
REVIEW
published: 24 March 2021

doi: 10.3389/fmed.2021.611036

Frontiers in Medicine | www.frontiersin.org 1 March 2021 | Volume 8 | Article 611036

Edited by:

Konstantinos Thomas,

University General Hospital

Attikon, Greece

Reviewed by:

George Lazaros,

Hippokration General Hospital, Greece

Christos Koutsianas,

National and Kapodistrian University

of Athens, Greece

*Correspondence:

Marawan Abu-Madi

abumadi@qu.edu.qa

Specialty section:

This article was submitted to

Rheumatology,

a section of the journal

Frontiers in Medicine

Received: 28 September 2020

Accepted: 07 January 2021

Published: 24 March 2021

Citation:

Abdallah AM and Abu-Madi M (2021)

The Genetic Control of the Rheumatic

Heart: Closing the

Genotype-Phenotype Gap.

Front. Med. 8:611036.

doi: 10.3389/fmed.2021.611036

The Genetic Control of the
Rheumatic Heart: Closing the
Genotype-Phenotype Gap
Atiyeh M. Abdallah and Marawan Abu-Madi*

Biomedical and Pharmaceutical Research Unit, Department of Biomedical Sciences, College of Health Sciences, QU Health,

Qatar University, Doha, Qatar

Rheumatic heart disease (RHD) is a heritable inflammatory condition characterized by

carditis, arthritis, and systemic disease. Although remaining neglected, the last 3 years

has seen some promising advances in RHD research. Whilst it is clear that RHD can

be triggered by recurrent group A streptococcal infections, the mechanisms driving

clinical progression are still poorly understood. This review summarizes our current

understanding of the genetics implicated in this process and the genetic determinants

that predispose some people to RHD. The evidence demonstrating the importance of

individual cell types and cellular states in delineating causal genetic variants is discussed,

highlighting phenotype/genotype correlations where possible. Genetic fine mapping

and functional studies in extreme phenotypes, together with large-scale omics studies

including genomics, transcriptomics, epigenomics, and metabolomics, are expected

to provide new information not only on RHD but also on the mechanisms of other

autoimmune diseases and facilitate future clinical translation.

Keywords: rheumatic heart, autoimmune diseases, group A streptococcus, exome sequencing, genetic

association

INTRODUCTION

Acute rheumatic fever (ARF) is a systemic autoimmune disease that can develop after upper
respiratory tract infection with group A Streptococcus (GAS). Recurrent rheumatic fever and
associated sustained and abnormal inflammatory responses damage the heart valves, leading to
rheumatic heart disease (RHD) (Figure 1) (3). RHD remains a common cause of acquired heart
disease in young adults and children in many developing countries and, to a lesser extent, in
developed countries (4, 5). Globally, GAS upper respiratory tract infections are only exceeded
by HIV, tuberculosis, and malaria in terms of consequent morbidity and mortality (1). In 2015,
an ∼33 million RHD cases worldwide were reported, leading to over 300,000 deaths and over
10 million disability-adjusted life years (4). Despite these figures, the research community and
health policymakers generally neglect RHD, which received the lowest research funding relative
to global disease burden over the last 5 years (6). Moreover, RHD is rarely discussed in the context
of autoimmune disease in the literature.

ARF can present with several different symptoms a few weeks after a GAS episode. Rheumatic
fever can be diagnosed based on the Jones criteria, developed in 1944, and then revised in 1992 and
in 2015 by the American Heart Association (AHA) (Table 1) (7). ARF can be grouped into three
main symptom constellations: musculoskeletal, cardiac, and neuropsychiatric. Fever is the most
common presentation (>90% of patients), followed by arthritis (60–80% of patients). However, the
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FIGURE 1 | A schematic showing the possible pathogenic pathways giving rise to rheumatic heart disease (RHD) after group A streptococcal (GAS) infection. (A)

RF/RHD is thought to be initiated by infection with rheumatogenic strains of GAS. A strong familial predisposition and the fact that only 60% of ARF patients develop

RHD (1) indicate that the disease may only develop in those who are genetically predisposed. Genetic factors reported in RHD are mainly in immune response

components including innate immunity genes. (B) Recurrent GAS infection leads to the development of autoreactive T cells and the production of cross-reactive

autoantibodies. Recently, inflammasome activation has been shown to play an important role in the development of autoreactive T cells through persistent release of

IL-1β (2). (C) Recruitment of autoreactive immune cells and cross-reactive autoantibodies to the valve interstices cause tissue damage. Recurrent and prolonged

inflammation cause ongoing tissue damage, tissue fibrosis, and calcification. Figure was generated using Biorender.com.

