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Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically

relevant events through machine learning models has gained particular attention. In the

present perspective, we provide a brief, clinician-oriented vision on the following relevant

aspects concerning the use of machine learning predictive models for the early detection

of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on

the development of prediction models; (ii) the choice and availability of input features;

(iii) the measure of the model performance, the output, and their usefulness in the

clinical practice. The increasing involvement of artificial intelligence and machine learning

in health care cannot be disregarded, despite important pitfalls that should be always

carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to

enrich our understanding in the application of machine learning techniques for the early

recognition of sepsis may show potential to augment medical decision-making when

facing this heterogeneous and complex syndrome.

Keywords: sepsis, machine learning, artificial intelligence, early diagnosis, supervised learning, unsupervised

learning

INTRODUCTION

Sepsis, defined as a life-threatening organ dysfunction caused by a dysregulated host response to
infection, is a major cause of death worldwide (1–5).

Sepsis is a complex and evolving concept: (i) complex, because it involves two different actors
(the infection and the host response) and their relative contribution to the organ damage may vary
across patients and over time in the same patient (6, 7); (ii) evolving, because various definitions
have been developed and adopted over the last years, reflecting the complexity of the elusive concept
to be defined. Although the evolution of the concept of sepsis could reflect a positive trajectory
aimed to provide more precise definitions for both clinical and research purposes, the long-lasting
process of defining sepsis has led to the use of different terminology and definitions across research
studies (8, 9). As a consequence, this has reduced the comparability of study results, and also
hindered a smooth development of predictive models of sepsis. Nonetheless, the development
of good predictive models of sepsis remains a timely topic, since it would help clinicians to
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readily identify patients at higher risk of (or likely to already have)
sepsis, thereby allowing close monitoring and/or early treatment
(thereby potentially reducing mortality) (10).

Prediction of sepsis through the use of machine learning
models has gained particular attention over the past few years
(11–17). In the present perspective, we provide a brief clinician-
oriented vision on some relevant aspects concerning the use of
machine learning predictive models for the prediction of sepsis in
the daily practice. In particular, although predictive models may
be developed for either prediction sensu stricto or early detection
(i.e., as early diagnostic tools), we will mainly focus on the ability
of these tools to early detect patients with sepsis.

METHODS

On 25 July 2020, we performed a PubMed search using
the following key words: “sepsis” AND “machine learning.”
Reference lists and abstracts of the pre-screened 189 studies were
manually checked, using an iterative approach, and selected for
potential eligibility. Selected full texts and pertinent references
were further reviewed, with the ultimate decision on inclusion
being based upon authors’ judgment. Of note, additional
searches through PubMed and Google Scholar performed on
23 December 2020 led to the evaluation of 18 additional full
texts for potential inclusion. The final text was structured in
the following sections: (i) brief introduction on prediction of
clinical events through machine learning models and the need
for a multidisciplinary approach; (ii) the controversy of sepsis
definition and its influence on the development of prediction
models; (iii) the choice and availability of input features; (iv)
the measure of the model performance, the output, and their
usefulness for clinicians; (v) limitations and conclusions.

Brief Introduction on Prediction of Clinical
Events Through Machine Learning Models
and the Need for a Multidisciplinary
Approach
Through machine learning algorithms, computers are conferred
the ability to learn from data (18, 19). Conceptually, machine
learning, which is a branch of artificial intelligence, is different
from standard computer expert systems for helping clinicians
in daily decision making (20). Indeed, the latter are explicitly
programmed to perform a given task, whereas machine
learning algorithms are more generally programmed to find
out associations. For example, in supervised learning, an
outcome (e.g., sepsis), is predicted through calculations starting
from input features (e.g., patient demographic and clinical
characteristics). Notably, the outcome and the input of machine
learning algorithms may also represent the dependent and
independent variables of classical statistical predictive models.
Not surprisingly, there is an important conceptual overlap
between classical statistics and machine learning techniques (21).
A difference in their continuum may rely on the fact that
some machine learning algorithms could be able to find out
composite features not easy or impossible to be defined by
humans. In turn, this may improve the accuracy of prediction

(22). However, this also fuels the issue of the interpretability of
the model, with computations that may become less transparent
and not completely explainable once results are produced (23).
In turn, this may hamper recognition of biases, thereby leading
to additional ethical and legal implications connected to the use
of machine learning techniques in healthcare (24–26).

