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Objective: Predicting prognosis of in-hospital patients is critical. However, it is

challenging to accurately predict the life and death of certain patients at certain period.

To determine whether machine learning algorithms could predict in-hospital death of

critically ill patients with considerable accuracy and identify factors contributing to the

prediction power.

Materials andMethods: Using medical data of 1,384 patients admitted to the Surgical

Intensive Care Unit (SICU) of our institution, we investigated whether machine learning

algorithms could predict in-hospital death using demographic, laboratory, and other

disease-related variables, and compared predictions using three different algorithmic

methods. The outcome measurement was the incidence of unexpected postoperative

mortality which was defined as mortality without pre-existing not-for-resuscitation order

that occurred within 30 days of the surgery or within the same hospital stay as the surgery.

Results: Machine learning algorithms trained with 43 variables successfully classified

dead and live patients with very high accuracy. Most notably, the decision tree showed

the higher classification results (Area Under the Receiver Operating Curve, AUC = 0.96)

than the neural network classifier (AUC = 0.80). Further analysis provided the insight

that serum albumin concentration, total prenatal nutritional intake, and peak dose of

dopamine drug played an important role in predicting the mortality of SICU patients.

Conclusion: Our results suggest that machine learning algorithms, especially the

decision tree method, can provide information on structured and explainable decision

flow and accurately predict hospital mortality in SICU hospitalized patients.

Keywords: anesthesia and intensive care, informatics, intensive care, surgery, machine learning

INTRODUCTION

Prediction of mortality rate of patients in intensive care unit (ICU) has been a critical issue (1–3).To
assess the probability of death in ICU patients, several models using routine admission variables (4)
and objectively derived weights were proposed in the 1980s (5). Along with these attempts, Acute
Physiology And Chronic Health Evaluation (APACHE) II was developed to assess the severity and
mortality of patients admitted to ICU in 1985 (6, 7). Other scoring systems such as Simplified
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Acute Physiology Score (SAPS) II that can provide a probability
of hospital mortality have also been suggested (8). With new
variables such as Glasgow Coma Scale and thrombolysis,
APACHE was updated to APACHE IV in 2006, showing
better performance in predicting mortality rate in ICU patients
(9). SAPS III also added several variables that could be
quickly measured at admission, showing increased prediction
performance compared to SAPS II (10).

However, they have several limitations in clinical settings
although APAHCE, SAPS, and other scoring systems are widely
used. First, as these prediction models only use a few variables,
more precise and accurate prediction is difficult. SAPS III
applies only 20 variables while APACHE IV uses 26 ones. This
simplicity makes it possible to quickly determine the status of
patients admitted to ICU (11). Second, SAPS and APACHE
IV only assess physiological states of patients on the first day
of admission. Although there are other scoring systems that
can repetitively measure patients’ status (e.g., Sequential Organ
Failure Assessment named SOFA), the prognosis and mortality
could not be accurately predicted from the data measured only
once at the time of admission.

For these reasons, there have been several attempts to predict
the mortality rate of critically ill patients using machine learning
techniques. Support vector analysis could discriminate mortality
in patients with hematologic malignancies (12). Random forest
model can well-predict death from in-hospital patients, showing
higher accuracy rate than Modified Early Warning Scores
(MEWS) (13). Latent variable models that use information from
electronic healthcare records predicted in-hospital death with
combined time-varying model yielding the best performance
(14) and it can also accurately estimate the probability of death
in 1-year for multi-condition hospitalized patients (15). These
findings demonstrate that the accuracy of mortality prediction
for critically ill patients can be increased when machine learning
algorithms and various medical data are used. However, it is
currently unknown how machine learning algorithms make
decisions during the prediction process. Thus, the objective
of this study was to determine whether machine learning
algorithms using demographic, laboratory, and other disease-
related variables could predict in-hospital death of critically ill
patients who were admitted to surgical intensive care unit (SICU)
with considerable accuracy and identify factors contributing to
the prediction power.