TABLE 1 | Revised Jones criteria for rheumatic fever diagnosis [adopted from (7)].

Low risk population High risk population

Major criteria

Carditis (clinical or subclinical) Arthritis

– only polyarthritis Chorea Erythema

marginatum Subcutaneous nodules

Carditis (clinical or subclinical) Arthritis

– monoarthritis or polyarthritis

Polyarthralgia Chorea Erythema

marginatum Subcutaneous nodules

Minor criteria

Polyarthralgia Hyperpyrexia (≥

38.5◦C) ESR ≥ 60 mm/h and/or CRP

≥ 3.0 mg/dl Prolonged PR interval

(after taking into account the

differences related to age; if there is

no carditis as a major criterion)

Monoarthralgia Hyperpyrexia (≥

38.0◦C) ESR ≥ 30 mm/h and/or CRP

≥ 3.0 mg/dl Prolonged PR interval

(after taking into account the

differences related to age; if there is

no carditis as a major criterion)

ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.

most serious manifestation of ARF is carditis, which causes
scarring and sometimes thickening of the valves, leading to
permanent valvular damage that contributes to themorbidity and
mortality of the disease. Some ARF patients have asymptomatic
episodes, hence exposing the patients to more severe damage
(8). Anywhere between 35 and 76% of ARF patients develop
carditis (9, 10), predominantly left-sided, with the mitral valve
affected in almost 100% of younger patients, followed by the
aortic valve in 20–30% of cases and the tricuspid valve in 15–40%
of cases (10). The right heart valves are nearly always affected
in association with mitral or aortic disease and pulmonary
valve is rarely affected. It remains unclear why particular valves
are targeted in different individuals. Sydenham’s chorea is the
neuropsychiatric manifestation of ARF and is characterized
by involuntary movements of the limbs and trunk (11). In
∼20% of patients, chorea is the first disease manifestation, and
while it may resolve over a few months in some patients it

can last for several years, with mitral stenosis a common late
complication (12).

The molecular mechanisms underpinning the progression
of ARF to RHD are poorly understood. An autoimmune
response initiated by molecular mimicry is the most commonly
proposed mechanism (13), since the GAS M protein and
human proteins such as cardiac myosin show structural
similarities, leading to antibody cross-reactivity and cellular
immune responses to human tissue (14). Cross-reactivity may
not be the mechanism of progression, since autoantibodies have
been detected in healthy individuals and cardiac myosin is
not expressed at the cell surface (15). Approximately 60% of
ARF patients develop RHD (1), and although there is a proven
association between GAS infection and RHD, the triggered
autoimmune process in RHD can occur autonomously after
removing the stimulus (10), suggesting that after initiation
of the autoimmune response via molecular mimicry, host
factors, most likely genetic factors, play an important role in
disease progression in susceptible individuals. This hypothesis is
supported by multiple strands of evidence. First, monozygotic
twins are highly concordant for the disease compared to
dizygotic twins (44 vs. 12%, respectively), although these
findings date to studies reported between 1933 and 1964 (16).
Second, a strong familial predisposition for ARF has been
noted, and the estimated heritability based on twin studies
is 0.6 (95% CI 0.41–0.81), similar to the heritability of other
autoimmune genetic disorders (17). Third, GAS outbreaks (18)
and endemic exposure to GAS in indigenous populations (19)
show that only 3–6% of individuals develop ARF, indicating
that the disease may only develop in those who are genetically
predisposed (20). Finally, a number of susceptibility loci have
now been reported, mainly in immune-related genes and
including both human leucocyte antigen (HLA) (Table 2) and
non-HLA genes (35). This article summarizes the known
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TABLE 2 | Some of the HLA class II alleles reported to be associated with ARF/RHD in different populations, illustrating the complex landscape of the disease.