In addition, it should be also taken into consideration that the
field of machine learning is closely connected with the concept
of “big data,” since, at least in general, the possibility of including
complex features in prediction models requires far larger samples
than those usually employed in classical prediction studies (22,
27). Therefore, the possible future availability of large datasets of
medical data from electronic medical records (EMR), laboratory
databases, and vital signs monitors will inevitably require a
multidisciplinary approach. This would guarantee standardized
extraction of data, data security, interpretability or sufficient
explanation of employed machine learning models, extrapolation
of useful outputs from a clinical perspective, and full compliance
to all the most updated ethical and legal laws and regulations.
This will also apply to the prediction of sepsis, both for research
studies and for real-time prediction at the bedside in the daily
clinical practice.

The Controversy of Sepsis Definition and
Its Influence on the Development of
Prediction Models
According to the recent Sepsis-3 criteria, sepsis is formally
defined as an acute increase of≥2 points in the Sequential Organ
Failure Assessment (SOFA) score, consequent to a suspected
or proven infection (1). Increases in the SOFA score, detected
through monitoring of laboratory and clinical parameters,
reflect possible impairments in cardiovascular, respiratory, renal,
hepatic, coagulation, and neurological systems (28). This is in
line with the novel definition of sepsis as a life-threatening and
progressive organ dysfunction. Previously, sepsis was defined
as the presence of a systemic inflammatory response syndrome
(SIRS) caused by a proven or suspected infection and based
on laboratory and clinical parameters (white blood cell count,
respiratory rate, heart rate, and body temperature) that could be
altered before manifestation of sepsis-related organ dysfunction
(29). However, this previous, more general definition, lacked
specificity, since SIRS may be present in several non-infectious
conditions. On the other hand, it has very high sensitivity because
of the large denominator of patients with SIRS (although some
patients with organ dysfunction due to infection may not present
with SIRS, and a few cases may still be missed) (30). Overall, the
novel definition offers a better performance than the previous
one for identifying septic patients at higher risk of mortality
in intensive care units (ICU) (1). However, a better prediction
of mortality does not inherently reflect the best timing for
intervention. For example, it still remains unclear the optimal
timing for starting antimicrobial therapy. More specifically, while
it is intuitive to initiate antimicrobials if sepsis is first recognized
at the time of organ dysfunction (according to the novel sepsis
definition), what if the patient is already suspected to have
sepsis before developing any organ dysfunction (according to
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previous sepsis definitions)? Can we wait, or should we initiate
antimicrobials immediately? Notably, there is not a high-level
evidence-based response to this question yet, and the choice is
usually made upon clinical judgment at the patient’s bedside, on
a case-by-case basis.

However, this is hardly reproducible for defining what
should be predicted by both classical statistics and machine
learning models to support clinicians in the administration of
antimicrobials at the best time to reduce mortality of sepsis,
and, at the same time, without administering antimicrobials
indiscriminately to all patients with SIRS but no sepsis, in line
with antimicrobial stewardship principles. Prediction of sepsis
through machine learning techniques is not exempt from this
unresolved controversy, as reflected by the various definitions of
sepsis employed in the different models available in the literature
(see Table 1) (85). Against this backdrop, it is worth noting
that the possible solution of using expert physicians’ judgement
for labeling sepsis cases as gold standard for model training
may not resolve the issue because of suboptimal agreement
across physicians (86). A reasonable alternative strategy explored
by some authors may be the use of unsupervised machine
learning techniques (i.e., by recognizing patterns in the data
without a labeled outcome as in supervised learning) for the
identification of novel phenotypes of sepsis based on clinical
and laboratory values (77, 87, 88). This could help in the
identification of specific subgroups of patients to be included
in dedicated studies (preferably randomized clinical trials) to
assess the impact of early antimicrobial therapy (77, 89, 90).
Furthermore, this would allow to use the trial outcome as a
measure of a posteriori accuracy of sepsis classification based on
the phenotypes identified with machine learning techniques.