METHODS

Participants Selection
From January 1990 to March 2017, patients admitted to SICU
of our institution for postoperative management after major
abdominal surgeries were included in this study. Our institution
is a tertiary referral hospital and SICU has an average of 1,800

Abbreviations: ICU, Intensive care unit; APACHE, Acute physiology and chronic

health evaluation; SAPS, Simplified acute physiology score; AUC, Area under

the receiver operating characteristic curve; SICU, Surgical intensive care unit;

EMR, Electrical medical records; AST, Aspartate transaminase; ALT, Alanine

transaminase; MEWS, Modified early warning score; SOFA, Sequential organ

failure assessment.

patients annually. Major abdominal surgeries were defined as
operation under general anesthesia status with endotracheal
tube over 4 h regardless of the type of diagnosis, the status
of malignancy or benign, the type of surgery or surgical sites.
Subjects who met any of the following features were excluded
from study; (a) age <18 or >80 years, (b) the duration of
SICU stay <24 h, (c) patient was admitted to SICU due to
medical or neurological problem without operation, (d) hopeless
condition of patient in medical aspects, (e) pregnant state, or (f)
measurements required for our predictor were not recorded at
any time during ICU stay. Finally, a total of 1,352 patients were
enrolled for further analysis (Figure 1).

Data Extraction
Clinical data and medical records during the study period were
retrospectively reviewed. Authors used patient-level information
and medical records extracted from electrical medical records
(EMR) of our institution. Disease characteristics included the
diagnosis of disease, origin or location of lesion, malignancy
or benign status. The policy of vital sign measurement in our
institution was prescribed to mandate the frequency of vital sign
measurement to be two every hour unless otherwise specified.
Variables of laboratory tests included results of arterial blood gas
analysis and serum blood chemistry test. The usage of inotropes
or vasopressors was also reviewed. The outcome measurement
was the incidence of unexpected postoperative mortality defined
as mortality without pre-existing not-for-resuscitation order that
occurred within 30 days of the surgery or within the same
hospital stay as the surgery. Finally, a total of 43 variables
composed of 1,758,334 entries of enrolled patients were used
for analysis. Detailed protocol of data extraction is presented
in Figure 1. This study was approved by the Institutional
Review Board of the Ethics Committee of our institution (IRB
No. KC17RESI0672).

Model Development and Validation
Decision Trees

Decision trees can predict classifications (life or death) from
medical data and these have the advantage of being able to
present decisions visually and explicitly (16). We can use the final
decision tree to accurately explain why a particular prediction is
performed. To predict the classification, the algorithm followed
the tree’s decision from the root (start) node to the leaf node (final
classification). Each step of the prediction involved checking the
value of one predictor variable. If predictor x1 exceeded a certain
value n, it would follow the right branch representing type 1
(life). Otherwise, it would follow the left branch to indicate type
0 (death). The purpose of training the decision tree was to create
a model that could predict the value of target variable based on
multiple input variables. We tried and tested multiple decision
points to numerically sort all values using a greedy approach and
to maximize the prediction performance of the target value. All
input variables and decision points were evaluated and selected
in a greedy manner based on cost function.

Tree partitioning continued until the node contained a
minimumnumber of training examples or reached themaximum
tree depth. The Gini cost function was used to indicate how
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FIGURE 1 | Flow diagram of participant selection.

good a decision split was, depending on how many classes were
mixed in the two groups generated by the decision split (17). Data
were divided into three sets; (1) 70% were used for training, (2)
15% were used for validating that the network was generalizing
with training stopped before overfitting, and (3) 15% were
used for completely independent test for network generalization.
Moreover, 10-fold cross validation was used to test the stability
of results by randomly shuffling training/validation/testing
data sets.

Neural Networks

Base model architecture is as follows (Figure 2). In this study, 43
variables were used as input variable to the neural network that
consisted of one hidden layer with 100 neurons (parameters).
A linear output neuron was used to obtain the final output of
the regressive model. It is known that the model can fit multi-
dimensional mapping problems arbitrarily well if consistent data
are given with enough neurons in its hidden layer (18, 19).

We tested different number of hidden neurons (10, 20, 50,
100, 200, 300 neurons) and layers (1–5 layers), and compared
the performance (Figure 3). We found that the area under curve

(AUC) is saturated at the number of neurons of 200 or more
(10-cross validations), and the AUC is maximum at the single
layer with 200 neurons. Therefore, we determined 200 hidden
neurons (number of parameters) and a single layer for our neural
network parameters.

The network was trained with scaled conjugate gradient
backpropagation algorithm (20, 21). Same training (70%),
validation (15%), and testing (15%) division as decision tree
was used in neural networks. Ten-fold cross validation was also
used, and we compared the results with decision tree using
independent t-test (Matlab, MathWorks Inc.).

Naive Bayes

Naive Bayes is a classification algorithm that applies a density
estimate to the data and assumes that the predicted variables
are conditionally independent. Naive Bayes classifiers are known
to produce a posterior distribution that is robust to biased
class density estimates (22). The Naive Bayes classifier assigns
observations to the most likely class (i.e., maximum post-
decision rule). The algorithm first estimates the density of
predicted variables within each class. It then models the posterior
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FIGURE 2 | Neural network model for prediction of life and death in hospital. Neural network model to transform 43 Surgical Intensive Care Unit (SICU) medical data

for prediction of life and death. Tansig = hyperbolic tangent sigmoid function; Purelin = linear transfer function.