Study HLA allele Role: Risk (↑) or

Protective (↓)

RF or RHD Population No. of

participants

Method References

1 DQB1*0601 ↑ RHD Australia Indigenous 398 pt GWAS (21)

DQA1*0301 ↓ 865 Ctrl

DRB1*0803 ↑

DQA1*0101_DQB1*0503 (Hap) ↑

DQA1*0103_DQB1*0601 (Hap) ↑

DQA1*0301-DQB1*0402 (Hap) ↓

2 DRB1*04-DQA1*03 (Hap) ↓ RF Turkey 55 Pt

50 Ctrl

PCR-SSP (22)

3 DRB1*01, DRB1*04, DRB1*07

and DQB1*02 DRB1*13

↑ (trend)

↓

RHD Turkey 100 Pt

100 Ctrl

PCR-SSP (23)

4 DRB1*07 DRB1*11 ↑

↓

RF/ RHD Turkey 173 pt

130 Ctrl

PCR-SSP (24)

5 DQB1*08 DRB1*01 ↑

↓

RHD Turkey 85 Pt

85 Ctrl

PCR-SSP (25)

6 DRB1*15, DRB5 (DRB1*05)

DRB1*04 (DRB4)

↑

↓

RHD Turkey 47 Pt

47 Ctrl

PCR-SSP (26)

7 DRB1*07-DQA1*02 (Hap) ↑ RHD Egypt 88 Pt

59 Ctrl

PCR-SSP (27)

8 DRB1*0402, DRB1*1001 ↑ RHD Egypt 100 Pt

71 Ctrl

INNO-LiPA Kit (28)

9 DRB1*07-DQB1*04 (Hap)

DRB1*07-DQB1*03 (Hap)

DRB1*06-DQB1*06 (Hap)

↑

↑

↓

RHD Latvia 70 Pt

100 Ctrl

PCR-SSP (29)

10 DQA1*0104 DQB1*05031 ↑

↑

RHD Japan 72 pt

525 Ctrl

PCR (30)

11 DRB1*07 ↑ RHD Pakistan 114 Pt

109 Ctrl

PCR-SSP (31)

12 DR11 (DRB1*11) DR1 (DRB1*01) ↑

↓

RHD Uganda 96 Pt

103 Ctrl

PCR-SSP (32)

13 DRB1*15 ↑ RHD South Indian 56 pt

254 Ctrl

PCR-SSP (33)

14 DRB1*16-DQA1*05-DQB1*03

(Hap)

↑ RHD Mexico 98 Pt

99 Ctrl

PCR-SSP (34)

RF, rheumatic fever; RHD, rheumatic heart disease; Hap, haplotype association; Pt, patients; Ctrl, control; PCR-SSP, Polymerase chain reaction sequence-specific primers. For HLA

class I associations, see Martin et al. (18).

genetic associations with RHD and discusses their role in
disease pathogenesis and their potential for risk prediction
and prevention.

SEARCH STRATEGY AND SELECTION
CRITERIA

References for this Review were identified through searches
of PubMed with the search terms “rheumatic heart,” “wide
genome association,” “single nucleotide polymorphism,” and
“onset” from 1990 until July, 2020. Only papers published in
English were reviewed. The final reference list was generated
on the basis of originality and relevance to the broad scope
of this Review. We would like to stress that this is not a
systematic Review.

THE GENETICS OF RHD

RHD is not a single gene disorder rather a complex multifactorial
disease arising from the interaction between multiple genetic
factors, GAS infection, and the resulting uncontrolled
inflammatory response (Figure 1). Each of these genetic factors
individually confers a small risk and explains a small fraction
of disease heritability. Over the last few decades, genome-wide
association studies (GWAS) have been the major tool used to
identify genetic loci that predispose to different complex diseases.
Interestingly, many of the identified susceptibility loci in RHD
are clustered in key immunological pathways and are shared with
other autoimmune diseases, showing evidence of natural positive
selection due to their contribution to fighting infectious diseases
during evolution (36–38). However, only three GWAS have
been performed in RHD patients, with most other associations
detected in candidate gene studies of small numbers of genes
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TABLE 3 | Summary of the three GWASs in different RHD populations.