The Choice and Availability of Input
Features
The increasing use of EMR implies an immediate availability
of an electronic form of relevant clinical and laboratory data,
that support the development and real-time use of right-aligned
predictive models for the early detection of sepsis (91–93).
Indeed, these models may continuously update their prediction
of sepsis by utilizing the unceasing stream of electronic data
from the EMR and/or vital signs monitors (57, 74, 85, 92, 94).
A good predictive model may thus allow one to correctly classify
in real time a true case of sepsis in the controversial gray area
in between the previous and novel sepsis definitions. Amongst
others, two important questions need to be addressed: (i) which
and what minimum number of input features should be used
for developing a good predictive model for the early detection
of sepsis? (ii) once a good predictive model is developed,
would an early antimicrobial treatment improve the prognosis of
these patients?

Intuitively, there can be no answer to the latter question
without first developing a good predictive model. Therefore, the
appropriate selection of input features remains paramount. In
this regard, it is still unclear which between a parsimonious (even
of a few vital and/or laboratory parameters) and an expanded
(for example, considering also information from unstructured

physicians’ free text in EMR notes) selection of input features
could be preferable, and where precisely is any possible desirable
middle in between these two extremes. In the literature,
there are encouraging experiences with the use of a few vital
and/or laboratory parameters for the prediction of severe sepsis
according to previous definitions, with also a positive impact on
survival having been registered in a small but randomized single
center clinical trial and in some observational studies (44, 95–
97). However, the possibility of employing input features relying
on patients’ clinical data and medical histories remains attractive
if only for attempting a concomitant prediction of etiology (e.g.,
of multidrug-resistant causative agent based on a combination of
previous microbiological isolates and risk factors for multidrug-
resistant infections, such as previous antibiotic use), that may
impact appropriateness of empirical antimicrobial therapy while
waiting for blood cultures results (21). Notably, this paves the
way to some important issues regarding the automated extraction
of unstructured data from EMR. Examples are the need for
standardization of extraction, sufficient accuracy of automated
extraction, internal/external validation, and continuous re-
calibration of automated extraction over time. Furthermore,
besides these technical aspects, the presence of missing data
[which is inherent in EMR, since they are not an instrument
designed for research purposes (50)] and their potential impact
on the uncertainty of prediction should be properly handled.

It should also be considered that a different amount of
information is expected between ICU patients (more closely
monitored clinically and through laboratory tests) and patients
in other wards. Therefore, besides inherent differences in their
characteristics, also the different amount of available data may
influence both the selection of the best set of features and the
predictive performance of models developed for ICU patients
and models developed for other populations (e.g., to be used in
the emergency department), that may be not interchangeable.
Finally, the choice of the input features could also be dictated by
the local availability of the necessary infrastructures. For example,
lack of validation or ability to properly extract clinical data from
the local EMR may only allow the use of laboratory values
for building predictive models (manual extraction of additional
clinical data from EMR may be unfeasible or extremely time-
consuming if large samples are concerned).

The Measure of the Model Performance,
the Output, and Their Usefulness for
Clinicians
As shown in Table 1, the model performance is frequently
measured in term of area under the receiver operating
characteristics curve (AUROC), which provide an aggregate
measure of performance. Strictly speaking, the AUROC identifies
how well predictions are classified considering both the number
of true positive and true negative, i.e., how many true cases of
sepsis or true cases of not sepsis have been correctly classified.
However, this measure may not inherently reflect the clinical
usefulness of the algorithm. Indeed, the global value of AUROC
is independent of the chosen cut-off, whereas, in the setting
of sepsis, the major interest for comparing models may be in
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TABLE 1 | Characteristics of selected observational studies on the use of machine learning for the prediction/early diagnosis of sepsis*.

References Population Sample

size**

Input features (or data on

which input features are

computed)

Type of employed

model/platform***

Endpoint Output metrics****

Thiel et al. (31) Mixed-ward patients 27,722 Vital signs, laboratory data RPART(6) Septic shock defined according to

ICD-9 codes for acute infection

matched to codes for acute organ

dysfunction and the need for

vasopressors within 24 h of ICU

Proportion of correctly

classified patients, PPV,

NPV, MCR

Mani et al. (32) Neonates in NICU 299 Laboratory, clinical and

microbiology data available

in EMR

SVM(3), NB(1), TAN(6,1),

AODE(1), KNN(2),

CART(6), LR(10), RF(4),

LBR(1)

Sepsis labeled based on antibiotic

use, microbiological data, and

laboratory data

AUROC, sensitivity,

specificity, PPV, NPV

Henry et al. (33) ICU patients in the

MIMIC-II dataset (34)

16,025 Vital signs, laboratory data Supervised learning

based on Cox

proportional hazards

model(18) (TREWScore)

Sepsis according to SIRS criteria (35)

plus relevant ICD-9 coding or clinical

note mentioning sepsis

AUROC, sensitivity,

specificity

Calvert et al. (36) ICU patients in the

MIMIC-II dataset (34)

1,394 Vital signs, laboratory data,

age

InSight(19) Sepsis according to SIRS criteria (35)

plus relevant ICD-9 coding

Accuracy, AUROC,

sensitivity, specificity

Desautels et al.