FIGURE 3 | Parameter optimization for neural networks. (A) Area Under Curve (AUC) values from different number of neurons (single layer, 10, 20, 50, 100, 200, 300

neurons) (10-fold cross validation results). Maximum AUC at 200 neurons or more. (B) AUC values from different number of layers with 200 neurons (10-fold cross

validation results). Maximum AUC at single layer (Error bars represent standard errors).

probability according to the Bayes rule. That is, for all k= 1, ..., K,

P̂
(

Y = k
∣

∣X1, . . . ,Xp

)

=
π(Y = k)

∏P
j=1 P(Xj|Y = k)

∑K
k=1 π(Y = k)

∏P
j=1 P(Xj|Y = k)

(1)
Where Y is a random variable corresponding to the class index of
the observation. X1, ..., XP are random predictors of observation.
π(Y = k) is a prior probability with class index k. The algorithm
then classifies observations by estimating posterior probabilities
for each class and assigning observations to classes that yield
maximum posterior probabilities.

Random Forests and Hellinger Distance Estimates

Furthermore, to establish the model stability of imbalanced
dataset (only 10% of participants belonged to expired class), we
applied the Hellinger Distance Decision Tree (23), the Hellinger
Distance RandomForest (24) and the RandomForest model (25).
To test the machine learning model stability, we performed a 10-
fold cross-validation and tested whether the machine learning
model performance was significantly different depending on the
various data selections for training and testing. Since the F1 score

is the harmonic mean of precision and recall, statistical tests were
only performed on the AUC and F1 scores.

RESULTS

Participants and Variable Selection
The criteria used for patient selection and lists of variables
are presented in Figure 1. During the inclusion period, 35,058
patients were admitted to SICU. Among them, 4,182 were
excluded as they had medical or neurological problem without
operation. Then 17,438 patients who underwent surgery for
<4 h were excluded. Of 13,438 patients who were recruited
after meeting the selection criteria, 12,086 patients with a
“do not resuscitate form” or were discharged with hopeless
condition were excluded. Analysis in more detail, among 12,086
patients, 4,120 patients received actual “do not resuscitate
form,” 2,307 patients with discharge with hopeless condition,
and 1,305 patients were transferred to other institution or
hospital for further management. Additionally, there were
2,614 patients who were excluded from the analysis due to
insufficient medical data. Thus, data of 1,352 patients were used
for training machine learning algorithms. Forty-three variables
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TABLE 1 | Comparative analysis of demographics of enrolled patients according

to the survival or expire.

Variables Survivor* (%) Expired** (%) p-value

Number of patients 1,232 (91.1) 120 (8.9)

Mean age (year) 50.6 ± 9.4 68.8 ± 10.3 0.023

Male/Female 848/384 82/38 0.918

Diagnosis 0.015

Malignancy 1,102 (89.4) 97 (80.8) 0.036

Upper GI tract 141 (11.4) 8 (6.7)

Lower GI tract 293 (23.8) 24 (7.6)

Hepatobiliary-pancreas 663 (53.8) 64 (8.8)

Miscellaneous 5 (0.4) 1 (0.8)

Benign 130 (10.6) 23 (19.2) 0.008

Hemoperitoneum 32 (2.6) 2 (1.7)

Panperitonitis 87 (7.1) 8 (15)

Biliary shock 5 (0.4) 0

Miscellaneous 6 (0.5) 3 (2.5)

Type of surgery <0.001

Elective operation 1,020 (82.8) 78 (65)

Emergency operation 212 (17.2) 42 (35)

*The patient survived more than 30 days after surgery or during the same hospital stay as

the surgery.
**The unexpected postoperative mortality which was defined as the mortality without the

pre-existing not-for-resuscitation order and occurred within 30 days of the surgery or

within the same hospital stay as the surgery.

consisting of demographic, laboratory, hemodynamic, surgical,
and disease-specific variables were used to estimate mortality of
SICU patients. Comparative analysis results of participants are
presented in Table 1.