GWAS1 GWAS2 GWAS3

Population studied Oceanian countries Aboriginal Australians South Asians & Europeans

Number of patients/control First cohort (607 cases; 1,229

controls). Second cohort (399 cases;

617 controls)

398 RHD cases; 865 controls First cohort (672 cases; 491 controls from

South Asians). Second cohort (150 cases;

1,309 controls from UK Biobank)

Platform used Illumina HumanCore-24 BeadChip Illumina HumanCoreExome BeadChips. For the first cohort: Illumina

HumanCore-24 BeadChip For the

second cohort: the UK Biobank Axiom

Array (Affymetrix)

Identified signals IGHV4-61 gene HLA-DQA1 locus HLA class III, HLA class I (HLA-B) and HLA

class II (HLA-DQB1)

Role Risk allele IGHV4-61*02 Risk haplotypes:

DQA1*0101_DQB1*0503 and

DQA1*0103_DQB1*0601

Protective haplotype:

DQA1*0301-DQB1*0402

All risk alleles

Reference (39) (21) (40)

known to be functionally linked to RHD. Although important
genes have been shown to be associated with RHD using the
candidate-based approach, it has been difficult to successfully
validate the results in different populations.

Screening the Genome: HLA and IGH
Associations
Data from the three GWASs performed in RHD patients detected
associations in HLA and immunoglobulin heavy (IGH) loci
(Table 3). The Pacific Islands Rheumatic Heart Disease Genetics
Network performed the first GWAS in RHD in 2017 (39),
which examined 1006 indigenous people in different Oceanian
countries using the 300k Illumina HumanCore platform, which
is considered a low-density GWAS chip. The authors justified the
use of low-density GWAS by predicting that fewer variants would
be needed due to linkage disequilibrium in Oceanian populations
stretching over greater distances than in any other population.
A novel susceptibility signal was identified in the IGH locus;
the IGHV4-61∗02 allele was associated with a 1.4-fold increased
disease risk (odds ratio (OR) 1.43; 95% CI 1.27–1.61; p = 4.1 x
10−9), regarded as a small to moderate effect (41). The IGH locus
is a difficult region to study, as knowledge of its polymorphisms
is limited and it is poorly tagged in current arrays; indeed, only
16 genotype variants were included in this study out of the
entire 1,255 kilobase locus. However, the discovery of genome-
wide significance of a specific gene segment is a very important
step forward to understanding the immunogenetic background
of RHD.

The second genome-wide association study focused on the
indigenous population of Australia using the 550K Illumina
Infinium HumanCoreExome platform (21). By screening 398
RHD cases, the authors identifiedHLA-DQA1 (rs9272622; OR=

0.897; p = 1.86 × 10−7, for protective allele C) as the strongest
association. HLA-DQB1∗0601 (OR = 1.07; p = 4.06 × 10−4)
was also identified as a risk allele, and HLA-DQA1∗0301 (OR
= 0.92; p = 2.71 × 10−4) was identified as protective. Two
risk haplotypes were identified [HLA-DQA1∗0101-DQB1∗0503

(OR 1.44) andHLA-DQA1∗0103-DQB1∗0601 (OR 1.27)] and one
protective haplotype [HLA-DQA1∗0301-DQB1∗0402 (OR 0.3)].
The study also identified HLA-DRB1∗0803 (OR = 1.06; p =

0.005) as a susceptibility locus.
The third GWAS study was of a combined Indian (510 cases)

and Fijian (162 cases) population, which was then confirmed
in a third population from the UK (150 cases) (40). The
strongest signal (rs201026476) in this study was found in the
3’ untranslated region of the PBX2 gene sited in HLA class
III. The second signal was in a regulatory single nucleotide
polymorphism (SNP) in HLA-DQB1, and the third strongest
signal was in HLA class I (HLA-B). The signal in PBX2 was
believed to have a regulatory element, and the authors speculated
that it may influence the expression of other HLA class III
genes including complement genes such as C2 and C4. These
genes and complement pathways have been proposed to play an
important role in the inflammatory response in RHD patients
(42). Interestingly, after conditional analysis, the HLA class III
signal remained associated with RHD, indicating that the effect
of rs201026476 is independent of class I and class II.