(37)

ICU patients in the

MIMIC-III dataset (38)

22,853 Vital signs, laboratory data,

age

InSight(19) Sepsis according to Sepsis-3

definitions (1)

AUROC, APR

Brown et al. (39) Patients admitted to

the ED

226,481 Vital signs, laboratory data,

age

NB(1) Severe sepsis according to ICD-9

coding

AUROC, sensitivity,

specificity, PPV, NPV

Horng et al. (40) Patients admitted to

the ED

230,936 Vital signs, demographics,

and free text notes

SVM(3) Angus Sepsis ICD-9-CM abstraction

criteria (41)

AUROC, sensitivity,

specificity, PPV

Kam et al. (42) ICU patients in the

MIMIC-II dataset (34)

6,362 Vital signs, a few laboratory

data, age

InSight(19), DNN(12) Sepsis according to SIRS criteria (35)

plus relevant ICD-9 coding

Accuracy, AUROC,

sensitivity, specificity

Liu et al. (43) Patients between 16

and 80 years admitted

to ICU or medical ICU

185 General information,

medical history, progress

notes, laboratory data

FANN(11), SVM(3), RF(4) Bacterial sepsis labeled by the

treating physician found in the

medical records

AUC, accuracy,

sensitivity

McCoy et al. (44) Mixed-ward patients 1,328 Vital signs, laboratory data InSight(19) Severe sepsis according to 2001

definitions (29) and sepsis according

to Sepsis-3 definitions (1)

AUROC, sensitivity,

specificity

Shashikumar et al.

(45)

ICU patients 242 Vital signs, clinical data Elastic-net LR(9,10) Sepsis according to Sepsis-3

definitions (1)

Accuracy, AUROC,

specificity

Taneja et al. (46) Mixed-ward patients 444 Vital signs, laboratory data LR(10), NB(1), SVM(3),

AdaBoost(5), RF(4)
Eleven categories from never septic

to septic shock

AUROC

Nemati et al. (47) ICU patients 27,527 Vital signs, laboratory data,

demographic and clinical

data from EMR

AISE algorithm (based on

a modified Weibull-Cox

proportional hazards

model)(18)

Sepsis according to Sepsis-3

definitions (1)

Accuracy, AUROC,

sensitivity, specificity

Lamping et al. (48) Pediatric patients

admitted to the PICU

807 Laboratory data, clinical

variables

RF(4) Sepsis as defined Goldstein et al. (49) AUC, sensitivity

(Continued)
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TABLE 1 | Continued

References Population Sample

size**

Input features (or data on

which input features are

computed)

Type of employed

model/platform***

Endpoint Output metrics****

Mao et al. (50) Mixed-ward patients 90,353 Vital signs InSight(19) Sepsis according to 2001 definitions

(29)

AUROC, sensitivity,

specificity

Kamaleswaran

et al. (51)

Critically ill children 493 Continuous high frequency

stream of physiologic data

LR(10), RF(4), DCNN(13) Severe sepsis according to criteria

modified from Goldstein et al. (49)

and Sepanski et al. (52)

Accuracy, sensitivity,

specificity, PPV, NPV,

LR+, LR–

Saqib et al. (53) ICU patients in the

MIMIC-III dataset (38)

38,270 Vital signs and laboratory

data

LR(10), RF(4), LSTM neural

networks(12)
Sepsis according to ICD coding

system [Angus criteria (54)]

F1 score, Mathew’s

Correlation Coefficient,

AUROC, sensitivity,

PPV

Faisal et al. (55) Patients admitted to

the ED

57,243 Vital signs, laboratory data LR(10) Sepsis according to ICD-10 coding

system (56)

AUROC, sensitivity,

specificity, PPV

van Wik et al., (57) ICU patients 1,161 Continuous high frequency

stream of physiologic data

RF(4), SVM(3), LR(10),

MLP(10), RNN(12)

Sepsis defined as SIRS plus presence

of blood cultures and administration

of antibiotics, along with relevant

ICD-10 coding

F1 score, accuracy,

AUROC, PPV,

sensitivity, specificity

Delahanty et al.