Prediction Performance of Mortality Using
Machine Learning Algorithms
The performance ofmortality prediction is presented in Figure 4.
Among decision tree, neural network, and Bayes classifier
algorithms, the neural network algorithm showed the highest
performance with an AUC of 0.80, followed by the decision
tree with an AUC of 0.75. Bayes classifier had the least
predictive accuracy, with an AUC of 0.73. As the decision tree
algorithm has nodes that represent variables and conjunction that
connects the nodes, the performance of this algorithm mainly
depends on the number of nodes and tree size (26). Thus,
we explored different ways to find the optimal performance of
the decision tree algorithm by adjusting the number of nodes
(Figure 5). We found that the optimal number of nodes that
could minimize the decision tree’s misclassification error rate was
77, where the classification prediction error was 0.2478 (75%
classification accuracy). Using this number of nodes, decision
tree structure was pruned. The results were based on the 10-fold
cross validation.

We compared the 10-fold cross validation results between the
neural networks and the decision tree algorithms. The AUCs
among 10 validation runs were stable in that the standard
deviation was 0.0012 for the decision tree, and 0.0017 for the

FIGURE 4 | Receiver operating characteristics curve of machine learning

algorithms. ROC curve of Decision tree (AUC = 0.75), neural net (AUC =

0.80), and Bayes (AUC = 0.73) classification algorithms. The results are based

on 10-fold cross validations.

FIGURE 5 | Optimized decision tree for the classification of life/death of

patients in surgical intensive care unit.

neural networks. The independent t-test showed that t(18) =

68.05 and p < 0.00001. Therefore, the neural network algorithm
performed significantly better than decision tree.

To test whether the difference in F1 scores was significant
in different machine learning models, we used the Kruskal-
Wallis test, ANOVA’s non-parametric counterpart. The results
showed significant differences in the F1 score (Kruskal-Wallis
chi square = 52.93, df = 5, p < 0.001). Then we tested the
pairwise comparison using the Wilcoxon rank test between
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TABLE 2 | Performance metrics of each ML model (Wilcoxon rank test, *p <

0.0017, adjusted p-value for multiple comparisons).

F1 score Precision Recall AUC

Decision tree 0.72 0.62 0.87 0.75

Neural networks 0.83 0.74 0.95 0.80

Bayes 0.82 0.70 0.98 0.73

Random forest 0.84 0.78 0.90 0.77

Hellinger distance

decision tree

0.48* 0.49 0.48 0.65*

Hellinger distance

random forest

0.51* 0.51 0.51 0.74

Bold value denote the highest value in each metric.

different ML models. Although Random Forest had the highest
F1 score, we found no significant difference between Random
Forest, Bayes, Decision Tree, and Neural Network ML models
(p > 0.05). Compared to the random forest, the Hellinger
distance decision tree and the Hellinger distance random forest
showed a significant decrease in the F1 score (p < 0.001). When
considering multiple comparison corrections, the significance
level should be adjusted to 0.0017 (0.05/30 comparison)
instead of 0.05.

The Kruskal-Wallis test showed significant differences in
AUC values among various machine learning models (Kruskal-
Wallis chi square = 43.75, df = 5, p < 0.001). We also tested
pairwise comparisons using the Wilcoxon rank test and found
no significant differences between the Random Forest, Bayes,
Decision Tree, Neural Network, and Hellinger Distance Random
Forest ML models (p > 0.05) (Table 2). Compared to the neural
network model, the Hellinger distance decision tree showed a
significant reduction in the AUC value (p < 0.001).

Optimized Decision Tree for the
Classification of Life/Death
Figure 6 shows how 43 variables are applied to predict life
or death of ICU patients. Among 43 variables, serum level of
albumin had a crucial role in the prediction of mortality. If
albumin level was higher than 2.685 g/dL, the number of days
of total parental nutrition played an important role in the next
decision. If albumin level was not higher than 2.685 g/dL, the
peak dose of dopamine drug was important. If patient’s albumin
level was higher than 2.685 g/dL and the peak dose of dopamine
level was higher than 8.3 mcg/kg/min, he/she was more likely to
survive.

DISCUSSION

Herein, we showed that a certain machine learning algorithm
could predict death of SICU patients using variables frequently
used in clinical practice. Decision tree algorithm had a higher
classification performance (AUC = 0.96) than neural network
or Bayes classifier algorithm. This result might be applicable to
clinical application considering results of other fields (27).

Previous studies have shown thatmachine learning algorithms
could be used to predicting the prognosis and death of ICU

patients. Both support vector machine and random forest model
had an acceptable performance in predicting deaths of critically
ill patients. Results of the present study showed somewhat higher
performance than those of previous studies. It might be related
to the number of variables used in training machine learning
algorithms. In Verplancke’s study, 12–17 variables were included
in discriminating life and death of critically ill patients. However,
our model used 43 variables (12). A small number of variables
can be advantageous in helping clinician to make quick decisions
as they do not require additional laboratory testing. However,
since the accuracy of machine learning is related to the number of
variables used, it may be more effective to use as many variables
as possible to increase the prediction accuracy for mortality.