The association between RHD and HLA alleles has been
reported in other small candidate marker studies. Table 2

summarizes HLA class II alleles reported to be associated
with ARF/RHD in different populations. Interestingly an HLA-
DQA1∗0104 andDQB1∗0503 association with RHDwas reported
in Japanese RHD patients (30). To our knowledge, HLA-
DRB1∗08 has not previously been reported, but HLA-DRB1∗07
was reported to be a risk allele in small studies of Turkish,
Pakistani, and Latvian populations (24, 29, 31). Interestingly,
in an Egyptian population, the DRB1∗07-DQA1∗02 haplotype
was associated with the mitral valve lesion subgroup of the
disease (27). Other reported risk alleles include DRB1∗01,
DRB1∗13, DRB1∗15, and DQB1∗08 [reviewed in (43)]. Some
other HLA alleles have been reported to be protective of the
disease, with examples including DRB1∗04-DQA1∗03 in Turkish
patients and DRB1∗06-DQB1∗06 in Latvian patients (24, 29).
In the Australian indigenous population, the HLA-DQA1∗0301

Frontiers in Medicine | www.frontiersin.org 4 March 2021 | Volume 8 | Article 611036

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Abdallah and Abu-Madi RHD Genetic Associations

and HLA-DQA1∗0301-DQB1∗0402 haplotypes were identified
as protective.

These heterogeneous results demonstrate the challenge
of translating genetic findings into clinically meaningful
associations. Intriguingly, the genome-wide study on the
indigenous Australian population did not replicate the IGHV4-
61∗02 association found in the Oceanian populations. However,
both populations are indigenous, and genetic heterogeneity
may have affected the results. Alternatively, the variable results
may represent different exposures to different GAS strains with
varying interactions with protective or risk-associated HLA
alleles. Additionally, epistasis between HLA alleles and non-
HLA variants may explain some of the discrepancies (44, 45).
In general, the HLA and IGH associations may support the
molecular mimicry hypotheses as one of the mechanisms of
pathogenesis in RHD, albeit in indigenous populations.

Candidate Genes
The candidate gene approach relies on forming biological
hypotheses to predict the potential gene or locus for investigation.
However, when the exact mechanism of the disease is
unknown, this method may not identify its full genetic
basis. Nevertheless, candidate gene case-control approaches
have identified important genetic loci associated with different
autoimmune diseases and have shed light on their molecular
mechanisms. Relatively few candidate gene studies have been
reported in RHD compared to other autoimmune diseases, and
most associations remain invalidated in independent populations
[reviewed in (46)]. In this section, we discuss some of these
reported loci.

As post-infection autoimmune diseases involve a persistent
inflammatory reaction, tumor necrosis factor-α (TNF-α) was
one of the earliest genes to be studied in RHD, showing strong
associations in different populations. A meta-analysis of seven
studies including 735 RHD cases and 926 controls from seven
different populations showed that the TNFA-308A allele was
associated with the disease (OR 3; 95% CI 1.2–10.6; p = 0.02)
(47). However, it is unknown whether this association is due
to linkage disequilibrium (LD), the correlation between nearby
variants, with HLA class I and II. HLA class II and class III
are in high LD, so fine mapping of this region is important to
identify causative variants. Interleukin (IL)10 is another immune
modulatory gene that has been studied in RHD patients from
different populations and other autoimmune diseases. Three
promoter polymorphisms in IL10 (-1082A/G, -829C/T, and -
592C/A) have been particularly well examined. The IL10-ACC
promoter haplotype, associated with increased IL-10 production,
has been shown to be a protective locus in RHD (OR = 0.6,
95% CIs 0.4–0.9; p = 0.01) (48). However, a meta-analysis of
three different populations found that this locus shows only a
non-statistically significant trend toward protection against RHD
(OR = 0.70, 95% CIs 0.47–1.05; p = 0.08) (49). The angiotensin
I-converting enzyme gene insertion/deletion polymorphism is
another example of a locus showing different associations in
different populations (50, 51). A recent meta-analysis of nine
studies including 1333 RHD cases and 1212 controls from seven