(58)

Patients admitted to

the ED

2,759,529 Vital signs, laboratory data,

demographics, medications,

nursing notes, key words

Gradient boosting(5) Sepsis according to Rhee clinical

surveillance criteria (59)

Alert rate, AUROC,

sensitivity, specificity,

precision

Van Wik et al. (60) ICU patients 586 Continuous high frequency

stream of physiologic data

RF(4) Sepsis defined as SIRS plus

administration of antibiotics, along

with relevant ICD-10 coding

F2 score, accuracy

sensitivity, specificity,

PPV

Kaji et al. (61) ICU patients in the

MIMIC-III dataset (38)

36,176 Laboratory data,

demographics, prescribed

medications

LSTM neural networks

with attention

mechanism(12)

Sepsis according to SIRS criteria (35)

plus relevant ICD-9 coding

AUROC, sensitivity,

PPV

Calvert et al. (62) Multiple datasets 122,672 Vital signs Gradient-boosted

decision treesclassifier(5)
Severe sepsis according to SIRS

criteria (35) plus relevant ICD-9 coding

Accuracy, AUROC,

sensitivity, specificity,

PPV, NPV, DOR

Masino et al. (63) Neonates in NICU 1,188 Routine EMR data LR(10), NB(1), SVM(3),

KNN(2), Gaussian

process(16), RF(4),

AdaBoost(5), gradient

boosting(5)

Sepsis defined as positive blood

culture or negative blood culture plus

administration of antibiotics

AUROC, sensitivity,

specificity, PPV, NPV

Barton et al. (64) Multiple datasets 112,952 Vital signs, age Gradient boosting(5) Sepsis according to Sepsis-3

definitions (1)

AUROC, sensitivity,

specificity. DOR, LR+,

LR–

Giannini et al. (65) Mixed-ward patients 172,700 Vital signs, laboratory data,

demographics

RF(4) Severe sepsis according to ICD-9

coding plus positive blood culture

plus increased serum lactate or

reduced blood pressure

AUROC, sensitivity,

specificity, LR+, LR–
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TABLE 1 | Continued

References Population Sample

size**

Input features (or data on

which input features are

computed)

Type of employed

model/platform***

Endpoint Output metrics****

Scherpf et al. (66) ICU patients in the

MIMIC-III dataset (38)

Various (see

original

publication)

Vital signs, laboratory data,

age

RNN(12), InSight(19) Severe sepsis according to SIRS

criteria (35) plus relevant ICD-9 coding

AUROC, sensitivity,

specificity

Schamoni et al.

(67)

Surgical ICU patients 620 Clinical data, laboratory

data, demographics

Ordinal regression(15) Sepsis defined according to attending

physicians’ daily judgements of

patients’ sepsis status

AUROC, features

weights

Fagerström et al.

(68)

ICU patients in the

MIMIC-III dataset (38)

∼59,000 Vital signs, laboratory data,

medical procedures,

medications, journal notes,

diagnoses, patient

demographics

LSTM neural networks(12) Septic shock according to SIRS

criteria (35) plus relevant ICD-9

coding or clinical note mentioning

septic shock

AUROC

Le et al. (69) Mixed-ward pediatric

patients

9,486 Vital signs, laboratory data,

GCS

Boosted ensembles of

decision trees(5,6)
Severe sepsis defined according to

Goldstein et al. (49)

AUROC, sensitivity,

specificity, DOR

Yee et al. (70) ICU patients in the

MIMIC-III dataset (38)

9,165 Laboratory data, diagnosis

and procedures codes

according to ICD-9,

demographics

BN(17) Septic shock defined according to

Kadri et al. (71)

AUROC, sensitivity,

specificity, PPV, NPV

Scott et al. (72) Pediatric patients

admitted to the ED and

urgent care sites

2,464 Vital signs, demographics,

clinical data

Elastic net

regularization(9)
Septic shock defined according to

Goldstein et al. (49)

AUROC, sensitivity,

specificity

Dhungana et al.