According to a recent observational cohort study comparing
the performance of several machine learning algorithms using
the same dataset, machine learning algorithms out-performed
conventional scoring systems (e.g., MEWS) (13). In that study,
random forest model had the highest performance (AUC= 0.80)
whereas decision tree showed the lowest value (AUC = 0.73).
Churpek et al. have also shown that basic physiological data
(e.g., respiratory rate and heart rate) are the most significant
predictors of deterioration of in-patients (13). These results were
somewhat different from our results as laboratory test played
a crucial role in our findings (Figure 4). This difference might
be due to difference between machine learning algorithm used
and outcome measurement used in different studies. While
Churpek et al. focused on the deterioration of condition of
in-patients, we aimed to discriminate life and deaths of SICU
patients. Furthermore, we did not include basic physiological
data when training machine learning algorithms to match time-
resolution with other laboratory variables (laboratory tests were
acquired every few days while heart rate and respiratory rates
were acquired continuously in SICU). Acquisition of continuous
data can inevitably lead to drawbacks of the data. Removal of
electrocardiogram leads due to patient’s movement can cause
sustained zero heart rate which is the case of “false alarm”
while under-sampling or erroneous data due to sensor fault
can occur during care of ICU patients. These imprecise and
missing data corruptions are primary challenges in critical
care and it is still difficult to detect and correct these errors
in large amounts of patient data (28). Therefore, this study
included only objective variables that could be periodically
measured. Thus, the present study could not confirm how
physiological indicators contributed to mortality prediction. For
this reason, it is difficult to directly compare results of this
study with existing scoring systems (e.g., APACHE, MEWS,
etc.). However, it can be compared with AUC performance
reported in previous studies. APACHE II and SOFA showed AUC
values of 0.81 and 0.71, respectively, in predicting prognosis in
patients with ventilator-assisted pneumonia (29). MEWS and
modified Mortality in Emergency Department Sepsis scores had
AUC values of 0.61 and 0.77, respectively, in predicting 28-days
mortality of patients in emergency department (30). Although
characteristic of patients and the number of data are different,
our findings suggest that mortality prediction using machine
learning algorithms may have higher prediction accuracy than
these classical scoring systems.

Frontiers in Medicine | www.frontiersin.org 6 March 2021 | Volume 8 | Article 621861

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yun et al. Mortality Prediction in ICU Patients

FIGURE 6 | Contribution of 43 variables in predicting life or death of ICU patients (32, 33).

In results of optimized decision tree method, the most
important and contributing variable in predicting mortality
of SICU patients was albumin (Figure 4). Reduced level of
serum albumin is known to be an independent predictor of
mortality. In a large epidemiologic study, decrement of 2.5 g/L
serum albumin is associated with increased odds of deaths (31).
Preoperative serum albumin concentration also well-predicted
operative mortality and morbidity (32, 33). Although serum
albumin concentration was an important variable for predicting
the prognosis and mortality of surgical patients in previous
studies, we did not give any indication of its significance while
training the machine learning algorithm. Nonetheless, decision
tree algorithm identified that serum albumin concentration was
the most important indicator for decision-making of life and
deaths. This result suggests that machine learning algorithms
might be able to recognize clinically significant factors in large
data sets.

This study has several limitations. First, as mentioned above,

physiological indicators such as heart rate or respiratory rate

were not used for prediction. This makes it difficult to compare

findings of our study with classical scoring indicators. Second, as
this study used dataset of a single institution, it was impossible
to compare differences in various patient groups or treatment
protocols. Moreover, a large number of patients enrolled were
excluded from the final analysis due to the lack of essential data.
But this is due to the fact that the patients who had missing
these parameters were strictly excluded from the analysis to

ensure a high accuracy of the model and to confirm a strong
correlation with the parameters, even if the representativeness
of the whole group is somewhat less. An external validation via
multicenter, prospective designed study should be conducted to
confirm our results in the near future. Finally, only some variables
in the electronic health record were used to train the machine
learning algorithm. Thus, it may be necessary to include real-time
variable data to improve the accuracy for mortality prediction of
critically-ill patients.

In conclusion, our results suggest that machine learning
algorithms, especially the decision tree method, can
provide information on structured and explainable decision
flow and accurately predict hospital mortality in SICU
hospitalized patients.
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