different populations showed no correlation with the disease or
disease subtypes (52).

A few more genes have been linked to RHD in different
studies, but there are currently no meta-analyses to confirm or
reject these findings. Macrophage migration inhibitory factor
(MIF) promoter polymorphisms -173C and -794 (5-8 CATT
repeats) have been associated with RHD age of onset in
a Saudi Arabian population (53). The C allele at−173 was
associated with higher MIF expression in T cell lines (54).
In vitro and in vivo studies found that a greater number of
CATT repeats is associated with higher gene expression (55,
56). Interestingly, these promoter polymorphisms had a dual
impact on the development of RHD in the studied population.
The -173C allele was associated with reduction in RHD risk
and later disease onset, the -794 CATT6 allele was associated
with increased risk, and the -794 CATT5 allele was associated
with reduced risk. The dual influence of these alleles on other
autoimmune diseases has previously been reported. In systemic
lupus erythematosus (SLE), higher expression MIF alleles (173C
and 794 extended alleles) were associated with a lower disease
risk (57). However, lower expression alleles were associated with
reduced end-stage organ involvement (58). Recently, MIF was
reported to have a regulatory effect on IL-1β production via
the NLRP3 inflammasome (59). Mononuclear cells derived from
ARF patients peripheral blood were shown to have persistent
production of IL-1β after GAS infection, which was suppressed
after hydroxychloroquine treatment (2). These new findings open
up new avenues for research on the role of inflammasomes in
RHD and perhaps targeting the pathway therapeutically (2).

IL17 is another immune-potent gene recently found to be
associated with RHD. IL-17, also called IL-17A, is released by a
subset of T helper cells known as Th17 cells. The IL17 promoter
polymorphism (rs2275913), which has been linked to other
autoimmune diseases, was associated with RHD in patients from
India (OR 2.76; p = 0.021). Interestingly, this association was
linked to mitral valve lesions (OR 2.74; p = 0.039) (60). The
IL17 rs2275913-A allele was associated with higher expression of
IL-17 (61). Wang et al. showed that IL-17 is needed to protect
the host from GAS (62). On the other hand, prolonged and
excessive Th17 exposure can cause valvular damage by enhancing
neutrophil infiltration (63). IL-17 activates endothelial cells via
the p38 MAPK pathway, which in turn induces the expression
of several molecules such as VCAM and ICAM (64), which have
important roles in the migration of different immune cells to the
heart, particularly to the valves (65). However, the role of tissue-
specific Th17 cells in heart and valvular tissue damage or repair
has yet to be defined (66).

Another important pathway implicated in RHD is the lectin
pathway, which includes mannose binding lectin-2 (MBL2),
ficolin-1 (FCN1), and ficolin-2 (FCN2) [for a comprehensive
review, see Beltrame et al. (42)]. FCN2 promoter polymorphisms
(−986/−602/−4 GGA) have been linked to low protein levels
and an increased risk of RHD (OR 1.6, p = 0.02), and
the AGA haplotype was protective of the disease (67). FNC1
promoter polymorphisms (−1981A, 542A, −144A, and -33T)
were associated with increased gene expression and were
protective; however, two alleles (−1981A and −144A) increased
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the risk of developing valvular stenosis and mitral insufficiency
(OR 0.75, p = 0.009 and OR 3.37, p = 0.027, respectively)
(68). The authors proposed that alleles associated with increased
production of FCN1 may help to eliminate the infection;
however, prolonged inflammation under the influence of these
alleles may cause tissue damage. This dual role of FCN1, similar
to the dual role of MIF, highlights the complexity of the gene-
environment interaction in RHD after GAS infection.

