryotic and eukaryotic cells in
the biological fluids, appear to play an important role. During
their biogenesis, EVs acquire the molecular legacy of the donor
cells and can shuttle biological information far away from
the cells (214–219). For this reason, EVs are recognized as
a new means of intercellular and ECM-cell communication,
cooperating in the physiological and pathological regulation
in many organs (214, 220–223). In this context, intestinal
epithelial cells (IECs) produce EVs that can regulate the TGF-
β pathway, which is pivotal for intestinal homeostasis (224,
225). EVs released by IECs contain TGF-β that can bind its
receptor on target cells, but also carry the integrin αvβ6 that
induces the activation of the LTGF-β in ECM, releasing the
active factor. Metalloproteinases have also been described to
be shuttled by EVs exerting their activity, such as MMP-2,
−3, −9, −13, and −14 as well as TIMPs (TIMP-2) (225–
228).

All that we have described and shown in this ECM
overview is only a piece of a bigger and more complex
puzzle. The intestinal homeostasis is correctly prompted by a
multifaced interaction between different systems. One of the
main interlocutors is undoubtedly the intestinal microbiota, the
large mass of symbiotic commensal microorganisms presents
in the gut lumen. The presence of microorganisms strongly
regulates the health and physiology of the intestine, since
commensal bacteria, especially those attached to the mucous
surface, contribute together with the intestinal epithelium to
the integrity of the important intestinal barrier function. The
intestinal microbiota continuously interacts with the local
immune system, creating a mutually beneficial balance between
them. Interestingly, this interaction between the microbiota-
gut-immune system is partially modulated by EVs (219). Gut
microbiota physiologically produces numerous metabolites, such
as short-chain fatty acids and Krebs cycle anions which have
significant effects on the homeostasis of intestinal epithelial cells,
but also of ECM-producing cells and immune cells. Microbiota

Frontiers in Medicine | www.frontiersin.org 12 April 2021 | Volume 8 | Article 610189

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pompili et al. ECM in the Healthy Bowel

produce several proteases that can alter the barrier functions of
the intestinal mucosa.

Acute intestinal damage activates the acute inflammatory
response which, in turn, initiates the well-knownmucosal healing
processes mediated by the ECM remodeling. Unfortunately,
the factors and/or mechanisms that lead to an abnormal ECM
turnover in the course of chronic intestinal inflammation, which
is also responsible for complications that can develop over time,
such as intestinal fibrosis and intestinal cancer, are not yet
known. It is now established that disturbance of the fine-tuned
regulation of ECM remodeling is the cornerstone of several gut
diseases, including chronic inflammation, fibrosis, and cancer
(64, 67, 229, 230). Although huge steps in the knowledge of the
ECM have been made over the last decade, further investigations
are needed. Achieving complete knowledge of the various
components of the ECM and understanding the multitudes
of interactions and functions carried out by the intestinal
ECM structure represents an important objective to unravel the
mechanisms leading to the onset and the progression of several
intestinal diseases related to alteration ECM remodeling, such
as inflammatory bowel disease and its complications (intestinal
fibrosis and cancer).

The relevance of complete knowledge of the ECM is
underlying also by its increasing use in regenerative medicine,
an innovative area based on the use of tissue engineering,
stem cell biology, immunology, and bioengineering, to restore
damaged tissues (231–240). Biomaterials used for this purpose
may be distinct into synthetic and natural materials (231–
233). The latter can be obtained or using the entire ECM
or single components derived from ECM degradation such as
collagen, laminin, glycosaminoglycans, and fibronectin (233).
Among them, collagens and HA are the most widely used for

biological folders (231). In the gastrointestinal tract, biological
scaffolds represent a great promise as a new substrate to
promote tissue remodeling in situ and replace damaged areas
occurring for example during neoplasia and IBD and induce
partial restoration and function of the organ. In vivo studies
revealed that tubular porcine small intestine submucosa (SIS)
bio-scaffold implantation can regenerate mucosa and smooth
muscle in a damaged tissue after ileostomy (235). Few months
after implantation, the neo-intestine presented restoration of
the mucosa, smooth muscle, and serosa layers. Similarly,
other authors reported that SIS bioscaffolds induced intestinal
regeneration in an animal model of celiotomy (236). Following
implantation, epithelium barrier renewal and regeneration of
mucosa and submucosa layers were observed. ECM-derived
scaffolds have proved to be effective also in the large intestine
tract. Indeed, SIS biomaterials modulate the immune response
in a rat model of colitis, reducing the local secretion of
pro-inflammatory cytokines and enhancing the recovery of
the colonic mucosa (237). Those mentioned are only a few
examples of ECM bioscaffolds applications, but well-showed the
importance of this innovative frontier, which could represent
a promising therapeutic approach in many unresolved diseases
(238, 239).
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