(73)

ICU patients 200 Laboratory data, clinical

data, demographics

Computable

phenotypes(6)
Sepsis labeled by manual data

abstraction from EMR

Sensitivity, specificity

Bloch et al. (74) ICU patients 600 Vital signs LR(10), SVM(3), neural

networks(11)
Sepsis according to 1992 definition

(35)

AUROC, APR,

sensitivity, specificity,

PPV, NPV

Choi et al. (75) Mixed-ward patients 7,743 Laboratory data LR(10) Sepsis according to ICD-10 coding

system

Accuracy, AUROC,

sensitivity, specificity,

PPV, NPV

Kim et al. (76) Patients admitted to

the ED

49,560 Vital signs, laboratory data,

demographics

SVM(3), gradient

boosting(5), RF(4),

MARS(14), LASSO(8),

ridge regression(7)

Septic shock according to Sepsis-3

definitions (1)

AUROC, APR,

sensitivity, specificity,

PPV, NPV

Ibrahim et al. (77) ICU patients in the

MIMIC-III dataset (38)

13,728 Vital signs, laboratory data RF(4), gradient

boosting(5), SVM(3)

Manually validated extracted sepsis

mention in EMR, overall and

according to phenotypes

AUROC, sensitivity,

specificity, LR+, LR–

Yuan et al. (78) ICU patients 1,588 Minute-by-minute collection

of vital signs, laboratory

data, examination reports,

text data, and images

Gradient boosting(5) Sepsis labeled by the in-charge

intensivist every day

F1 score, accuracy,

sensitivity, specificity,

PPV
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TABLE 1 | Continued

References Population Sample

size**

Input features (or data on

which input features are

computed)

Type of employed

model/platform***

Endpoint Output metrics****

Lauritsen et al. (79) Mixed-ward patients 3,126 Vital signs, laboratory data,

clinical data, medications,

images

Combination of CNN(13)

and LSTM neural

networks(12)

Sepsis labeled by the treating

physician based on the 2001

definitions (29)

AUROC, APR, mean

average precision, net

benefit

Tran et al. (80) Adult patients with

≥20% TBSA burns

121 Vital signs, laboratory data,

and a few clinical variables

and clinical scores

Different ML algorithms

optimized by MILO

Sepsis status based on 2007 ABA

consensus guidelines (81)

Accuracy, AUROC,

sensitivity, specificity

Burdick et al. (82) Adult patients from

inpatient wards and

emergency department

admission

270,438 Vital signs and a few clinical

variables

Optimized distributed

gradient boosting(5)
Severe sepsis according to ICD-9

coding system

AUROC, specificity,

accuracy, DOR, LR+,

LR–

Bedoya et al. (83) Patients admitted to

the ED

42,979 Patient demographics, vital

signs, comorbidities,

medications and laboratory

data

RNN(12), CR(8,18),

LR(10),RF(4)
Sepsis defined as presence of 2 or

more SIRS criteria (35), a blood

culture order, and at least one

element of end-organ failure

AUROC

Abromavičius et al.

(84)

ICU patients 40,336 Vital signs, laboratory data,

demographics

DT(6), NB(1), SVM(3),

Ensemble learners(5)
Sepsis labeled according to Sepsis-3

criteria (1)

AUC, APR, accuracy,

F-measure, MCC

ABA, American Burn Association; AISE; artificial intelligence sepsis expert; AODE, averaged one dependence estimators; APR, area under precision-recall curves; AUROC, area under the receiver operating characteristics curve; BN,

Bayesian networks; CART, classification and regression trees; CR, Lasso-penalized Cox regression; DC, decision tree; DCNN, deep convolutional neural networks; DNN, deep neural networks; DOR, diagnostic odds ratio; ED, emergency

department; EMR, electronic medical record; FANN, Fast artificial neural network; GCS, Glasgow coma scale; ICD-9-CM, International classification of diseases, ninth Revision, clinical modification; ICU, intensive care unit; IPSCC,

International Pediatric Sepsis Consensus Conference; KNN, K-nearest neighbors; LASSO, least absolute shrinkage and selection operator; LBR, lazy Bayesian rules; LR, logistic regression; LR+, positive likelihood ratio; LR–, negative

likelihood ratio; LSTM, long short-term memory; MARS, multivariate adaptive regression splines; MCR, misclassification rate; MILO, Machine intelligence learning optimizer; MCC, Matthews correlation coefficient; MLP, multi-layer

perceptron; NB, naïve Bayes; NICU, neonatal intensive care unit; NPV, negative predictive value; PICU, Pediatric Intensive Care Unit; PPV, positive predictive value; RF, random forests; RNN, recurrent neural networks; RPART, recursive

partitioning and regression tree; SVM, support vector machine, TAN, tree augmented naïve Bayes; TBSA, total body surface area.