APPROACHES FOR DETERMINING RHD
DISEASE VARIANTS

Large scale omics studies including genomic, transcriptomic,
epigenomic, and metabolomic approaches combined with
advanced computational approaches are now providing
information about the mechanisms of many infectious,
autoimmune, and rheumatic diseases (69). Unfortunately, very
few such studies have been performed in RHD. Nevertheless,
the last two decades have seen a huge amount of “big” omics
data generated in many other rheumatic autoimmune diseases
(70) sharing many features with RHD such as symptoms and
progression. In addition, rheumatic autoimmune diseases share
many disease genetic variants, a phenomenon called pleiotropy.
Therefore, the results of rheumatic autoimmune disease studies
can be utilized for further investigation in RHD and may lead to
potential drug repositioning (71, 72).

GWAS have successfully identified important genomic
regions for rheumatic autoimmune diseases, and advances
in array design and statistical approaches have significantly
increased the power of GWAS. For example, several studies
have used fine mapping to identify likely causative variants
from GWAS using a combination of genotyping arrays with
specific sets of SNPs and statistical approaches to define a smaller
group of SNPs that are statistically causative. This has allowed
researchers to focus on this group of SNPs, known as credible sets,
for further functional studies. In a recent study, Immunochip
arrays were used to identify rheumatoid arthritis (RA) risk
markers in African American patients (73). However, GWAS
mapping precision, that is the physical distances between the
top associated variant and the causative variants, is limited, as
each locus identified by GWAS is co-inherited (in LD) with
other genes, regulatory elements, or non-coding transcripts. Fine
mapping by imputation following genotyping arrays, where all
variants are statistically inferred from the reference genome,
provides a cost-effective strategy to identify many disease alleles.
Wu et al. (74) showed that imputation strategies are comparable
to whole genome sequencing (WGS)-based approaches for
common variants but not for rare variants. This was mainly due
to that fact that rare variants are not adequately presented in the
reference panels such as the 1000 Genome Project, HapMap, and
1000 UK Genomes. Moreover, samples representing populations
from developing countries are not sufficiently represented in
these panel sets, so rare causal variants for diseases common in
these countries, such as RHD, may not be present. WGS-based
approaches can overcome the imputation approach limitations.
In amultinational study, van Rheenen et al. identified a novel rare

functional variant associated with amyotrophic lateral sclerosis
using WGS-based GWAS (75). Although this approach is the
current method of choice for association studies in large research
centers, it is rarely applied in developing countries due to its
prohibitive cost. Furthermore, it has been recommended that the
usual GWAS statistical significance threshold of an observed p-
value <5 x 10−8 should be increased to 5 x 10−11 (74), which
requires large numbers of participants.

Whole exome sequencing (WES) has been increasingly
applied to study rare variants in different autoimmune diseases
due to its low sequencing cost. For example, by dividing
sarcoidosis patients into groups based on HLA markers, rare
variants were detected by WES in a limited sample size,
which were associated with prognosis (76). HLA subgrouping
helps to reduce genetic heterogeneity. Moreover, applying WES
on individuals with extreme phenotypes increases the study
power by increasing the number of relevant functional variants
in the study, thereby increasing the probability of detecting
new associations (77). This successful identification of disease-
causing variants using WES is due to the fact that the low
frequency variants are enriched in exonic regions (78). However,
variations in regulatory elements influence gene expression in
many immune cells in autoimmune diseases (79), and the
majority of confirmed disease-associated loci in autoimmunity
are non-coding variants (80). It has been estimated that up
to 80% of the genome is responsible for gene regulation (81).
Traditional WES approaches do not cover these elements, but
extended exome sequencing has been used to identify these
elements (82). This approach helps to reduce costs and covers all
possible important regions in autoimmune conditions. However,
to really understand how these regulatory elements contribute to
autoimmune diseases, we need to understand how these elements
regulate gene function at the cellular level (83).

Once a regulatory element has been associated with a
complex disease, follow-up experiments are often conducted
to understand the mechanism by which the variants influence
phenotype. As an initial step, researchers carry out gene
expression and DNA methylation and histone modification
studies in various cell types. Genetic variants that influence
gene expression level are called expression quantitative trait loci
(eQTLs). eQTLs are classified according to their location (local or
distant) or mode of action (cis or trans) [for a review, see (84)].
eQTLs are influenced by the environment, and some eQTLs
behave differently under different conditions (85). Therefore,
an important aspect of eQTL studies is to correlate the genetic
locus with the correct cell type in the correct activation state in
both health and disease. Although cell separation techniques may
affect cellular status, they have provided relevant information
regarding gene expression (known as transcript abundance) in
many cases (86, 87). An interesting new approach is single-
cell eQTL and the establishment of the Single-cell eQTLGen
Consortium (sc-eQTLGen), which aims tomap the upstream and
downstream interactions of disease-related eQTLs in individual
immune cell types (88). Unfortunately, in RHD, the immune
cells most relevant to its pathogenesis remain unknown. In
a recent study, Kim et al. reported disruption in the IL-1β
granulocyte-macrophage colony-stimulating factor (GM-CSF)
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cytokine pathway in peripheral blood mononuclear cells from
rheumatic fever patients stimulated with heat-inactivated GAS
strains and studied gene expression in these cells (89). They
identified hydroxychloroquine as an adjunctive therapy that
might limit the dysregulation of this pathway. Further work to
identify disease-causing pathways using specific cell populations
might provide accurate insights into disease pathogenesis and
correlations between gene expression and genetic variants.

FINAL REMARKS AND CONCLUSIONS

In the COVID-19 era, it is becoming even more important to
identify pleiotropic immune mechanisms in rheumatic diseases
since there may be shared mechanisms and pathways that
are exploitable from the therapeutic perspective (90). The
environmental trigger for autoimmunity in RHD is known;
however, the inflammatory processes that occur after the
infection and lead to RHD are still not well-understood.
Understanding these processes at the cellular and molecular
levels is crucial to deciphering RHD pathogenesis. In the
last 3 years, while we have seen some advances in RHD
genetics, GWAS studies have provided inconsistent results.
One explanation is that these studies were mainly carried
out in indigenous populations and trans-ethnic differences
influence disease mechanisms. Another important factor is the
widespread diversity of GAS strains, which may evoke different
immune signaling pathways. Establishing which cytokine and
cell signaling pathways are dysregulated in specific cell types
in a specific ethnic population and the identification of the
genetic variants that cause these processes are required to gain
further insights into the immunological mechanisms of RHD.
Exome sequencing and fine mapping will produce robust results.
However, the lack of reference control data from different
developing countries will challenge the identification of rare

variants. Population genome project initiatives in developing
countries and the Middle East, such as Qatar Genome (91), are
expected to provide good reference data to help with these efforts.

Future studies should focus on understanding the function
of any discovered variant through transcriptomic, epigenomics,
proteomics, and metabolomics studies. Transcriptomic studies
will define new disease pathways and pathogenic cell types,
while epigenomic studies will link genetic promoters and
enhancers with target genes. In rheumatic diseases, different
cells play different roles; therefore, it is important to identify
pathologically important immune cells. Single-cell technologies
combined with advanced computational approaches and/or
machine learning developed over the last decade have enabled
integrative analysis of single-cell multi-omics data in different
immunological diseases (92, 93). Future RHD studies will
require collaboration between wet lab scientists, clinicians, and
computational biologists to validate associations. Moreover,
sequencing individuals with extreme phenotypes such as early
disease onset will help to detect the strongest and most
precise genetic associations. An important lesson emerging from
other rheumatic diseases is that genetic associations influence
disease phenotype and not only generic disease susceptibility.
Therefore, detailed and accurate clinical phenotyping would also
be helpful to identify new genetic factors that may influence
disease progression and the underlying mechanisms. Pursuing
this course will open up new avenues for early diagnosis, new
therapeutic targets, and vaccine development.
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