*Selected studies based on the literature search performed for the purpose of this narrative review. Not meant to be systematic and exhaustive.

**Variously divided in training, validation, and test sets.

***Numbers in parentheses refer to specific boxes of Supplementary Figure 1, which provides a brief summary of the characteristics of the different ML model.

****Sensitivity reported at some fixed specificity and vice versa; the same applies to other metrics dependent on cut-offs.
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the portion of the curve that maximizes sensitivity (in order
not to miss true cases and not to delay a potentially life-saving
antimicrobial treatment). This would allow, once a low risk of
missing true cases is determined, to compare models in terms of
specificity (aiming at reducing the number of false positive cases
treated with antimicrobials, thereby reducing useless toxicity
and resistance selection). In any case, the definitive proof of
usefulness of any classification model should be provided by
randomized clinical trials comparing sepsis management based
on its use vs. standard identification of sepsis with respect to a
clinically relevant primary endpoint (e.g., short-term mortality).
Finally, it should be kept in mind that the present perspective
was aimed to highlight some issues that may hamper the
comparability and extrapolation of results of available models,
and not to primarily assess their performance, which is not
reported in detail. Nonetheless, we think it may be of interest to
highlight the wide heterogeneity of model results. For example,
the best AUROC for the prediction of sepsis ranged from
0.68 to 0.99 in a recent systematic review, whereas sensitivity
and specificity were inconsistently reported to allow proper
comparison (92).

Another important aspect is the output of the model. While
sepsis is the outcome (or dependent variable), the output of
the model may be different according to the type of model
(for a brief summary of the technical characteristics of different
ML models employed in available studies of sepsis prediction,
see Supplementary Figure 1) (98). For example, the output of
logistic regression (but also, for example, of a sigmoid function-
based output layer a of neural network), intended for a single
patient, is his/her probability of experiencing the outcome (in this
case having sepsis or not), based on his/her input features and
the calculations of the trained predictive algorithm. Let’s say, for
example, that the algorithm calculates for a novel given patient,
based on their clinical and laboratory data, a 40% probability of
having sepsis. In terms of usefulness, this probability provided
to doctors may be a clinically understandable value that can be
easily weighted in the balance when deciding whether or not
to administer antimicrobials, possibly also improving acceptance
of the implementation of machine learning-based sepsis alerts
in daily practice (99). However, clinicians should also be aware
of the limitations of the model, in order to further improve an
appropriate understanding and use of the output. In this regard,
there are no standardized directives on the optimal way to present
model pitfalls to clinicians together with the model output,
although “model facts” labels have started to be proposed (100).

LIMITATIONS AND CONCLUSIONS

Given the narrative (and not systematic) nature of this
brief narrative perspective, some original works may have

not been included, a fact that, together with the lack of
an in-depth description of computational aspects of the
different algorithms, may represent major limitations of the
present paper. Nonetheless, our intention was to provide a
brief perspective for clinicians by addressing some topics of
clinical interest concerning the application of machine learning
techniques for the early detection of sepsis in the daily
clinical practice. For this reason, we feel an extended focus
on technical aspects would have been beyond the scope of the
present manuscript.

In conclusion, the use of predictive tools based on
machine learning may support medical decision-making
by providing novel elements to improve the correct and
early identification of patients with sepsis. Although at the
present time it cannot be said yet whether or not this will
ultimately improve patient survival and relevant antimicrobial
stewardship outcomes, the increasing involvement of artificial
intelligence and machine learning in health care cannot
be ignored. In the long run, a rigorous multidisciplinary
approach to enrich our understanding of the application
of machine learning techniques to the early recognition of
sepsis may be worth the trip and truly augment medical
decision-making when facing this heterogeneous and
complex syndrome.
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